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ABSTRACT
In mammalian peripheral nerves, unmyelinated C-fibers

usually outnumber myelinated A-fibers. By using trans-

mission electron microscopy, we recently showed that

the saphenous nerve of the naked mole-rat (Heteroce-

phalus glaber) has a C-fiber deficit manifested as a sub-

stantially lower C:A-fiber ratio compared with other

mammals. Here we determined the uniqueness of this

C-fiber deficit by performing a quantitative anatomical

analysis of several peripheral nerves in five further

members of the Bathyergidae mole-rat family: silvery

(Heliophobius argenteocinereus), giant (Fukomys mecho-

wii), Damaraland (Fukomys damarensis), Mashona

(Fukomys darlingi), and Natal (Cryptomys hottentotus

natalensis) mole-rats. In the largely cutaneous saphe-

nous and sural nerves, the naked mole-rat had the low-

est C:A-fiber ratio (�1.5:1 compared with �3:1),

whereas, in nerves innervating both skin and muscle

(common peroneal and tibial) or just muscle (lateral/

medial gastrocnemius), this pattern was mostly absent.

We asked whether lack of hair follicles alone accounts

for the C-fiber paucity by using as a model a mouse

that loses virtually all its hair as a consequence of con-

ditional deletion of the b-catenin gene in the skin.

These b-catenin loss-of function mice (b-cat LOF mice)

displayed only a mild decrease in C:A-fiber ratio com-

pared with wild-type mice (4.42 compared with 3.81).

We suggest that the selective cutaneous C-fiber deficit

in the cutaneous nerves of naked mole-rats is unlikely

to be due primarily to lack of skin hair follicles. Possible

mechanisms contributing to this unique peripheral

nerve anatomy are discussed. J. Comp. Neurol.

520:2785–2803, 2012.
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The axons present in the peripheral nerves of mammals

can originate from motor neurons, pre- and postgan-

glionic autonomic neurons, and sensory neurons with

their cell bodies in the trigeminal and dorsal root ganglia.

The majority of axons in peripheral nerves are sensory

axons, and these can be split into two main groups: my-

elinated A-fibers and unmyelinated C-fibers. Large-diame-

ter afferent Ab-fibers are involved in mechano- and pro-

prioception, whereas smaller-diameter Ad-fibers are

either mechanoreceptors (D-hair receptors) or nocicep-

tors (Ad-mechanonociceptors), some of which are also

thermosensitive (Smith and Lewin, 2009). C-fibers are di-
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vided into different groups according to their sensitivity

to different noxious, chemical, and thermal stimuli, but

there are also silent C-fibers, which are activated only fol-

lowing sensitization, and a group of low-threshold C-fibers

(Olausson et al., 2010), which have not been classified as

nociceptors (for a detailed review of different sensory

fiber types see Lynn, 1994; Lewin and Moshourab, 2004;

Smith and Lewin, 2009; Dubin and Patapoutian, 2010).

Unlike A-fibers, whose myelin sheath isolates individual

fibers, unmyelinated C-fibers are grouped together in

bundles by nonmyelinating Schwann cells, forming so-

called Remak bundles.

The need to detect potentially damaging stimuli has

been the selection pressure behind the evolution of noci-

ceptors, and their importance for protective reflexes may

explain the fact that C-fibers often outnumber A-fibers

(Smith and Lewin, 2009). This predominance of C-fibers

over A-fibers is well documented for the saphenous nerve,

which normally contains only cutaneous afferents innervat-

ing the medial knee, lower leg, and foot (Zimmermann

et al., 2009). The saphenous nerve is frequently used in an

in vitro skin nerve preparation to characterize sensory

afferent fiber properties (Reeh, 1986; Koltzenburg and

Lewin, 1997; Koltzenburg et al., 1997; Milenkovic et al.,

2007, 2008; Wetzel et al., 2007; Lechner and Lewin,

2009). Measurements of the C:A-fiber ratio in the saphe-

nous nerve by transmission electron microscopy have

shown that C-fibers outnumber A-fibers with a ratio of

�4:1 in a number of mammalian species: rat (Rattus norve-

gicus; Scadding, 1980; Alpsan and Lal, 1980; Lynn, 1984;

Jancso et al., 1985; Carter and Lisney, 1987), mouse (Mus

musculus; Stucky et al., 2002; Wetzel et al., 2007; Mile-

nkovic et al., 2007; Stürzebecher et al., 2010), and dog

(Canis lupus familiaris; Illanes et al., 1990). The sural nerve,

which also contains predominantly cutaneous axons and

innervates the lateral calf and foot (Peyronnard and Char-

ron, 1982; Lewin and McMahon, 1991a,b), has also been

observed to contain a C:A-fiber ratio of �4:1 in both

humans and rabbits, Oryctolagus cuniculus (Ochoa and

Mair, 1969; Schwab et al., 1984).

In contrast to this generally conserved high C:A-fiber

ratio, we recently found that the saphenous nerve in

African naked-mole rats (Heterocephalus glaber) has a

pronounced deficit in C-fibers, so that the C:A-fiber ratio

is only �1.1:1 (Park et al., 2008). In the rat, C:A-fiber

ratios lower than those measured from cutaneous nerves

have been found in mixed nerves, which innervate both

muscle and skin, such as the common peroneal and tibial

nerves (Swett et al., 1991; Schmalbruch, 1986), which

have a C:A-fiber ratio of �2:1 (Schmalbruch, 1986; Jenq

et al., 1987). Even lower C:A-fiber ratios are observed in

pure muscle nerves, e.g., the lateral and medial gastro-

cnemius nerves (Swett et al., 1991), in which C:A-fiber

ratios of just �1.5:1 were measured (Jenq and Cogge-

shall, 1984a,b, 1985a,b; Jenq et al., 1984).

Naked mole-rats are one of approximately 20 species in

the African mole-rat family, the Bathyergidae, which have

been split into six genera by using morphological and mo-

lecular techniques (Faulkes et al., 2004; Ingram et al.,

2004; Kock et al., 2006; Deuve et al., 2008). All Bathyergi-

dae are subterranean and feed on geophytes, the under-

ground storage organs of plants. However, bathyergids

occur in a wide range of soil types (from sand to fine clay)

and range in body mass from �35 g (naked mole-rat) to

�2 kg (Cape dune mole-rat, Bathyergus suillus), and their

social organization varies from solitary (e.g., the silvery

mole-rat, Heliophobius argenteocinereus) to eusocial (na-

ked mole-rat; Bennett and Faulkes, 2000); furthermore,

naked mole-rats are unique in being naked and poikilo-

thermic (Buffenstein and Yahav, 1991) and have much lon-

ger life spans (�30 years) than their body size would pre-

dict (Buffenstein, 2005, 2008; Edrey et al., 2011).

A lack of fur in the naked mole-rat correlates with a

complete lack of hair follicles other than infrequent large

body hairs and facial vibrissae (Crish et al., 2003), which

in other rodents, including the common mole-rat Crypto-

mys hottentotus, are innervated by both A- and C-fibers

(Rice et al., 1997; Park et al., 2003). Naked mole-rats

also have no sweat glands (Tucker, 1981), which are also

innervated by C-fibers (Fundin et al., 1997). Therefore,

the naked mole-rat C-fiber deficit could be secondary to a

loss of hair follicles and sweat glands.

We have performed a quantitative examination of

peripheral nerve fibers that innervate a variety of tissues, to

determine the degree to which the paucity of peripheral

nerve C-fibers in the naked mole-rat is specific to cutaneous

nerves and additionally performed a comparative study of

six members of the African mole-rat family Bathyergidae. By

examining a mouse model completely lacking hair follicles,

we could also test the idea that lack of hair alone accounts

for the paucity of C-fibers in naked mole-rats.

MATERIALS AND METHODS

Animals
Two animals each from six species of Bathyergidae

were used for this study: naked mole-rat (Heterocephalus

glaber, two males, �35 g, from T. Park’s colony at the

University of Illinois at Chicago); silvery mole-rat (Helio-

phobius argenteocinereus, one female, 200 g, and one

male, 260 g, captured at Morogoro, Tanzania, permit

from Tanzanian Nature Conservation Dar es Salaam);

giant mole-rat (Fukomys mechowii, one female, 160 g,

and one male, 215 g, captured in Chingola, Zambia, per-

mit from the Department of Veterinary and Nature Con-

servation, Chingola, Zambia); Damaraland mole-rat
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(Fukomys damarensis, two males, 120 and 155 g, cap-

tured in Dordabis, Namibia, permit from the Department

of Nature Conservation and Tourism, Namibia); Mashona

mole-rat (Fukomys darlingi, one female, 65 g, and one

male, 75 g, captured in Goromonzi, Zimbabwe, permit

from the Department of National Parks and Wildlife Serv-

ices, Harare, Zimbabwe); and Natal mole-rat (Cryptomys

hottentotus natalensis, two females, 85 and 105 g, cap-

tured in Glengary, Natal, South Africa, permit from the

Department of Nature Conservation, Ezemvelo, Kwa-Zulu,

Natal, South Africa). These six species represent four of

the six genera of Bathyergidae. All mole-rats, other than

naked mole-rats, were captured in the wild, so determin-

ing the exact age was not possible, but all animals used

were considered to be adults and were housed in cages

as befitting their social nature: silvery and giant mole-rats

singly and Damaraland, Mashona, and Natal mole-rats in

small groups with food (sweet potato, carrot, and apple)

available ad libitum. Naked mole-rats (aged approxi-

mately 5 years, e.g., young adults) were housed at the

Max-Delbrück Center in Berlin, Germany, in cages con-

nected by tunnels, which were contained within a humidi-

fied incubator (40% humidity, 28–30�C), and heated

cables ran under at least one cage per colony to allow for

behavioral thermoregulation. Food (sweet potato, ba-

nana, apple, and carrot) was available ad libitum.

Tissue-specific b-catenin (b-cat) loss-of-function (LOF)

mutant mice were generated by crossing mice with loxP

sites flanking exons 3–5 of the b-cat gene with mice

expressing Cre recombinase under the keratin 14 (K14)

gene promoter as previously described (Huelsken et al.,

2001). The strain generated were on a mixed 129 �
C57Bl6 background and lack b-cat in the skin, tongue,

and esophagus (K14-Cre;b-cat LOF mice). Hair follicle

stem cells no longer differentiate into follicular keratino-

cytes, which produces a complete lack of hair follicles af-

ter approximately P30 (Huelsken et al., 2001). The mice

used in this study were aged 43, 56, and 71 days, with

wild-type littermates used as controls. The electron mi-

croscopic analysis was conducted by an experimenter

blind to the genotype. Experiments were conducted

under protocols approved by the German federal author-

ities (State of Berlin), and ethical clearance was also

obtained to collect and perfuse the mole-rats by the Ani-

mal Use and Care Committee of the University of Pretoria

(AUCC-060719-020 and AUCC 000418-006).

Perfusion, dissection, and fixation
All animals were anesthetized with halothane (Sigma,

St. Louis, MO) inhalation, except for naked mole-rats and

mice (Ketavet [Pfizer] coadministered with the muscle

relaxant Rompun [Bayer] intraperitoneally) and then intra-

cardially perfused with 0.1 M phosphate-buffered saline

(PBS; pH 7.4), followed by freshly prepared 4% parafor-

maldehyde in 0.1 M PBS. Saphenous, sural, common per-

oneal, tibial, lateral gastrocnemius, and medial gastrocne-

mius nerves were dissected from both legs and postfixed

in 4% paraformaldehyde/2.5% glutaraldehyde in 0.1 M

PBS for 3 days (only saphenous and tibial nerves were

taken from mice). No major differences were observed in

the anatomy of the sciatic nerve branches in comparison

with what has been published for the rat (Schmalbruch,

1986; Swett et al., 1991). For the saphenous nerve,

branching is sometimes observed at the knee joint (Zim-

mermann et al., 2009), so saphenous samples were

always taken from above the knee. In H. argenteociner-

eus, saphenous branching was observed in all cases but

was always higher than the knee joint; samples were

always taken before this branching event.

Electron microscopy
After treatment with 1% OsO4 for 2 hours, each nerve

was dehydrated in a graded ethanol series and propylene

oxide and then embedded in Poly/Bed 812 (Polyscien-

ces, Warrington, PA). Semithin sections were stained with

toluidine blue. Ultrathin sections (70 nm) were contrasted

with uranyl acetate and lead citrate. Sections were exam-

ined with a Zeiss 910 electron microscope, and digital

images were taken with a high-speed slow-scan CCD

camera (Proscan) at an original magnification of �1,600.

Three ultrathin sections were taken from at least two

nerves, usually three (nerve loss or damage sometimes

occurred during either dissection or the embedding pro-

cedure), and on each ultrathin section four images (18.2

� 18.2 lm) were taken. Myelinated and unmyelinated

axons were counted in these areas in iTEM software

(Olympus Soft Imaging Solutions, Münster, Germany) and

normalized to the whole nerve. The original images were

of resolution sufficient to use the digital zoom function of

the iTEM program to allow the counting and measuring of

small C-fiber axons. For calculating C:A-fiber ratios (C-

fiber count/A-fiber count), an average was taken for each

ultrathin section per nerve, and the averages were used

for calculating significant differences between species

using the unpaired t-test. Both axonal and fiber diameter

were measured for A-fibers, which allowed for the calcula-

tion of g-ratios (Rushton, 1951). C-fiber diameter was

also measured along with the number of C-fibers per

Remak bundle. Histograms of A- and C-fiber diameter

were plotted in Prizm 5.0b (GraphPad Software, Williston,

VT). Differences between C:A-fiber ratios across bathy-

ergids were assessed by using a one-way ANOVA and

Bonferroni’s post hoc test, and unpaired t-tests were con-

ducted for comparisons between wild-type and trans-

genic mice. All measurements are displayed as mean 6

SEM.

C-Fiber deficit in African naked mole-rats
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Photomicrographs
Electron microscopic photomicrographs for figures

were made in Adobe Illustrator software without changing

brightness or contrast.

Body surface area calculation
Body surface area (BSA) was calculated based on the

formula: BSA ¼ K � W2/3, originally proposed by Meeh

(1879), where W ¼ body weight in grams, and K is a

shape constant for a given species. The 2/3 power of the

weight and K values have been recalculated for several

species, and thus the following formulae were used for

calculating BSA: mouse, 20 � W0.42 (Dawson, 1967); rat,

12.54 � W0.6 (Lee, 1929); cat, 9.6 � W0.67 (Vaughan and

Adams, 1967); and dog, 10 � W0.67 (Price and Frazier,

1998). To our knowledge, such calculations have not

been made for any of the species of mole-rat used in this

study, so the formula used for the mouse has been

applied. However, it should be noted that the mouse has

a longer tail and large pinnae in comparison with most

mole-rat species, so the formula provides an approxima-

tion of BSA in these species.

RESULTS

C:A-fiber ratios are low in naked mole-rat
cutaneous nerves

We first set out to determine whether the very low C:A-

fiber ratio that we had previously observed in the largely

cutaneous saphenous nerve of the naked mole-rat (Park

et al., 2008) is consistent in nerves that innervate other

targets in this species and how A- and C-fiber counts

compare across bathyergids. A- and C-fibers were first

counted (Tables 1, 2), and an analysis of C:A-fiber ratios

was performed for saphenous nerves from naked mole-

rats and five other Bathyergidae species, which showed

ratios ranging from 2.5:1 (silvery) to 3.7:1 (Mashona), all

of which were significantly greater than the 1.7:1 ratio

observed for the naked mole-rat (Figs. 1, 2A; P < 0.05 for

the silvery mole-rat, P < 0.01 for the giant mole-rat, and

P < 0.001 for all other species; example electron micro-

graphs are shown in Fig. 1A–F). A similar pattern was

observed in the other cutaneous nerve examined, the

sural nerve. The mean C:A-fiber ratio in the naked mole-

rat sural nerve was significantly lower, 1.4:1, compared

with 2.9–3.3:1 in the other species (Fig. 2B; P < 0.01 for

Mashona and Natal mole-rats, P < 0.001, for all other

species).

A low C:A-fiber ratio could be the result of either a pau-

city of C-fibers or an overabundance of A-fibers. With

data from this and previous studies, we plotted BSA

against saphenous nerve A-/C-fiber counts for different

species and observed a positive correlation between A-/

C-fiber number and BSA. However, the naked mole-rat

did not have a particularly high number of A-fibers com-

pared with its BSA, whereas the C-fiber count was excep-

tionally low with respect to BSA (Fig. 1G), suggesting that

a C-fiber deficit as opposed to more A-fibers underlies

the low C:A-fiber ratio observed. A similar result was

observed when plotting A- and C-fiber counts against BSA

for the sural nerve (data not shown).

For the rat, previous studies have shown that the mixed

common peroneal and tibial nerves have lower C:A-fiber

ratios than the cutaneous saphenous and sural nerves,

�2:1 compared with �4:1 (Scadding, 1980; Alpsan and

Lal, 1980; Lynn, 1984; Schwab et al., 1984; Jenq and

Coggeshall, 1984a,b, 1985a,b; Schmalbruch, 1986; Peyr-

onnard et al., 1986; Carter and Lisney, 1987; Jenq et al.,

1987). Here we also found that the C:A-fiber ratios were

lower in the common peroneal and tibial nerves (Fig.

2C,D) compared with the saphenous and sural nerves in

all species studied (Fig. 2A,B), except for the naked mole-

rat. Indeed, in the naked mole-rat, the C:A-fiber ratio was

found to be uniformly about 1.5:1 in the saphenous, sural,

common peroneal, and tibial nerves (Fig. 2A–D). Although

the naked mole-rat C:A-fiber ratio was significantly lower

than that of all other species in the saphenous and sural

nerves (Fig. 2A,B), in the common peroneal nerve it was

only significantly lower than that of the Damaraland mole-

rat (1.1:1 compared with 2.2:1, P < 0.001; Fig. 2C), and

the C:A-fiber ratio in tibial nerves was similar across all

species, �1.5:1 (Fig. 2D). Similarly, the naked mole-rat

C:A-fiber ratio in both the medial and the lateral gastro-

cnemius nerves, although low (0.4:1 and 0.6:1, respec-

tively), was not unique in being significantly lower com-

pared with the ratio in some other bathyergids. For the

medial gastrocnemius nerve, the C:A-fiber ratios are

<1:1 in all species, and, for the lateral gastrocnemius

nerve, the naked mole-rat C:A-fiber ratio of 0.6:1 is signifi-

cantly lower than that of the silvery mole-rat (2.5:1, P <

0.001), but the Natal (0.8:1) and Mashona mole-rats (1:1)

also have significantly smaller C:A-fiber ratios than the

silvery mole-rat (P < 0.001 and P < 0.01, respectively;

Fig. 2F).

In considering the data by species, rather than by

nerve, there is a clear trend in all species other than the

naked mole-rat for saphenous and sural nerves to have

much higher C:A-fiber ratios than in mixed and muscle

nerves (�3:1 compared with �1.5:1 in common peroneal

and tibial, �1:1 lateral gastrocnemius, and �0.5:1 for

medial gastrocnemius). However, for the naked mole-rat,

there is little difference among saphenous, sural, com-

mon peroneal, and tibial, all of which have a C:A-fiber ra-

tio of �1.5:1. Examining the data from mixed and muscle

nerves in all species shows two clear trends: the common

peroneal and tibial nerves have higher C:A-fiber ratios

St. John Smith et al.
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TABLE 1.

Summary of Saphenous, Sural, and Common Peroneal Nerve Fiber Data for Each Species1

Species Common name

Sex and

weight (g) Nerve

Nerve

area (lm2) A-fibers

A-fiber

diameter (lm) g-Ratio C-fibers

C-fiber

diameter (lm)

Heterocephalus glaber Naked mole-rat M (�30) SA 5,696 6 1,016 (4) 413 6 54 (4) 3.17 6 0.04 (472) 0.63 6 0.003 (472) 682 6 101 (4) 0.48 6 0.006 (509)
M (�30)

Heliophobius

argenteocinereus

Silvery mole-rat M (260) SA 51,814 6 4,978 (3) 1,711 6 48 (3) 4.55 6 0.09 (204) 0.53 6 0.005 (204) 4,271 6 362 (3) 0.59 6 0.008 (534)
F (200)

Fukomys damarensis Damaraland
mole-rat

M (120) SA 18,998 6 866 (3) 1,348 6 88 (3) 3.06 6 0.08 (209) 0.53 6 0.005 (209) 4,200 6 361 (3) 0.41 6 0.005 (521)
M (155)

Fukomys darlingi Mashona
mole-rat

M (75) SA 14,844 6 1,284 (3) 1,018 6 33 (3) 3.12 6 0.07 (247) 0.57 6 0.006 (247) 3,759 6 344 (3) 0.47 6 0.006 (591)
F (65)

Fukomys mechowii Giant mole-rat M (215) SA 43,029 6 6,531 (3) 1,804 6 32 (3) 3.86 6 0.09 (290) 0.59 6 0.005 (290) 5,081 6 289 (3) 0.50 6 0.009 (547)
F (160)

Cryptomys hottentotus

natalensis

Natal mole-rat F (85) SA 25,445 6 2,355 (3) 1,495 6 208 (3) 3.82 6 0.08 (261) 0.59 6 0.006 (261) 4,674 6 320 (3) 0.48 6 0.005 (613)
F (105)

Heterocephalus glaber Naked mole-rat M (�30) SU 6,983 6 356 (3) 430 6 31 (3) 3.43 6 0.06 (234) 0.61 6 0.004 (234) 618 6 147 (3) 0.57 6 0.007 (505)
M (�30)

Heliophobius

argenteocinereus

Silvery mole-rat M (260) SU 29,512 6 3,579 (2) 1,101 6 90 (2) 4.62 6 0.08 (167) 0.55 6 0.005 (167) 3,520 6 191 (2) 0.55 6 0.009 (510)
F (200)

Fukomys damarensis Damaraland
mole-rat

M (120) SU 9,617 6 1,095 (3) 505 6 46 (3) 3.42 6 0.08 (203) 0.59 6 0.005 (203) 1,517 6 80 (3) 0.51 6 0.005 (522)
M (155)

Fukomys darlingi Mashona
mole-rat

M (75) SU 6,291 6 828 (2) 370 6 36 (2) 3.03 6 0.08 (226) 0.58 6 0.006 (226) 1,127 6 183 (2) 0.58 6 0.006 (632)
F (65)

Fukomys mechowii Giant mole-rat M (215) SU 12,459 6 1,988 (3) 577 6 34 (3) 3.73 6 0.09 (269) 0.6 6 0.004 (269) 1,805 6 257 (3) 0.60 6 0.004 (554)
F (160)

Cryptomys hottentotus

natalensis

Natal mole-rat F (85) SU 11,702 6 1,252 (3) 506 6 8 (3) 3.82 6 0.08 (285) 0.64 6 0.005 (285) 1,475 6 231 (3) 0.46 6 0.005 (582)
F (105)

Heterocephalus glaber Naked mole-rat M (�30) CP 21,365 6 1,397 (3) 1310 6 74 (3) 3.48 6 0.07 (203) 0.61 6 0.003 (203) 1,469 6 291 (3) 0.50 6 0.006 (439)
M (�30)

Heliophobius

argenteocinereus

Silvery mole-rat M (260) CP 56,627 6 1,589 (3) 1,814 6 57 (3) 4.75 6 0.1 (194) 0.6 6 0.006 (194) 2,916 6 319 (3) 0.65 6 0.01 (420)
F (200)

Fukomys damarensis Damaraland
mole-rat

M (120) CP 56,562 6 5,656 (3) 2,653 6 166 (3) 3.17 6 0.09 (213) 0.63 6 0.007 (213) 5,990 6 1,114 (3) 0.54 6 0.006 (450)
M (155)

Fukomys darlingi Mashona
mole-rat

M (75) CP 56,313 6 6,018 (3) 2,241 6 188 (3) 3.84 6 0.11 (210) 0.62 6 0.007 (210) 3,224 6 341 (3) 0.50 6 0.007 (571)
F (65)

Fukomys mechowii Giant mole-rat M (215) CP 67,4206 5,497 (3) 2,429 6 224 (3) 4.27 6 0.11 (197) 0.62 6 0.005 (197) 3,207 6 1058 (3) 0.50 6 0.008 (376)
F (160)

Cryptomys hottentotus

natalensis

Natal mole-rat F (85) CP 60,677 6 5,624 (3) 2,159 6 134 (3) 4.26 6 0.12 (171) 0.65 6 0.01 (171) 3,730 6 295 (3) 0.54 6 0.007 (508)
F (105)

1Raw data summarizing the name and weight of species used in this study; the size and number (in parentheses) of the nerves used; and the number of A- and C-fibers counted, A- and C-fiber diameters, and

g-ratios. SA, saphenous nerve; SU, sural nerve; CP, common peroneal.
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TABLE 2.

Summary of Tibial, Medial Gastrocnemius, and Lateral Gastrocnemius Nerve Fiber Data for Each Species1

Species

Common

name

Sex and

weight (g) Nerve

Nerve

area (lm2) A-fibers

A-fiber

diameter (lm) g-Ratio C-fibers

C-fiber

diameter (lm)

Heterocephalus glaber Naked mole-rat M (�30) TI 33,704 6 691 (4) 2,024 6 96 (4) 3.39 6 0.07 (216) 0.61 6 0.004 (216) 3,090 6 178 (4) 0.60 6 0.007 (506)
M (�30)

Heliophobius

argenteocinereus

Silvery mole-rat M (260) TI 215,371 6 28,163 (3) 6,480 6 557 (3) 4.90 6 0.11 (158) 0.6 6 0.006 (158) 8,791 6 728 (3) 0.67 6 0.011 (354)
F (200)

Fukomys damarensis Damaraland
mole-rat

M (120) TI 128,119 6 12,949 (3) 5,065 6 119 (3) 3.52 6 0.11 (197) 0.63 6 0.008 (197) 10,027 6 1,463 (3) 0.57 6 0.008 (461)
M (155)

Fukomys darlingi Mashona
mole-rat

M (75) TI 130,826 6 1,140 (3) 5,564 6 106 (3) 3.80 6 0.1 (191) 0.66 6 0.006 (191) 9,729 6 1,307 (3) 0.56 6 0.01 (494)
F (65)

Fukomys mechowii Giant mole-rat M (215) TI 127,176 6 3,251 (3) 4,520 6 373 (3) 4.42 6 0.11 (164) 0.62 6 0.006 (164) 5,782 6 1,420 (3) 0.56 6 0.01 (346)
F (160)

Cryptomys hottentotus

natalensis

Natal mole-rat F (85) TI 95,324 6 14,025 (3) 3,835 6 125 (3) 4.07 6 0.09 (199) 0.66 6 0.006 (199) 6,736 6 975 (3) 0.55 6 0.008 (536)
F (105)

Heterocephalus glaber Naked mole-rat M (�30) MG 2,529 6 309 (2) 101 6 14.6 (2) 4.03 6 0.09 (170) 0.63 6 0.005 (170) 36.9 6 8.9 (2) 0.65 6 0.02 (86)
M (�30)

Heliophobius

argenteocinereus

Silvery mole-rat M (260) MG 17,228 6 1,428 (2) 282 6 27.7 (2) 6.15 6 0.28 (49) 0.67 6 0.009 (49) 226.9 6 63.9 (2) 0.73 6 0.04 (78)
F (200)

Fukomys damarensis Damaraland
mole-rat

M (120) MG 9,672 6 1,838 (2) 251 6 97 (2) 5.09 6 0.21 (71) 0.59 6 0.009 (71) 162 6 38 (2) 0.57 6 0.02 (78)
M (155)

Fukomys darlingi Mashona
mole-rat

M (75) MG 10,502 6 879.7 (2) 250.4 6 30.2 (2) 5.11 6 0.18 (92) 0.65 6 0.006 (92) 110.7 6 6.65 (2) 0.51 6 0.02 (56)
F (65)

Fukomys mechowii Giant mole-rat M (215) MG 13,194 6 1,641 (3) 219.4 6 13.9 (3) 5.78 6 0.19 (67) 0.61 6 0.01 (67) 219.7 6 35.63 (3) 0.75 6 0.02 (170)
F (160)

Cryptomys hottentotus

natalensis

Natal mole-rat F (85) MG 10,091 6 1,209 (3) 187 6 20.3 (3) 6.45 6 0.23 (75) 0.66 6 0.006 (75) 95.1 6 40.3 (3) 0.50 6 0.015 (72)
F (105)

Heterocephalus glaber Naked mole-rat M (�30) LG 2,690 6 144 (2) 124 6 9 (2) 3.78 6 0.1 (137) 0.61 6 0.006 (137) 77 6 6 (2) 0.43 6 0.01 (48)
M (�30)

Heliophobius

argenteocinereus

Silvery mole-rat M (260) LG 10,940 6 1,941 (3) 331 6 35 (3) 4.32 6 0.15 (102) 0.6 6 0.008 (102) 830 6 137 (3) 0.69 6 0.01 (532)
F (200)

Fukomys damarensis Damaraland
mole-rat

M (120) LG 9,376 6 1,187 (3) 297 6 97 (3) 4.03 6 0.12 (157) 0.65 6 0.01 (157) 533 6 309 (3) 0.49 6 0.007 (332)
M (155)

Fukomys darlingi Mashona
mole-rat

M (75) LG 11,106 6 531 (2) 411 6 15 (2) 3.92 6 0.14 (129) 0.64 6 0.006 (129) 428 6 153 (2) 0.55 6 0.02 (198)
F (65)

Fukomys mechowii Giant mole-rat M (215) LG 12,196 6 1,620 (3) 557 6 202 (3) 3.58 6 0.12 (162) 0.59 6 0.005 (162) 989 6 463 (3) 0.43 6 0.006 (365)
F (160)

Cryptomys hottentotus

natalensis

Natal mole-rat F (85) LG 9,169 6 1,525 (3) 253 6 68 (3) 4.88 6 0.2 (90) 0.67 6 0.007 (90) 251 6 140 (3) 0.49 6 0.02 (161)
F (105)

1Raw data summarizing the name and weight of species used in this study; the size and number (in parentheses) of the nerves used; and the number of A- and C-fibers counted, A- and C-fiber diameters, and

g-ratios. TI, tibial; MG, medial gastrocnemius; LG, lateral gastrocnemius.
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Figure 1. Naked mole-rats have a significantly lower C:A-fiber ratio in saphenous nerves compared with other Bathyergidae. Example elec-

tron micrographs and quantification for each left panel image showing A-fibers (A), C-fibers (C), and Remak bundles (R) for: A, naked (A ¼
31, C ¼ 51 and R ¼ 8); B, silvery (A ¼ 12, C ¼ 36, and R ¼ 7); C, Damaraland (A ¼ 30, C ¼ 81, and R ¼ 19); D, Mashona (A ¼ 25, C

¼ 170, and R ¼ 27); E, giant (A ¼ 21, C ¼ 79, and R ¼ 12); and F, Natal (A ¼ 19, C ¼ 93, and R ¼ 15) mole-rats. A0–F0 are high-magni-

fication images demonstrating C-fiber structure. G: Comparison of A- and C-fiber count with body surface area (BSA) in several different

species. Solid symbols correspond to A-fibers and open symbols to C-fibers. For species not examined in this study, data were taken

from: mouse (Milenkovic et al., 2007; Wetzel et al., 2007; Park et al., 2008), rat (Scadding, 1980; Lynn, 1984; Carter and Lisney, 1987),

cat (Sherrington, 1894; Gasser and Grundfest, 1939; Douglass et al., 1934), and dog (Illanes et al., 1990). Scale bars ¼ 2 lm in A–F; 0.5

lm in A0–F0.
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than either of the pure muscle nerves, lateral and

medial gastrocnemius nerves. However, we did note

that the C:A-fiber ratios in the lateral gastrocnemius

nerve were approximately twice as large as those in

the medial gastrocnemius nerve in all the species

examined.

Figure 2. The low C:A-fiber ratio in naked mole-rats is largely restricted to cutaneous nerves. A,B: Naked mole-rats have a significantly

lower C:A-fiber ratio in cutaneous saphenous and sural nerves compared with all other species. Values for C:A-fiber ratio in common pero-

neal and tibial nerves (C,D), which innervate both skin and muscle, as well as medial gastrocnemius and lateral gastrocnemius nerves

(E,F), which innervate only muscle, are largely similar across all species. Numbers in parentheses refer to the number of ultrathin sections

from which average C:A-fiber ratios were calculated. *P < 0.05, **P < 0.01, ***P < 0.001.

St. John Smith et al.
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A-fibers in bathyergid peripheral nerves
Across the six bathyergid species, there was a general

trend for larger species to possess larger-diameter A-

fibers on average than smaller species for each nerve.

The silvery mole-rat, being the largest species examined,

most often possessed the largest mean average diameter

of A-fibers, but this was not true for either the medial or

the lateral gastrocnemius nerves (Fig. 3, Tables 1, 2).

Because of the presence of large-diameter type Ia affer-

ent fibers and motor neurons, it has long been known

that nerves innervating muscle have, on average, larger

diameters than cutaneous nerves (Sherrington, 1894;

Boyd and Davey, 1968). This fact was confirmed in this

study for members of the Bathyergidae family, A-fiber di-

ameter being larger in those nerves innervating muscle

compared with skin, with the largest diameter being

observed in the medial gastrocnemius nerve in all species

(Fig. 3A–F, Tables 1, 2). Although less clear in the naked

mole-rat, the myelin thickness, as measured by calculat-

ing the g-ratio (A-fiber axonal diameter/fiber diameter,

Rushton, 1951), was often slightly larger in the common

peroneal, tibial, and medial and lateral gastrocnemius

nerves compared with the cutaneous saphenous and

sural nerves and most likely reflects an increased fre-

quency of type Ia fibers in muscle nerves (Tables 1, 2).

In the saphenous nerve, a histogram of A-fiber diame-

ters shows a bimodal distribution for each species (Fig.

4A). A bimodal distribution is consistent with the pres-

ence of large-diameter Aa/b-fibers and smaller-diameter

Ad-fibers. Similar patterns were observed for A-fiber

diameters in other nerves (data not shown). Mean A-fiber

diameters for each nerve, from each species, are given in

Tables 1 and 2.

C-fiber anatomy in bathyergid peripheral
nerves

Across the six bathyergid species, there was a general

trend for larger species to possess larger-diameter C-

fibers than smaller species for each nerve. However,

although the largest species examined in this study, the

silvery mole-rat, often had the largest average C-fiber di-

ameter, this was not true for every nerve examined

(Tables 1, 2). Similar to the trends observed for A-fibers

was a general trend for those nerves innervating both

skin and muscle/just muscle (common peroneal, tibial,

medial gastrocnemius, and lateral gastrocnemius) to

have larger C-fiber diameters than those in nerves that

are predominantly cutaneous (saphenous and sural; Fig.

5A–F, Tables 1, 2). Furthermore, as was observed with A-

fibers, C-fibers in the medial gastrocnemius nerve tended

to be of the largest diameter and were always larger than

those of the lateral gastrocnemius. In contrast to A-fibers,

C-fibers in all six nerves of all species were observed to

be unimodal. An example is shown for the saphenous

nerve (Fig. 6); data for other nerves are not shown.

Having observed a large deficit in C-fiber number in the

saphenous and sural nerves of the naked mole-rat (Figs.

1G, 2A), we examined whether this could be explained by

a lower number of C-fibers per Remak bundle. However,

we observed that, in all species, there were on average

four to six C-fibers/Remak in saphenous, sural, and com-

mon peroneal nerves, whereas in tibial, medial gastrocne-

mius, and lateral gastrocnemius nerves �4.5 C-fibers/

Remak was the maximum density reached (Fig. 7).

C:A-fiber ratios in hair follicle-deficient mice
Hair follicles receive both a myelinated and an unmyeli-

nated fiber innervation (Rice et al., 1997; Li et al., 2011;

Wende et al., 2012), and, although the few body hairs

that naked mole-rats have are innervated in a manner

similar to that of guard hairs in rats (Park et al., 2003),

the cutaneous paucity of C-fibers observed could be con-

nected to the relative lack of hair follicles in this species.

To investigate this, we used a mouse model in which a

conditional LOF mutation of b-cat in the skin was pro-

duced using a K14-promoter driven cre (b-cat LOF mice),

which results in a complete lack of hair follicles and

essentially naked mice after approximately P30. The loss

of hair in this model is due to hair follicle stem cells no

longer differentiating into follicular keratinocytes

(Huelsken et al., 2001). Saphenous nerves from wild-type

mice had a C:A-fiber ratio of 4.42, which was significantly

greater than in b-cat LOF mice from the same litters

(3.81, P < 0.05; Fig 8A). No significant difference was

observed in the total number of A-fibers between geno-

types, but, in b-cat LOF mice, a significant reduction in

the total number of C-fibers was observed compared with

controls (P < 0.01; Fig, 8B). In contrast, we observed no

difference between genotypes in the largely noncutane-

ous tibial nerve in terms of C:A-fiber ratio or total fiber

counts (Fig. 8C,D).

DISCUSSION

By making a detailed and quantitative comparison of

six, hind-leg-innervating, peripheral nerves in six species

(four genera) from the African mole-rat family Bathyergi-

dae, we conclude that naked mole-rats are unique among

these bathyergids (and other mammals examined to

date) in having a low C:A-fiber ratio in the cutaneous sa-

phenous and sural nerves, whereas no such C-fiber deficit

was observed in tibial, common peroneal, medial gastro-

cnemius, or lateral gastrocnemius nerves, which provide

innervation to skeletal muscle.

C-Fiber deficit in African naked mole-rats
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Low C:A-fiber ratio in naked mole-rat
saphenous and sural nerves

Unmyelinated cutaneous C-fibers perform different

functions in mammals, ranging from being polymodal

nociceptors to thermoreceptors and even low-threshold

mechanoreceptors (Olausson et al., 2010; Li et al., 2011;

Wende et al., 2012). The ability to detect noxious stimuli

is fundamental for an organism’s survival and has

Figure 3. A-fibers in muscle-innervating nerves have the largest diameter. In Mashona (D), giant (E), and Natal (F) mole-rats, nerves inner-

vating skin and muscle (gray bars) have A-fibers of a larger average diameter than those that are only cutaneous (white bars), a trend not

apparent in naked (A), silvery (B), or Damaraland (C) mole-rats. In naked (A), Damaraland (C), Mashona (D), and Natal (F) mole-rats, the

muscle-innervating medial gastrocnemius and lateral gastrocnemius nerves (black bars) contained A-fibers with an average diameter larger

than the diameters of the other four nerves examined. For silvery (B) and giant (E) mole-rats, this is true only for the medial gastrocnemius

nerve. In all species, A-fibers of the medial gastrocnemius nerve had the largest average diameter. SA, saphenous nerve; SU, sural nerve;

CP, common peroneal; TI, tibial; MG, medial gastrocnemius; LG, lateral gastrocnemius. Numbers in parentheses refer to the number of

A-fibers measured.

St. John Smith et al.
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presumably been the selection pressure behind the evo-

lution of an elaborate repertoire of nociceptors in mam-

mals to carry out this task (Kavaliers, 1988; Walters,

1996; Smith and Lewin, 2009). C-fiber nociceptors usu-

ally outnumber A-fibers (predominantly non-nociceptors)

in nerves innervating the skin, including the saphenous

nerve (Scadding, 1980; Alpsan and Lal, 1980; Lynn,

1984; Jancso et al., 1985; Carter and Lisney, 1987; Ill-

anes et al., 1990; Milenkovic et al., 2007; Wetzel et al.,

2007; Park et al., 2008) and sural nerve (Ochoa and Mair,

1969; Schwab et al., 1984; Jenq and Coggeshall,

1984a,b, 1985a,b; Peyronnard et al., 1986). We have pre-

viously shown that, in comparison with other rodents, the

naked mole-rat saphenous nerve has a C-fiber deficit,

resulting in a very low C:A-fiber ratio (Park et al., 2008),

which is confirmed in this study (Fig. 2A). By conducting a

comparative study with other members of the bathyergid

family, we can now conclude that this phenomenon is

species specific; all other Bathyergidae species that we

examined had significantly higher C:A-fiber ratios in the

saphenous nerve (2.5–3.7:1). Comparing calculated body

surface area to A-/C-fiber counts supports the hypothe-

sis that the low C:A-fiber ratio in naked mole-rat saphe-

nous nerves is due to a loss of C-fibers rather than an

increase in A-fiber numbers (Fig. 1G). In addition, naked

mole-rats are slightly larger than mice, and, although one

would therefore expect higher total fiber counts in the na-

ked mole-rat, this is not the case compared with the mice

used in this study (A-fibers 412 6 29 vs. 751 6 20, and

C-fibers 682 6 55 vs. 3,289 6 115 in the saphenous

nerve), which again supports the hypothesis that the low

C:A-fiber ratio observed in naked mole-rat cutaneous

nerves is due to a C-fiber deficit as opposed to more A-

fibers.

By examining branches of the sciatic nerve, which in-

nervate different tissues (sural, largely skin; common per-

oneal and tibial, skin and muscle; medial gastrocnemius

and lateral gastrocnemius, muscle; Schmalbruch, 1986;

Swett et al., 1991; Lewin and McMahon, 1991a,b), we

observed that the C-fiber deficit in naked mole-rats

appears to be restricted to cutaneous nerves: naked

mole-rats had a significantly lower C:A-fiber ratio in the

sural nerve (1.4:1, compared with 2.9–3.3:1 for other

species; Fig. 2B), whereas C:A-fiber ratios in the common

peroneal, tibial, medial gastrocnemius, and lateral gastro-

cnemius nerves were more similar across all species (Fig.

2C–F) and more similar to those ratios previously

observed in the rat (Jenq et al., 1984, 1987; Jenq and

Coggeshall, 1984a,b, 1985a,b; Schmalbruch, 1986). An

exception was the significantly lower C:A-fiber ratio in the

common peroneal nerve compared with Damaraland

mole-rats (Fig. 2C). The common peroneal nerve inner-

vates both skin and muscle (Schmalbruch, 1986), and it

is possible that, in species with particularly high common

peroneal C:A-fiber ratios, a larger proportion of the com-

mon peroneal axons innervates skin than in other

species.

In humans, C-fiber innervation of the skin is very dense;

receptive fields overlap, and this leads to spatial summa-

tion of noxious stimuli, which may well aid high-resolution

stimulus localization (Jørum et al., 1989; Ochoa and Tor-

ebj€ork, 1989; Koltzenburg et al., 1993; Schmidt et al.,

1997). Therefore, it might be expected, based on the C-

Figure 4. Histograms of A-fiber diameters in saphenous nerves

in six species of bathyergid. A: Histogram for naked and Damara-

land mole-rats. B: Histogram for Mashona and Natal mole-rats. C:

Histogram for silvery and giant mole-rats. A-fiber diameters were

binned into 0.25-lm bins, resulting in bimodal populations.
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fiber deficit observed in naked mole-rats, that naked

mole-rats have a hypofunctional nociceptive system. Sys-

tematic examination of the nociceptive system in the na-

ked mole-rat demonstrated that the animals have normal

nocifensive responses to heat and mechanical stimuli but

that they fail to respond behaviorally to certain chemical

stimuli: acid, capsaicin, and histamine (Park et al., 2008;

Smith et al., 2010; Brand et al., 2010). Isolated sensory

neurons are, however, responsive to both capsaicin and

histamine, and it is thought that unusual connectivity in

the spinal cord and an endogenous lack of neuropeptides

in C-fibers may explain the lack of nocifensive and

Figure 5. C-fiber diameters are generally smaller in cutaneous nerves. A–F: Average C-fiber diameter in six different nerves of the six

Bathyergidae species examined. In many species, C-fibers in common peroneal and tibial (gray bars) and medial gastrocnemius and lateral

gastrocnemius nerves (black bars) had diameters larger than those in the cutaneous saphenous and sural nerves (white bars), for example,

in the silvery mole-rat (B). Tibial C-fibers always had a larger average diameter than in common peroneal nerves, and C-fiber diameters in

medial gastrocnemius nerves were on average always larger than in lateral gastrocnemius nerves, often (naked, silvery, Mashona, and

giant) having the largest average C-fiber diameter of all nerves examined. SA, saphenous nerve; SU, sural nerve; CP, common peroneal; TI,

tibial; MG, medial gastrocnemius; LG, lateral gastrocnemius. Numbers in parentheses refer to the number of C-fibers measured.

St. John Smith et al.
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scratching behavior evoked by these substances (Park

et al., 2008; Smith et al., 2010). Interestingly, acid fails to

activate naked mole-rat C-fiber nociceptors (Park et al.,

2008), and, although one explanation for the C-fiber defi-

cit would be that naked mole-rats lack acid-sensitive

nociceptors, it has now been shown that acid insensitivity

most likely is due to a variant of the voltage-gated sodium

channel (NaV) NaV1.7, which is hypersensitive to acid

block (Smith et al., 2011).

It should also be noted that some unmyelinated fibers

are autonomic sympathetic fibers. In the rat, the contribu-

tion of sympathetic fibers has been measured to be sural

35%, common peroneal 27%, and tibial 40% of unmyeli-

nated fibers (Schmalbruch, 1986). Therefore, naked

mole-rats might have lost sympathetic fibers as opposed

to C-fiber afferent nociceptors. However, a mixture of the

afferent and efferent C-fiber loss more likely is due to the

dramatic C-fiber loss in cutaneous nerves, which could

not be accounted for by loss of sympathetic efferent

fibers alone. Interestingly, in congenital insensitivity to

pain with anhidrosis (hereditary sensory and autonomic

neuropathy 4, HSAN4), mutations in tyrosine receptor ki-

nase A (TrkA), the receptor for nerve growth factor (NGF),

result in subjects presenting with a total loss of C-fibers

Figure 6. Histograms of C-fiber diameters in saphenous nerves in six species of bathyergid. A–F: C-fiber diameters were binned into

0.02-lm bins, which produced approximately unimodal distributions in the saphenous nerves of all species, although in most species there

were a few outliers at the wider end of the diameter distribution, best observed in the two larger species examined, the silvery (B) and

giant (E) mole-rats.
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and lack of nociception, and they do not sweat due to

hypotrophic, uninnervated sweat glands (Indo, 2009).

Moreover, a newly identified loss of function NGF muta-

tion also results in a lack of nociception and anhidrosis

(Carvalho et al., 2011), whereas a second NGF mutation,

which causes a lack of nociception without anhidrosis

(Einarsdottir et al., 2004), is proposed to be hypofunc-

tional. Mice, in which either NGF or TrkA has been

Figure 7. The number of C-fibers per Remak bundle is relatively conserved across nerves of bathyergids. A–F: The cutaneous saphenous

and sural nerves (white bars) as well as the skin- and muscle-innervating common peroneal nerve (gray bar) averaged four to six C-fibers/

Remak across all species, exceptions being the silvery common peroneal nerve (B) and Mashona sural and common peroneal nerves (D).

The tibial nerve (gray bar) and muscle-innervating medial gastrocnemius and lateral gastrocnemius nerves (black bars) had a maximum of

�4.5 C-fibers/Remak, the greatest variation across species being observed in the medial gastrocnemius and lateral gastrocnemius nerves.

SA, saphenous nerve; SU, sural nerve; CP, common peroneal; TI, tibial; MG, medial gastrocnemius; LG, lateral gastrocnemius. Numbers in

parentheses refer to the number of Remak bundles assessed.

St. John Smith et al.
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ablated, also show a severe C-fiber loss and lack normal

nocifensive responses (Smeyne et al., 1994; Crowley

et al., 1994). The fact that naked mole-rats have a hypo-

functional nociceptive system (Park et al., 2008) as well

as lacking sweat glands (Tucker, 1981) raises the possi-

bility that hypofunctional NGF-TrkA signaling might under-

lie the C-fiber deficit. However, if such hypofunctional

NFG-TrkA signaling exists, then the effect must be re-

stricted to cutaneous sensory afferents.

Another possible explanation for the cutaneous C-

fiber deficit might simply be the lack of hair follicles,

which are normally innervated by both A- and C-fibers

(Fundin et al., 1997; Park et al., 2003). Therefore, the

profound absence of hair follicles may result in an ab-

sence of C-fibers because they lack their normal cutane-

ous target. There are very few nonaquatic mammals

lacking body hair; the hairless bat Cheiromeles torquatus

being one example, but these animals do have hair on

their undersides (Stephen Rossiter, Queen Mary Univer-

sity of London; personal communication). We therefore

made use of a transgenic mouse model that completely

lacks hair to model the situation in the naked mole-rat.

In b-cat LOF mice, hair follicle stem cells fail to differen-

tiate into follicular keratinocytes, producing a progres-

sive hair loss resulting from a lack of hair follicles

(Huelsken et al. 2001). Interestingly, in the saphenous

nerve, but not in the tibial nerve, we observed a

decrease in the C:A-fiber ratio and total C-fiber number

in adult b-cat LOF mice compared with wild-type litter-

mates. These results suggest that a lack of hair follicles

results in a mild cutaneous C-fiber deficit, but the fact

that the saphenous C:A-fiber ratio in b-cat LOF mice is

still more than double that of the naked mole-rat (3.81

vs. 1.69) suggests that mechanisms other than hair fol-

licle loss are needed to explain the cutaneous C-fiber

paucity in naked mole-rats. However, it should be noted

that skin from b-cat LOF mice does not perfectly model

the skin of naked mole-rats, most importantly because,

whereas b-cat LOF mice lose hair follicles over time, na-

ked mole-rat skin never contains hair follicles (with the

exception of guard hairs and whiskers), so it may well

be that the C-fibers that develop in the b-cat LOF mice

are not dependent on hair follicles for their continuing

survival. Nevertheless, it is striking that there is a small

but significant loss of C-fibers but not A-fibers in the sa-

phenous nerve of b-cat LOF mice. This observation is

consistent with the idea that C-fibers that innervate hair

follicles (Li et al., 2011; Wende et al., 2012) depend on

the follicle for continued survival but that classical A-

fiber mechanoreceptors do not.

Figure 8. Mice lacking hair follicles have a small, cutaneous C-fiber loss. A: b-Cat LOF mice have a lower C:A-fiber ratio in saphenous

nerves than wild-type littermates, which is due to a decreased total C-fiber number (B). There is no difference between genotypes in the

C:A-fiber ratio in the tibial nerve (C), nor is there any difference between total fiber counts (D). Numbers in parentheses refer to the num-

ber of ultrathin sections, from which average C:A-fiber ratios were calculated. *P < 0.05, **P < 0.01.
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In addition to certain A- and C-fibers being activated by

noxious thermal stimuli, others are thermosensitive

across a range that might be considered non-noxious

(Iggo, 1969). A thorough investigation of naked mole-rat

A- and C-fiber thermosensitivity has not yet been

described, but observations of huddling behavior and

movement to warmer (heated) areas of cages suggests

that naked mole-rats have thermoreceptors (our personal

observations). Consequently, it seems unlikely that the C-

fiber paucity in naked mole-rats reflects a loss of thermor-

eceptors, but only further investigation can fully answer

this question.

A-fiber characteristics in Bathyergidae
The three largest branches of the sciatic nerve are the

tibial, common peroneal, and sural, and in the rat the

number of A-fibers and C-fibers follows the order tibial >

common peroneal > sural (Schmalbruch, 1986). We

found the same pattern across all six species, with the

exception of the silvery mole-rat, in which there were

more C-fibers in the sural nerve than in the common pero-

neal nerve (Tables 1, 2). It has also been documented in

rat that lateral gastrocnemius nerves contain more A- and

C-fibers than medial gastrocnemius nerves (Jenq and

Coggeshall, 1985a,b), and this was also observed here

for all six species studied (Table 2).

In keeping with the presence of large-diameter motor

neurons and type Ia sensory afferents in nerves innervat-

ing muscle (Sherrington, 1894; Boyd and Davey, 1968),

we observed that A-fibers present in common peroneal,

tibial, medial gastrocnemius, and lateral gastrocnemius

nerves generally had larger diameters than A-fibers in sa-

phenous and sural nerves, those fibers of the medial gas-

trocnemius nerve being the largest in every species (Fig.

3). The trend of muscle-innervating nerves containing

larger-diameter A-fibers is not, however, fully apparent in

the naked or Damaraland mole-rat: saphenous A-fibers

do have smaller diameters than all other nerves, but sural

nerves have diameters similar to those of both common

peroneal and tibial nerves (Fig. 3, Tables 1, 2). In the rat

sural nerve, �10% of myelinated fibers are motorneurons,

innervating muscles in the foot (Peyronnard and Charron,

1982), but it is possible that, in naked and Damaraland

mole-rats, the percentage of sural A-fibers, which inner-

vate muscle, is higher than in other species, giving rise to

a larger average A-fiber diameter.

With respect to g-ratios, it has been calculated for my-

elinated nerves that the optimal ratio for conduction of

current from one node to the next is 0.6 (Rushton, 1951).

Although higher average g-ratios have been observed in

various A-fibers across different species (Williams and

Chalupa, 1983; Guy et al., 1989; Fraher and O’sullivan,

2000), in the sciatic nerves in rodents g-ratios have been

found to be closer to the theoretical optimum of 0.6

(Schwab et al., 1984; Sterne et al., 1997; Willem et al.,

2006), but in other species they can be higher, for exam-

ple, 0.8 in the European common frog Rana temporaria

(Friede et al., 1985). In this study, we found that, as in

other rodents, g-ratios in all branches of the sciatic nerve

examined were �0.6 (Tables 1, 2). Size frequency distri-

butions of A-fiber axon diameters in the saphenous nerve

and other nerves showed a bimodal distribution in all

mole-rat species (Fig. 4 for the saphenous nerve; other

data not shown), which is likely reflective of Aa/b and Ad
fiber types, as has been previously observed in other

rodents (Scadding, 1980; Lynn, 1984; Schwab et al.,

1984; Schmalbruch, 1986).

C-fiber characteristics in Bathyergidae
Similarly to A-fibers, C-fiber diameter was generally

positively correlated with species size (Fig. 5, Tables 1,

2). Furthermore, as with A-fibers, there was a trend for

muscle innervating nerves to have larger C-fiber diame-

ters (Fig. 5, Tables 1, 2). For the rat, Schmalbruch (1986)

found there to be only a 0.03-lm difference in the means

for C-fiber diameter in sural, common peroneal, and tibial

nerves. In the present study, the range in the mean C-

fiber axon diameter from sural, common peroneal, and

tibial nerves was from 0.06 lm in the Damaraland mole-

rat to 0.12 lm in the silvery mole-rat (Tables 1, 2). When

it has been investigated in other rodent species, the C-

fiber axon diameter distribution has been observed to be

unimodal in saphenous (Scadding, 1980; Alpsan and Lal,

1980; Lynn, 1984; Illanes et al., 1990), sural (Ochoa and

Mair, 1969; Schwab et al., 1984; Schmalbruch, 1986;

Hoffmeister et al., 1991), and common peroneal and tibial

nerves (Schmalbruch, 1986). We could confirm in every

nerve, from all species examined, that there was a unimo-

dal distribution for C-fiber diameter.

Although we observed a C-fiber deficit in naked mole-

rat saphenous and sural nerves, we did not observe any

difference in the number of C-fibers per Remak bundle

(Fig. 7). This would suggest that factors known to be

involved in normal Remak bundle formation, such as neu-

regulin-1 (NRG-1), function normally in naked mole-rats

(Taveggia et al., 2005; Willem et al., 2006). Indeed, naked

mole-rats apparently express high levels of NRG-1 in the

nervous system throughout their normal life span (Edrey

et al., 2012). Therefore, we can state that naked mole-rat

C-fibers appear morphologically normal compared with

those of the other species examined. It has long been

known that NGF levels are lower in muscle tissues than

they are in the skin (Korsching and Thoenen, 1983; Shel-

ton and Reichardt, 1984; Lewin et al., 1992). It is thus

possible that interference with NGF signaling in naked

mole-rats might bring about a selective reduction of C-
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fiber in cutaneous nerves. However, the hypothesis that

the C-fiber deficit observed in naked mole-rat cutaneous

nerves is due to hypofunctional NGF-TrkA signaling

should be tested more directly. One approach would be

to clone and characterize the naked-mole rat NGF and

TrkA genes to examine whether these proteins function

differently compared with those of other rodent species.

However, a detailed examination of the development of

the sensory innervation of the skin in naked mole-rats, as

has been conducted in the mouse (Crowley et al., 1994;

Smeyne et al., 1994; Lechner et al., 2009), would be very

difficult, given the eusocial nature of this species and the

very long gestation time (�75 days). It is still also possi-

ble that genes involved in the differentiation of sensory

neuron lineages are also altered in the naked mole-rat in

a way that leads to a selective C-fiber deficit in cutaneous

nerves (Marmigère and Ernfors, 2007).

SUMMARY

We have shown that the naked mole-rat is unique

within the family Bathyergidae in having a selective deficit

in cutaneous C-fibers. We demonstrate that this deficit is

unlikely to be fully accounted for by the naked mole-rat’s

lack of hair and hypothesize that hypofunctional neurotro-

phin signaling may be involved in producing the cutane-

ous deficit in C-fibers that we observed.
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