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RBM10 encodes an RNA binding protein. Mutations in RBM10 are known to cause
multiple congenital anomaly syndrome in male humans, the TARP syndrome.

However, the molecular function of RBM10 is unknown. Here we used PAR-CLIP
to identify thousands of binding sites of RBM10 and observed significant RBM 10—
RNA interactions in the vicinity of splice sites. Computational analyses of binding
sites as well as loss-of-function and gain-of-function experiments provided
evidence for the function of RBM10 in regulating exon skipping and suggested an
underlying mechanistic model, which could be subsequently validated by
minigene experiments. Furthermore, we demonstrated the splicing defects in a
patient carrying an RBM10 mutation, which could be explained by disrupted
function of RBM10 in splicing regulation. Overall, our study established RBM10
as an important regulator of alternative splicing, presented a mechanistic model
for RBM10-mediated splicing regulation and provided a molecular link to
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understanding a human congenital disorder.
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INTRODUCTION

Alternative splicing (AS) is considered as the major mechanism
that contributes to the increased proteomic diversity in
multicellular eukaryotes (Blencowe, 2006; Maniatis &
Tasic, 2002; Nilsen & Graveley, 2010). Through AS, one pre-
mRNA could produce multiple mRNA isoforms that might be
under different post-transcriptional regulation and/or encode
proteins with different functions. Recent transcriptome analysis
by massive parallel RNA sequencing (RNA-seq) indicated that
more than 90% human genes underwent AS (Pan et al, 2008;
Wang et al, 2008). Very often, the pattern of AS was tissue and
developmental stage specific, thought to be under precise
regulation modulated by cooperative interplays between trans-
acting RNA binding proteins (RBPs) and cis-regulatory elements
in nascent transcripts (Barash et al, 2010; Black, 2003; Chen &
Manley, 2009; Witten & Ule, 2011). Mutations in splicing
regulators (Padgett, 2012; Yoshida et al, 2011) and abnormal
splicing of RNA targets have been associated with many human
diseases (Cooper et al, 2009; Garcia-Blanco et al, 2004; Wang &
Cooper, 2007). Nevertheless, the exact molecular mechanisms
controlling the AS process in physiological and pathological
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conditions are not well-understood to date. Several splicing
regulating RBPs have recently been found to modulate hundreds
even thousands of functional targets (Lebedeva et al, 2011;
Licatalosi et al, 2012; Mukherjee et al, 2011; Ule et al, 2006;
Wang et al, 2012; Xue et al, 2009; Yeo et al, 2009). Therefore,
elucidating the regulatory roles of splicing related RBPs requires
comprehensive identification of the RBP-RNA interactions and
global quantification of the splicing outcomes induced by RBPs.

RBM10 encodes a 930 amino acid protein containing two RNA
recognition motifs (RRM), two zinc fingers and one G patch
motif. These motifs were often found in RNA-binding proteins
involved in pre-mRNA splicing, such as heterogeneous nuclear
ribonucleoproteins (hnRNPs) and protein components of small
nuclear ribonucleoproteins (snRNPs; Glisovic et al, 2008;
Keene, 2007). Through mass spectrometric analysis, RBM10
has been reported to associate with purified splicing complex
(Rappsilber et al, 2002), and was further identified as a
component of U2 snRNPs (Makarov et al, 2011), spliceosomal
A (or prespliceosomal) (Agafonov et al, 2011; Behzadnia
et al, 2007) and B complexes (Agafonov et al, 2011; Bessonov
et al, 2008). Most recently, based on yeast two hybridization
method, a study on interactions between more than 200 proteins
previously known to be present in spliceosome could demonstrate
the physical interaction between RBM10 and multiple spliceoso-
mal components (Hegele et al, 2012). Moreover, its closest
paralogue RBMS, a putative tumour suppressor of lung and other
cancers (Sutherland et al, 2005), has been shown to regulate AS of
apoptosis related genes, Fas receptor and c-FLIP, resulting in
isoforms with antagonistic functions in controlling programmed
cell death (Bonnal et al, 2008). Although all these observations
would suggest the potential role of RBM10 in pre-mRNA splicing
regulation, it remains unclear whether and how RBM10 could
regulate splicing. Nonsense and frame shift mutations in RBM10
have been identified to be causative for TARP syndrome (Talipes
equinovarus, atrial septal defect, Robin sequence and persistent
left superior vena cava, MIM #311900), an X-linked inherited
disorder leading to multiple organ malformation in affected males
(Gripp et al, 2011; Johnston et al, 2010). More recently, multiple
truncating and missense somatic mutations were detected in
lung adenocarcinomas (Imielinski et al, 2012). These findings
implicated the important role of RBM10, but whether its potential
function in splicing regulation is involved in these different
pathological contexts has not been explored.

In this study, we explored the AS regulated by RBM10. Here,
we combined photoactivatable-ribonucleoside-enhanced cross-
linking and immunoprecipitation (PAR-CLIP) with massive
parallel sequencing to identify RNA binding sites for RBM10 in
human embryonic kidney (HEK) 293 cells, which turned out to
be significantly enriched in the vicinity of both 5" and 3’ splice
sites. Using RNA-seq, we identified 304 and 244 significant exon
splicing changes following RBM10 depletion or overexpression
(OE) in HEK293 cells, respectively. Among these changes, more
than 74% were RBM10 enhanced exon skipping events and
they were correlated with strong RBM10 binding near 5’ and
3’ splicing sites of both upstream and downstream introns.
Furthermore, in a patient suffering from TARP syndrome, we
identified an in-frame deletion in RBM10 and demonstrated that

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

www.embomolmed.org

the splicing defects in the lymphoblastoid cells derived from the
patient were largely due to the loss of nuclear function of
RBM10. Overall, our data provides direct experimental evidence
supporting the role of RBM10 in splicing regulation. Our
transcriptome-wide analysis of binding pattern and RBM10
splicing profile allows the illustration of the molecular mecha-
nism underlying RBM10 regulated AS.

RESULTS

Transcriptome-wide binding sites of RBM10 in HEK293 cells

To identify in vivo binding sites of RBM10, we performed PAR-
CLIP sequencing (Hafner et al, 2010; Lebedeva et al, 2011) in
HEK293 cells that expressed epitope (FLAG/HA)-tagged RBM10
(Materials and Methods Section). 4-Thiouridine (4SU) labelled
and crosslinked cells were immunoprecipitated with monoclonal
anti-FLAG antibody. The bound RNAs was then partially digested
and radioactively labelled. Protein-RNA complexes were resolved
on a denaturing gel. The band corresponding to RBM10-RNA
complexes was excised (Supporting Information Fig S1A). The
RNA was recovered, converted into cDNA and sequenced on an
[lumina platform. In total, we performed two biological replicate
experiments. The sequencing reads were processed and clustered
as described in Materials and Methods Section.

A total of 20.6 million sequencing reads could be mapped to
the human genome with at most one mismatch (Supporting
Information Table S1). Compared with all other mutations in the
mappable sequence reads, T to C transitions were significantly
enriched (Supporting Information Fig S1B), manifesting efficient
crosslinking of 4SU labelled RNA (Hafner et al, 2010). We
identified 240,712 and 218,281 RBMI10 sequence clusters
(putative binding sites) in the two replicates, respectively
(Supporting Information Table S1, Fig S1C and D for the length
distribution of binding clusters as well as the number of PAR-
CLIP reads within each cluster). Of these, 87,957 sequence
clusters had their preferred crosslinking sites, i.e. the position
with the highest number of T to C transitions within a site, to be
within the binding site identified in the other replicate. We
defined these clusters as consensus binding clusters. Compari-
son of the binding scores of these consensus binding clusters
between the two replicates revealed a high -correlation
(R*=0.619) (Supporting Information Fig S1E).

RBM10 binding in the vicinity of intronic splicing sites

Ninety-one percent of the consensus binding sites could be
assigned to 6396 RBMI10 target genes. According to Refseq
annotation, 39 and 52% of them fell into exonic and intronic
regions, whereas 9 % mapped to intergenic regions, which might
harbour previously unannotated transcripts (Fig 1A). Given the
possible involvement of RBMI10 in splicing process, we
examined the distribution of binding sites relative to splice
sites. Intriguingly, we found that they were significantly
enriched in exons and in the vicinity of both 5 and 3’ splice
sites of the introns (Fig 1B). Notably, the binding sites were more
enriched at the vicinity of (~70 nt upstream) of 3’ splice site than
at 5’ splice site. Interestingly, we also observed the specific
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Figure 1. RBM10 RNA binding sites identified by PAR-CLIP.
A. The genomic distribution of 87,957 RBM10 consensus binding clusters.

B. Distribution of RBM10 consensus binding clusters (red line), PAR-CLIP reads (green line) and PAR-CLIP reads containing at least one T to C change (converted
reads, blue line) along exon—intron and intron—exon boundaries. The density of RBM10 converted PAR-CLIP reads in the vicinity of intronic splice sites were

significantly higher than that of Ago2 converted PAR-CLIP reads (grey line).

binding of RBM10 at U2 snRNA, which is known to pair with 3’
branch site (Supporting Information). Together, these binding
patterns were consistent with the previous findings of RBM10
in pre-spliceosomal A and B complex (Agafonov et al, 2011;
Behzadnia et al, 2007; Bessonov et al, 2008) and indicated that
RBMI10 very likely involves in splice site recognition and/or
pairing, as well as further intron removal processes via
coordinated interactions with snRNPs and the pre-mRNA
substrates.

Alternative splicing regulated by RBM10
The RNA binding patterns presented above suggested that
RBMI10 might function as a splicing regulator. To test this
possibility, we performed RNA-seq and quantified changes in
gene expression as well as AS in HEK293 cells upon RBM10
knockdown (KD) or overexpression (OE) respectively (Materials
and Methods Section). The efficiency of KD and OE were
assessed both at mRNA level by qPCR and at protein level by
Western blot (Supporting Information Fig S2A and B). In total, we
performed two and four biological replicate experiments for OE
and KD, respectively. Sixty-one to 185 millions 100 nt sequencing
reads were generated for each sample, of which 92-96% could be
mapped to the genome reference (UCSC genome browser hg19)
or areference set of exon-exon junction sequences (see Materials
and Methods Section and Supporting Information Table S2).
The gene expression level was estimated based on RPKM
value (reads per kilobase of exon per million mapped sequence
reads, (Mortazavi et al, 2008), Materials and Methods Section).
At false discovery rate (fdr) <0.05, 171 and 105 genes were
found to be significantly upregulated and downregulated by at
least 1.5-fold upon RBM10 KD (Supporting Information Fig S2C
and Table S3), whereas 19 and 49 genes were upregulated and
downregulated to the same level (fdr < 0.05, fold change >1.5)
in response to RBM10 OE, respectively (Supporting Information
Fig S2D and Table S3). Overall, the expression changes induced
by KD and OE were not inversely correlated (Supporting
Information Fig S2E).

EMBO Mol Med (2013) 5, 1431-1442

We then sought to characterize the splicing changes induced
by RBM10 OE/KD. Based on RNA-seq data, we defined the
inclusion ratio (PSI: percentage splicing in) of each exon in
Refseq transcripts as the number of reads exclusively supporting
inclusion divided by total number of reads supporting inclusion
and exclusion of the specific exon (Supporting Information
Fig S2F; Polymenidou et al, 2011; Wang et al, 2008). We then
compared the inclusion ratio between KD and control, OE
and control, respectively. The changes were transformed into
Z-value (Supporting Information Fig S2H) and the results from
replicate experiments were combined to evaluate statistical
significance using the rank product method (Materials and
Methods Section). At a stringent cutoff (fdr<0.05, |APSI|
>10%), we identified 256 induced cassette exon inclusion and
48 exclusion events upon RBM10 KD (Fig 2A and Supporting
Information Table S4). In comparison, 27 exon inclusion and
217 exclusion events were observed upon RBM10 OE (Fig 2A
and Supporting Information Table S4).

We then selected 21 candidate transcripts for which we had
detected splicing changes with different Z values for validation
by qPCR using junction specific primers (Fig 2A and Supporting
Information Fig S3). The abundance of transcript isoforms
including or excluding the cassette exons was normalized based
on that of constitutive exons. We could validate splicing changes
in all the 21 cases (Supporting Information Fig S3). The splicing
changes detected by qPCR were quantitatively correlated with
that determined by RNA-seq (Fig 2B). Comparison of splicing
changes induced by OE and that by KD revealed a clear inverse
correlation (Fig 2A). The majority (74 %) of the splicing changes
observed upon RBM10 OE and KD are RBM10-enhanced exon
exclusion events (Fig 2A), indicating that RBM10 primarily
mediated the skipping of cassette exons.

An RNA splicing map integrating RBM10 binding profile and
induced splicing changes

We then took a close look at functional annotations of the genes
that changed the expression level and/or the splicing pattern as a

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
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Figure 2. Exon splicing changes induced by RBM10 perturbation and their association with RBM10 binding profile.

A. Exon splicing changes (APSI, percentage splicing in) induced by RBM10 OE (X axis) were plotted against those induced by RBM10 KD (Y axis). A total of 412
cassette exons were found to be differentially spliced after RBM10 OE or KD (FDR < 5%, |APSI| > 0.1).

B. The splicing changes (left panel, APSO, percentage splicing out; right panel, APSI) of 21 exons (orange dots in A) quantified by RNA-seq (X axis) are highly

correlated with those measure by qPCR (Y axis).

C. Representative examples of RBM10 dependent exon skipping events. The density of RNA-seq reads obtained in control, RBM10 OE and KD experiments
together with RBM10 binding sites were shown for gene UBN1 and PUF60. Reads supporting the inclusion or exclusion of the cassette exon, or spanning exon—
intron junctions were shown in blue, orange or green, respectively. The remaining reads were shown in grey. The size of the triangle marking RBM10 binding

sites reflected the number of PAR-CLIP reads.

D. The density of RBM10 binding clusters close to 5’ and 3’ splicing sites of introns flanking all cassette exons (black) is significantly lower than those flanking the
exons more excluded after RBM10 OE (orange, Zps; <—2 and green, Zps; <—1).

E. Cumulative distribution functions of splicing changes upon RBM10 OE for different groups of cassette exons with RBM10 binding close to none or one of the
four splicing sites (upper panel), or to different number of the four splicing sites (lower panel). The numbers of exons within different groups were printed in

parenthesis.

result of RBM10 perturbation. Interestingly, 14 RNA-binding
proteins and five known splicing regulators were found with
significant expression changes (Supporting Information
Table S3), and even more genes with splicing changes (22

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

and eight) were found to be involved in RNA-binding or splicing
regulation (Supporting Information Table S4). Therefore, the
overall splicing changes described above represented not only
the direct RBM10-targeted splice events, but also the secondary

EMBO Mol Med (2013) 5, 1431-1442
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effects resulting from the expression and/or splicing changes in
those splicing regulators. In order to understand the mechanisms
for AS directly under RBM10 regulation, we correlated the
RBM10 RNA binding pattern with the splicing changes upon
RBM10 OE and KD. Among the RBM10-enhanced exon skipping
events, we often observed RBM10 binding(s) close to 5’ and/or
3’ splicing sites at upstream and/or downstream introns. Two
representative examples were depicted in Fig 2C. To examine
general mechanism for RBM10 enhanced exon skipping, we
integrated the PAR-CLIP data and splicing profiles into an RNA
splicing map. As shown in Fig 2D, the map revealed increased
density of RBM10 binding clusters close to the splice sites of both
introns flanking the skipped cassette exons, with the most
prominent enrichment at 3’ splice site of downstream intron.
The RNA splicing map of RBM10 suggested that RBM10 binding
close to the splice sites of neighbouring introns are enriched for
skipped exons. To assess whether such binding pattern could
predict exon exclusion events, we searched our PAR-CLIP data for
non-constitutive exons with RBM10 binding close (i.e. up to
150nt) to the splice sites of adjacent introns. In total, 5262 such
exons were found. Among these exons, 147 showed significant
splicing changes (fdr<0.05, |APSI|>10%) upon RBM10 OE
and/or KD, accounting for 30.8% (147/412) of all the exons with
significant splicing changes upon RBM10 perturbation. As shown
in Fig 2E, the exons with RBM10 binding close to one of the
four splice sites were more likely excluded upon RBM10 OE, and
those with binding close to 3" splice sites of upstream introns
exhibiting the weakest skipping propensity. Intriguingly, exons
with binding close to more of the four splice sites showed
progressively stronger skipping tendency upon RBM10 OE
(Fig 2E). Similarly, exons with binding close to the same four
splicing junctions showed progressively stronger inclusion
tendency upon RBM10 KD (Supporting Information Fig S4).

Mechanistic study of RBM10 enhanced exon skipping using
minigenes

We demonstrated that RBM10 binding near splice sites of
flanking introns would enhance the skipping of cassette exons. In
order to test the direct effect of the RBM10 binding on pre-mRNA
splicing, we fused RBM10 with a modified pumilio domain,
PUF3-2, which specifically recognizes an eight nucleotide
sequence ‘UGUAUGUA’ with high affinity (Fig 3A; Wang
et al, 2009). By co-transfecting the RBM10-PUF fusion protein
with the splicing reporter pZW2C-A6G that contains PUF cognate
sequence, we could tether RBM10 to an intronic region 18-nt
downstream of the middle exon (Fig 3A; Wang et al, 2009, 2013).
Whereas the expression of PUF domain alone hardly induced any
splicing changes, the expression of RBM10-PUF fusion protein
exhibited strong exon skipping effects (Fig 3B and Supporting
Information Fig S5), providing unequivocal support to our
hypothesis that RBM10 intronic binding in the vicinity of splicing
sites would facilitate the skipping of cassette exons.

Mechanistic model underlying RBM10 regulated alternative
splicing

RBM10 binding close to splice sites might interfere with splicing
sites recognition and/or splice sites pairing. Our observations

EMBO Mol Med (2013) 5, 1431-1442
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Figure 3. Validation of RBM10-enhanced exon exclusion with minigene

experiments.

A. Schematic representation of the minigene experiment, in which RBM10
was tethered to an intronic region 18-nt downstream of the middle
cassette exon via fusing to the PUF domain that recognizes its cognate
sequence (blue rectangle).

B. Splicing changes of the cassette exons upon the OE of RBM10-PUF fusion
protein or PUF alone, detected in three biological replicates. RBM10
tethered in the vicinity of intronic splice site could significantly promote
exon skipping (two-tailed paired t-test p-value: 0.001832).

strongly supported the model that RBM10 binding in the
vicinity of splicing sites might repress the splicing of introns and
delay the splicing choice; thereby facilitate the skipping of
cassette exons flanked with relatively weaker splicing sites
(Fig 4). Indeed, we found several lines of evidences supporting
such a working model. First, a clear positive correlation between
exon skipping and the retention of flanking introns could be
observed based on RNA-seq results (Fig 5A). Second, the intron
retention appeared to be also enhanced by RBM10 binding in
the vicinity of its splice sites, especially the binding near 5’ splice
sites (Fig 5B). Third, we proposed that the exon skipping
was largely due to the weaker flanking splice sites. Once the
splicing of flanking intron was repressed, the use of stronger
distal splicing sites would be enhanced. As shown in Fig 5C,
the strength of splicing sites distal to the cassette exons was
generally stronger than that of those immediately flanking the
exons. Finally, RBM10 binding close to downstream 3’ splice
sites might also facilitate their paring with upstream 5’ splicing
sites at later steps of splicing process, an effect proposed
previously by Bonnal et al for RBM5 (Bonnal et al, 2008).
Although it would be difficult to formally disentangle such effect
from its repression of intron splicing, the observation that
RBM10 binding at downstream 3’ splicing sites exerts in general
stronger effects than that at the immediately flanking ones
(Fig 2E) implicated a possible dual function of RBM10 binding at
3/ splicing sites, i.e. repression of intron splicing and facilitation
of the splicing site pairing.

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
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Figure 4. Mechanistic model for RBM10-mediated splicing regulation.
RBM10 binding in the vicinity of splicing sites might repress the splicing of
flanking introns and delay the splicing choice, thereby facilitate the skipping
of cassette exons flanked with relatively weaker splice sites.

Functional investigation of an in-frame deletion of RBM10
identified in a patient with TARP syndrome
Nonsense and frame-shift mutations in RBMI0 have been
identified to be causative for TARP syndrome (Johnston
et al, 2010). More recently, during a screen of >400 index
patients from families with X-linked intellectual disability
(ID; Kalscheuer et al., manuscript in preparation), a deletion
of 1292nt (ChrX: 46929367-46930658bp, UCSC genome
browser hgl8) in RBM10 were found in a German family
(Fig 6A and Supporting Information Fig S6A). Apart from severe
ID, the two patients also suffered from multiple congenital
malformations and their leading pathologic phenotypes over-
lapped with TARP syndrome (see Supporting Information and
Table S7 for detailed reports of clinical findings). Based on the
annotated gene structure, the deletion spanned six exons, but
appeared not to disrupt the open reading frame. We performed
RT-PCR and Western blot on the lymphoblast cells deriving from
the patient, and demonstrated that the in-frame deletion did
not induce nonsense mediated decay, which would otherwise
degrade the truncated RNA and reduce protein levels (Support-
ing Information Fig S6B and C). The deletion removed 239 amino
acids (651-889 amino acid at NP_005667), including the second
zinc finger domain and a portion of the G patch domain (Fig 6B).
To understand how this in-frame deletion in RBMI10 could
contribute to disease phenotype, we examined in more detail the
sequence of the deleted fragment and identified a potential
nuclear localization signal (NLS) within the deleted sequence

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
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(821-837aa; Fig 6B and see also Supporting Information
Supplementary Methods). To determine whether this finding
was functionally relevant, we compared the subcellular
localization of wild type RBM10 with that of the mutant. In
contrast to the nuclear localization of wild type, RBM10 mutant
predominantly localized in the cytoplasm (Fig 6D), consistent
with the loss of NLS. This finding suggests that the deletion
might result in loss of nuclear functions of RBM10. To investigate
the impact of this deletion on gene expression especially splicing
pattern, we performed RNA-seq on lymphoblastoid cell lines
(LCLs), derived from the patient carrying the mutation and from
healthy controls, respectively. We determined the changes in
gene expression and splicing pattern using the same strategy
applied on HEK 293 cells (Supporting Information Table S3 and
S4). In total, we identified 206 and 102 exons showing enhanced
inclusion and exclusion (|Zps;| > 3, |APSI| > 10%) in the patient
derived LCLs, respectively. Intriguingly, the splicing changes
observed here correlated well with changes induced by RBM10
KD in HEK293 (Fig 6C). This observation indicated that RBM10
mutant lost its function in splicing regulation, in accordance
with the observed change in subcellular localization. To further
validate the functional impact of the mutant, we overexpressed
RBM10 in HEK 293 cells. As shown in Fig 6E, for the two cassette
exons, the OE of the mutant could not induce the same splicing
changes as that of the wild type.

DISCUSSION

RBM10 has been characterized in vitro as an RNA-binding protein
and identified as a component of spliceosome complex. However,
its putative role in splicing regulation has not been established. In
this study, our transcriptome-wide analysis of RBM10 binding
profile as well as changes in splicing pattern induced by RBM10
perturbation provided experimental evidence supporting its
role as a novel splicing regulator. Using PAR-CLIP, we identified
thousands of consensus binding sites, 51% of which are located
in the introns, with a significant enrichment in the vicinity of
splicing sites. Using RNA-seq, we identified hundreds of exons,
the splicing pattern of which was significant changed upon
increasing or decreasing cellular RBM10 abundance. An RNA
splicing map that associated RBM10-binding profiles with
those observed splicing changes yielded a mechanistic model
underlying RBM10 mediated splicing regulation.

Nonsense and frame-shift mutations in RBM10 have been
identified to cause TARP syndrome (Johnston et al, 2010). In this
study, in the two male cousins with congenital multi-organ
malformation, we identified an in-frame deletion in RBM10,
which removed the NLS of the protein and thereby largely
disrupted its nuclear function. Whole-mount in situ expression
analysis of the murine Rbm10 has shown that the gene was
expressed during embryonic development in a pattern consistent
with the human malformations observed in TARP syndrome
(Johnston et al, 2010). Therefore, due to the loss of function of
RBM10, our patients as well as the previously reported TARP
patients would suffer from molecular defects in those tissues
expressing critical amount of RBM10 during development. Given
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Figure 5. Correlation between RBM10 binding, exon splicing changes, intron splicing changes and splicing site strengths.

A. Cumulative distribution functions (CDF) of splicing change of introns (Zpr, percentage intron retention) upstream (left) or downstream (right) to the cassette
exons that were differentially spliced upon RBM10 OE. Exon exclusion upon RBM10 OE (orange: Zps; <—2; green: Zps; <—1, PSI: percentage splicing in) is
associated with higher retention of both flanking introns than background (black) and exon inclusion (blue: Zps; >1). The numbers of exons were indicated in

parenthesis.

B. Cumulative distribution functions of Zp s for different groups of introns with or without RBM10 binding at the 5’ and/or 3’ splice sites. The numbers of introns

within different groups were printed in parenthesis.

C. Box plots of the strengths of splicing splice sites at upstream and downstream introns flanking all cassette exons (white) or those with higher exclusion after

upon RBM10 OE (orange: Zps; <—2; green: Zps; <—1).

that RBM10 regulates many genes and possibly different sets of
target genes in different tissues, it is likely that multiple targets
would contribute to the phenotype.

Indeed, among the genes with splicing pattern regulated by
RBM10, some have been implicated in the TARP syndrome
associated anomalies (Supporting Information Table S4). For
example, DNML] has found to be mutated in the patients with
microcephaly and optic atrophy, overlapping features of TARP
syndrome (Waterham et al, 2007). Mutations in CEP290 could
cause Joubert syndrome, a heterogenous ciliopathy character-
ized by cerebellar vermis hypoplasia and severe ID, two clinical
findings also typical for TARP syndrome (Sayer et al, 2006).
Another interesting gene, CASK, once mutated could lead to
brain anomalies similar to the patients reported here (Najm
et al, 2008). Finally, great phenotypic overlap is also noted to
individuals with mutations in the PIGN gene, which lead to a
syndromic entity characterized by hypotonia, seizures, neonatal
hypotonia, lack of psychomotor development and dysmorphic

EMBO Mol Med (2013) 5, 1431-1442

features, associated with cardiac, urinary and gastrointestinal
malformations (Maydan et al, 2011). Among the differentially
expressed genes upon RBMI10 perturbation, there are also
candidate genes causing entities with overlapping features. For
example, ECELI is a gene responsible for distal arthrogryposis
type 5D with similar limb anomalies observed in our patients
(McMillin et al, 2013). Mutation in LHB gene could causes
hypogonadism, which is also manifested in individuals with
TARP syndrome (Weiss et al, 1992).

On one hand, the leading pathologic phenotypes observed in
our patients largely overlapped with TARP syndrome (see
Supporting Information for the discussion of clinical findings),
indicating many, if not most of the TARP associated malforma-
tions resulted from loss of RBM10 nuclear function, i.e.
regulation of exon skipping. On the other hand, comparing
with typical TARP patients, our patients are relatively milder
affected. Indeed they are the eldest patients reported so far.
Given that only nonsense and frame-shift mutations in RBM10

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
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Figure 6. In-frame deletion of RBM10 identified in a family afflicted with multi-organ malformation.

A. Pedigree of the family.

B. RBM10 protein domain structure, the deletion removed the second zinc finger domain, a portion of the G patch domain and a nuclear localization signal (NLS).
C. Splicing difference (APSI) between lymphoblastoid cell lines (LCLs) derived from the patient and those from healthy controls were correlated with splicing

changes induced by RBM10 KD in HEK293.

D. Subcellular localization of wild type and mutant RBM10 detected by antibody against RBM10 (a-RBM10) or that against HA tag. Co-staining with DAPI showed
that in contrast to the nuclear localization of wild type, RBM10 mutant predominantly localized in the cytoplasm. Scale bar: 10 pm.
E. Splicing changes of the two cassette exons in HEK293 cells upon overexpression (OE) of RBM10 wild type or mutant were measured by qPCR. The exclusion and

inclusion levels were normalized based on constitutive exon expression.

have been reported in TARP patients, it is tempting to speculate
that the mutant RBM10 in our patients might retain either
some residue nuclear function or other unknown functions of
the protein. Notably, a large number of RBM10-RNA inter-
actions, especially those in exons, appeared not to be directly
associated with splicing regulation. Whether such interactions
hold other regulatory roles awaits further investigation.

More recently, in a large sequence analysis of lung
adenocarcinomas, RBM10 was found to be frequently mutated

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

and subject to recurrent nonsense, frame-shift or splice-site
mutations (Imielinski et al, 2012). Interestingly, among the
genes differentially spliced upon RBM10 perturbation in HEK293
cells, several were known factors associated with cancers
(Supporting Information Table S4). Given the frequent observa-
tion of splicing deregulation in different types of cancers, it is
plausible that RBM10 might also play an important role in
cancers other than lung adenocarcinomas. Taken together, our
study established RBM10 as an important regulator of AS,
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PROBLEM:

TARP syndrome is an X-linked inherited disorder leading to
multiple organ malformation in affected males. Nonsense and
frame shift mutations in RBM10, a gene encoding an RBPs, have
been identified to cause TARP syndrome. Although the protein
has been reported to associate with spliceosome complex, the
exact molecular function of RBM10 is not clear.

RESULTS:

We combined photoactivatable-ribonucleoside-enhanced

crosslinking and immunoprecipitation (PAR-CLIP) with massive
parallel sequencing to identify RNA binding sites for RBM10 and
observed significant RBM10-RNA interactions in the vicinity of
splice sites. Using RNA-seq, we identified hundreds of splicing
changes following perturbation of cellular RBM10 abundance.

yielded a mechanistic model for RBM10-mediated splicing
regulation and provided a starting point for the future functional
characterization of RBM10 in different biological systems.

MATERIALS AND METHODS

Cell lines

Stable HEK 293 T-REx Flp-In cell lines inducibly expressing FLAG/HA-
tagged wild type and mutant RBM10, respectively were generated and
maintained as described previously (Landthaler et al, 2008) with minor
modifications (Supporting Information Supplementary Methods).
Expression of FLAG-HA-tagged RBM10 was induced with 10 ng/ml
doxycycline for 16 h.

PAR-CLIP

The cells were labelled with 100 wM 4-thiouridine (4SU) and induced
with 10 ng/ml doxycycline for 16 h. PAR-CLIP was performed as described
previously (Hafner et al, 2010) with the following modifications. Cells
were lysed in high salt lysis buffer (50 mM Tris—HCI pH 7.2, 500 mM Nacl,
1% NP40, 1mM DTT, complete protease inhibitor (Roche)). For the
second RNase T1 digestion, 10 U/l RNase T1 and 5 min incubation was
used. PAR-CLIP libraries were sequenced 1 x 50 cycles using Illumina
HiSeq following the standard protocol. Detailed procedures see
Supporting Information Supplementary Methods.

RBM10 knockdown

SiRNA (Applied Biosystems, s15747) against RBM10 was reverse
transfected at a final concentration 20nM with lipofectamine
RNAIMAX (Invitrogen) in HEK293 T-REx Flp-In cells. Controls were
treated with only transfection reagents. Cells were harvested 48 h after
transfection, respectively. Total RNA was extracted using Trizol
(Invitrogen) and the quality was assessed by Agilent Bioanalyser
according to the manufacturer’s instructions. The KD efficiency was
assessed by qPCR and Western blot.

EMBO Mol Med (2013) 5, 1431-1442

Integrative analyses of binding sites as well as splicing profile
suggested a mechanistic model underlying RBM10-mediated
splicing regulation, which could be subsequently validated by
minigene experiments. Furthermore, we demonstrated the
splicing defects in a TARP patient carrying an in-frame deletion in
RBM10, which could be explained by disrupted function of
RBM10 in splicing regulation.

IMPACT:

Our study for the first time established RBM10 as an important
regulator of AS, presented a mechanistic model for RBM10-
mediated splicing regulation and provided a molecular link to
understanding a human congenital disorder.

RBM10 overexpression

Stable HEK293 T-REx Flp-In cells inducibly expressing FLAG-HA-tagged
RBM10 was induced with 10 ng/ml doxycycline for 16 h. Control was
treated with equal amount of medium. Total RNA was extracted using
Trizol (Invitrogen) and the quality was assessed by Agilent Bioanalyser
according to the manufacturer’s instructions. The OE efficiency was
assessed by gPCR and Western blot.

mRNA sequencing

mRNA sequencing was performed using 1 g total RNA. Briefly, poly
(A) RNA was isolated by two rounds of oligo (dT),s Dynabeads
(Invitrogen) purification. Purified poly (A) RNA was fragmented at
94°C for 3.5min using 5x fragmentation buffer (200 mM Tris—
acetate, pH 8.1, 500 mM KOAc, 150 mM MgOA). The fragmented RNA
was precipitated and converted to first strand cDNA using random
hexmer primer and Supescript Il (Invitrogen), followed by second
strand cDNA synthesis with Eschericcia coli DNA pol | (Invitrogen) and
RNAse H (Invitrogen). Then the paired-end sequencing library was
prepared and sequenced on Illumina HiSeq for 2 x 100 cycles
following the standard protocol.

qRT-PCR

Total RNA was treated with TURBO DNase (Ambion) following the
manufacturer’s protocol. Reverse transcription was performed using
1 g of DNase treated total RNA, random hexamer and Superscript 111
reverse transcriptase (Invitrogen) according to manufacturer’s protocol.
First stranded cDNA was diluted 1:20 and 2 wl was used as template in
a 20 pl gPCR reaction system. gPCR was carried out using SYBRGreen
Masrermix | (Roche) on LightCycler 480 (Roche) according to
manufacturer’s instructions. All assays were performed in triplicates.
For expression quantification, the average fold change was calculated
by normalization to GAPDH. For exon inclusion or exclusion
quantification, the relative ratios were calculated by normalization
to corresponding constitutive exons. The sequences of all PCR primers
were listed in Supporting Information Table S5.

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
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Western blot

Western blot was performed as described in Supporting Information
Supplementary Methods. The following antibodies were used: rabbit
polyclonal anti-RBM10 (Abcam, ab26046, 1:2000), mouse monoclonal
anti-HA (Covance, MMS-101P, 1:4000), mouse monoclonal anti-FLAG
(Sigma, F1804, 1:4000) and rabbit polyclonal anti-GAPDH (Santa Cruz,
sc-25778, 1:2000). Secondary HRP-conjugated goat anti-mouse or
human IgG (Santa Cruz) was detected with SuperSignal Kit (Thermo).

Minigene experiments

To validate the direct effects of RBM10 intronic binding on exon
skipping, RBM10 protein was fused upstream of a modified PUF
domain (PUF3-2) with specific and high affinity RNA recognition
sequence (UGUAUGUA, ie. A6GC) as previously reported (Wang
et al, 2009). The plasmid expressing the RBM10-PUF fusion protein
was generated by overlapping PCR as previously described (Heckman &
Pease, 2007) and then inserted into pcDNA3.1D/V5-His-TOPO
expression vector (Invitrogen). Five hundred nanograms of splicing
reporter (pZW2C-A6G) containing the PUF3-2 recognition sequence
(Wang et al, 2009) was transfected alone, or cotransfected with 100 ng
of RBM10-PUF or PUF expression vector, respectively into HEK293T
cells in 12-well plate. After RT-PCR, the expression level of the two
isoforms including or excluding the cassette exons was measured by
Bioanalyser DNA 1000 chip (Agilent). All the PCR primers were listed in
Supporting Information Table S5.

PAR-CLIP sequencing data analysis

The PAR-CLIP reads were processed as described before (Lebedeva
et al, 2011). In brief, the reads were aligned to the human genome
(UCSC Genome Browser, hg19) allowing at most one mismatch, or indel
of one nucleotide. Uniquely mapped reads were overlapped to define
binding clusters. For each cluster, the preferred crosslinking position
was defined as the site with the highest number of T to C conversions.
Based on the binding clusters identified in the two biological replicates,
a consensus binding cluster was defined as a pair of clusters from the
two replicates, if preferred crosslinking site of one cluster from one
replicate was located within the other cluster from the other replicate
and vice versa. The preferred crosslinking site in the first replicate was
used as that of the consensus cluster.

RNA-seq data analysis
The RNA-seq reads were mapped with at most two mismatches to the
human genome reference (UCSC genome browser hg19) and a set of
sequences consisting of all possible junctions between the exons of
each Refseq gene. The expression level of a gene was calculated as
RPKM values by dividing the number of reads which could be mapped
to the exons or exon—exon junctions of this gene by its cumulative exon
length (in kb) and the total number of mappable reads (in million).

For each of the internal exon E, we computed percent splicing in value,
PSI = e;./(ein + eout), Where e;, denotes the number of reads which could
only be mapped to E or exon junctions containing £ with an overlap of at
least 6 bp, and e, denotes the number of reads which could be mapped
only to exon junctions skipping E and overlap with both exons by at least
6 bp. The internal exons with its PSI value between 0.02 and 0.98 in at
least one data set were defined as cassette exons.

For each intron /, we computed percent intron retention value,
PIR = iin/(iin + iout), Where i;, denotes the number of reads which could

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
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only be mapped to junctions between / and adjacent exons, and overlap
with | by at least 6 bp, and iy, denotes the number of reads which
could be mapped only to exon—exon junctions skipping / and overlap
with both exons by at least 6 bp.

To estimate the significance of the change in gene expression
level, PSI or PIR upon RBM10 KD and OE, we applied a Z-value
transformation, i.e. divided Alog, RPKM/APSI/APIR by a local standard
deviation which we computed using a sliding window approach as
following. After sorting the exons according to the total number of
reads used for computing the RPKM/PSI/PIR values (e.g. in the case of
PSI, it is the sum of e;, and ey, from both OE/KD and control), we
calculated for each data point the standard deviation of the respective
values inside a window consisting 1% genes/exons/introns. The local
standard deviations were then smoothed using loess regression before
we used them for calculating Z values.

We then estimated false discovery rates using the rank product
method (Breitling et al, 2004). For each independent replicate, the
genes/exons/introns were ranked according to the respective Z values
and the ranks obtained in the replicates were multiplied for each gene/
exon/intron. The number of genes/exons/introns expected to have
a given rank product by chance was estimated using random
permutations of the rank lists.

The enrichment and annotation of functional categories in the set
of genes with significant splicing changes or differentially expressed
upon RBM10 perturbation was computed using the Database for
Annotation, Visualization and Integrated Discovery (Huang et al,
2008, 2009).
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For more information

The raw sequencing data has been deposited in NCBI GEO database
(Accession number: GSE44976). The PAR-CLIP data could also be accessed
at doRiNA database (Anders et al, 2012):

http://dorina.mdc-berlin.de/rbp_browser/dorina.html
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