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Abstract

SORCSS3 is an orphan receptor of the VPS10P domain receptor family, a group of sorting and signaling receptors
central to many pathways in control of neuronal viability and function. SORCS3 is highly expressed in the CA1 region
of the hippocampus, but the relevance of this receptor for hippocampal activity remained absolutely unclear. Here,
we show that SORCS3 localizes to the postsynaptic density and that loss of receptor activity in gene-targeted mice
abrogates NMDA receptor-dependent and -independent forms of long-term depression (LTD). Consistent with a loss
of synaptic retraction, SORCS3-deficient mice suffer from deficits in behavioral activities associated with
hippocampal LTD, particularly from an accelerated extinction of fear memory. A possible molecular mechanism for
SORCSS3 in synaptic depression was suggested by targeted proteomics approaches that identified the ability of
SORCSS3 to functionally interact with PICK1, an adaptor that sorts glutamate receptors at the postsynapse. Faulty
localization of PICK1 in SORCSS3-deficient neurons argues for altered glutamate receptor trafficking as the cause of
altered synaptic plasticity in the SORCS3-deficient mouse model. In conclusion, our studies have identified a novel
function for VPS10P domain receptors in control of synaptic depression and suggest SORCS3 as a novel factor
modulating aversive memory extinction.
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Introduction

VPS10P domain receptors are a unique class of sorting and
signaling receptors expressed in the nervous system. Five
receptors form this gene family in mammals designated sortilin
[1], sorting-related receptor with A-type repeats (SORLA) [2,3]
as well as SORCS1, SORCS2, and SORCS3 [4]. All family
members are characterized by a 700 amino acid module in
their extracellular domain, initially identified in the yeast sorting
receptor VPS10P (vacuolar protein sorting 10 protein) [5]. In
recent years, three VPS10P domain receptors have been
studied in detail documenting the central role played by this
gene family in control of neuronal viability and function
(reviewed in 6). Thus, sortilin was shown to regulate neuronal
cell death and survival through modulation of (pro)-
neurotrophin signaling [7,8,9,10]. SORLA and SORCS1 act as
neuronal receptors for the amyloid precursor protein (APP)
controlling proteolytic breakdown of this precursor into
neurotoxic amyloid-B peptides, a pathological mechanism in
Alzheimer’s disease [11,12,13,14,15].
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Contrary to other VPS10P domain receptors, the significance
of SORCS3 for the nervous system is absolutely unclear.
Together with SORCS1 and SORCS2, SORCS3 forms a
closely related subgroup within the VPS10P domain receptor
family characterized by the presence of one amino terminal
VPS10P domain followed by an imperfect leucine-reach repeat
in their extracellular regions [4]. SORCS3 is a 130 kDa
neuronal orphan receptor distinctly expressed in the
hippocampus and cortex, and to a lesser extend in the
cerebellum [4,16]. Hippocampal expression in mice is markedly
up-regulated by synaptic activity following induction of limbic
seizures through kainic acid injection [16].

Here, we report the generation and functional
characterization of a SORCS3-deficient mouse model to query
the relevance of this receptor for hippocampal activity in vivo.
SORCS3-deficient animals are viable and fertile, but exhibit
profound alterations in synaptic plasticity as shown by loss of
long-term depression (LTD). Altered synaptic plasticity
coincides with defects in spatial learning and modulation of fear
memory, indicating involvement of SORCS3 in anxiety-related
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hippocampal activities. The ability of the receptor to control the
subcellular localization of PICK1, an adaptor that sorts
glutamate receptors, suggests a molecular mechanism for
SORCSS3 in control of neurotransmitter receptor trafficking at
the synapse.

Materials and Methods

Materials

A polyclonal antiserum against the extracellular portion of
murine SORCS3 was produced in-house by immunizing rabbits
with the recombinant protein fragment purified from transfected
HEK293 cells. The antiserum was affinity purified using the
recombinant antigen. Antisera directed against the following
proteins were obtained from commercial suppliers: PDS95,
GluR2, NR2B, mGIuR5 (NeuroMab); synaptophysin (Synaptic
Systems); GIuR1, p75NTR, TrkB (Cell Signalling); PICK1
(Novus Biologicals, NeuroMab), Na*/K* ATPase a-1 subunit
(Merck Millipore Cat. 05-369), SORCS2 (A. Nykjaer, Aarhus).

Hippocampal synaptosomal preparations

Hippocampi of mice were dissected and homogenized in 320
mM sucrose, 4 mM HEPES (pH 7.4), with 10 strokes of a
glass-teflon homogenizer (H, homogenate). The homogenate
was centrifuged at 1000xg for 10 min and the postnuclear
supernatant (S1) was further centrifuged at 10,000xg for 15
min to yield the crude synaptosomal pellet (P2) and a
supernatant, of which the light membrane fraction (P3) was
pelleted at 150,000xg for 30 min. After washing the pellet, P2
was lysed by hypo-osmotic shock and three strokes of a glass-
teflon homogenizer. The lysate was centrifuged at 25,000xg for
20 min to yield the lysed synaptosomal membrane fraction
(LP1). The supernatant (LS1) was pelleted at 165,000xg for 2
hours to derive the crude synaptic vesicle fraction (LP2). LP1
was layered on top of a discontinuous gradient containing 0.8
to 1.0 to 1.2 M sucrose and centrifuged at 150,000xg for 2
hours. Synaptic plasma membranes (SPM) were recovered in
the layer between 1.0 and 1.2 M sucrose, diluted to 0.32 M
sucrose and centrifuged at 150,000xg for 30 min. After
resuspension and addition of Triton X-100 (final concentration
0.5%), SPMs were incubated on a rotating wheel at 4°C for 15
min, followed by centrifugation at 32,000xg (20 min) to yielded
the PSDI pellet. The pellet was resuspended in 0.5% Triton
X100, incubated on a rotating wheel at 4°C for 15 min and
centrifuged at 200,000xg (20 min) to obtain the PSDII pellet.

Affinity purification and characterization of SORCS3
interacting proteins

Proteins were isolated using synthetic peptides
corresponding to the carboxyl terminal oligopeptides of
SORCS3 (S"™7ESTKEIPNCTSV; UniProt Q8VI51) or SORCS2
(S"INSREMHSYLVG; Q9EPRS5). Peptides were coupled to
sepharose beads and incubated with total brain lysate
(containing 1% Triton X-100) at 4°C over night. Beads were
pelleted and bound proteins eluted by boiling in Laemmli buffer.
After separation on SDS-PAGE, protein bands were stained
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with Coomassie, cut out from the gel, and identified by mass
spectrometry.

For co-immunoprecipitation, constructs encoding SORCS3
and CS3°™V were transiently transfected into COS-7 cells.
After 36 hours, the cells were sonicated in 150 mM NaCl, 50
mM Tris (pH8), 1% NP-40 substitute, and 1 mM 0.25%
deoxycholate, and incubated with 1ug of IgG directed against
PSD95 at 4°C over night. Immunoprecipitates were collected
using Protein G agarose (Roche) according to manufacturer’s
protocols. Eluted Proteins were separated on SDS-PAGE and
analyzed by Western blotting.

For pull-down studies, HEK293 cells stably expressing
SORCS3 were lysed on ice in lysis buffer (150mM NaCl, 2 mM
MgCl,, 0.1 mM EGTA, 2 mM CaCl,, 10 mM HEPES, 1% Triton
X-100, pH 7.4) and centrifuged at 4°C. 200 pl of the
supernatant were mixed with either 10 uyg GST or 15 ug GST-
PICK1, adjusted to a volume of 1 ml in lysis buffer (without
Triton), and rotated overnight at 4°C. The following day,
glutathione sepharose beads were added and rotated for 5
hours at 4°C. Beads were pelleted, washed four times in lysis
buffer (modified to 0.4 M NaCl, without Triton X-100), eluted,
and analyzed by SDS-PAGE.

Generation of SORCS3-deficient mice

For homologous recombination in embryonic stem (ES) cells,
a targeting vector was constructed as detailed in the result
section. In brief, regions homologous to the murine Sorcs3
locus were amplified by PCR from isogenic ES cell DNA. A
neomycin cassette flanked by FRT and loxP sites was inserted
0.8 kb downstream stream of exon 1 and one loxP site was
inserted 0.8 kb upstream of exon 3. After electroporation of the
targeting construct into ES cells and selection with G418,
clones with homologous recombination were identified by
Southern blot analysis. Mice derived by standard blastocyst
injection of targeted cell clones were bred to the Cre deleter
strain [17] to remove the neomycin cassette and to derive
animals heterozygous for the deleted Sorcs3 allele (Sorcs3*).
Sorcs3* animals were backcrossed on C57BI/6N for more than
10 generations and then bred to homozygosity for the deleted
allele (Sorcs3”). Experiments in this manuscript have been
carried out in littermates including all behavioral and
biochemical analyses and most of the electrophysiological
studies. The only exception being the mGluR-dependent LTD
study which was performed using separate C57BI/6N inbred
lines of wild type or Sorcs3 null background. Animal
experimentation was performed after approval by local ethics
committees  (x9012/12, LAGESO, Berlin, Germany;
2011/561-119, University of Aarhus, Aarhus, Denmark).

For RT-PCR analysis of Sorcs3 transcription, hippocampi,
cortices and cerebella from freshly sacrificed mice were
homogenized in TRIzol Reagent (Life Technologies). RNA was
isolated using RNeasy Mini Kit (Qiagen) and transcribed to
cDNA using the High Capacity RNA-to-cDNA Kit (Life
Technologies). Specific cDNAs were amplified using Taq
Polymerase (New England Biolabs) and the following primer:
Sorcs3 Ex1 forward: GCGGGGACTCTTGGGCTACTG, Sorcs3
Ex2 reverse: GGTGGCGCCATAATCTACTGAC; Sorcs3 Ex13
forward: TCCTAGACTGGGGTGGTGCTC; Sorcs3 Ex15
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reverse: CAGCGCCGGCTGAAGATAGAC; 18S forward:
GTCCCCCAACTTCTTAGAG, 18S reverse
GACCTACGGAAACTTGTTAC.

Electrophysiological recordings

Mice were anesthetized with isoflurane and decapitated. The
brain was removed and transferred to an ice-cold artificial
cerebrospinal fluid (ACSF) composed of 126 mM NaCl, 2.5 mM
KCl, 1.25 mM NaH,PO,, 2.5 mM CaCl,, 1.3 mM MgCl,, 10 mM
D-glucose, 26 mM NaHCO; (osmolality 305-315 mosmol - kg™')
at pH 7.4. ACSF used in this study was bubbled with carbogen
(5% CO, 95% 0O,). Coronal slices (400 pm) were cut on a
Vibratome 3000 Plus and stored for at least 90 minutes in
ACSF at room temperature before recording.

Coronal brain slices were placed in an interface recording
chamber perfused with ACSF containing 0.5% albumin that
was recycled (a total volume of 300 ml; flow rate 2 ml/min).
Recording electrodes (resistance 10-20 MQ) were pulled from
borosilicate glass (outer diameter: 1.5 mm; inner diameter: 0.8
mm, King Precision Glass Inc.) and filled with ACSF. The
stimulation electrode (Concentric Bipolar Electrode, CBARC75,
FHC Inc.) was placed in the stratum radiatum in the CA1 of the
hippocampus and Schaffer collaterals were stimulated using a
Stimulus Isolator (A365, World Precision Instruments) and a
Master8 (A.M.P.1.). The recording electrode was placed in the
stratum radiatum and recordings were made using MultiClamp
700B (Axon instruments) and Digidata 1440A (Axon
Instruments). Extracellular field recordings were performed at
33 £ 1°C. After obtaining a stable baseline, low-frequency or
tetanic stimulations were applied. Stimulus intensity was
adjusted to evoke fEPSP at 40-50% of maximum. NMDA
receptor-dependent LTD was induced by a single pulse applied
at a rate of 1 Hz for 20 min. mGluR-dependent LTD was
induced by twin pulses separated by 50 ms applied at 1Hz for
18 min. We induced long-term potentiation (LTP) by two trains
of high-frequency stimulation (100 Hz, 1 s, separated by 45
sec). Paired-pulse facilitation (PPF) was induced by twin pulses
with interstimulus intervals of 25-300 ms. Where indicated, 10
MM of the GABA; receptor agonist baclofen (Tocris) was
supplied to the recording chamber during the entire PPF
experiment.

Behavioral studies

All behavioral experiments were carried out using 14-20
weeks old male mice between 9: 00 a.m. to 5: 00 p.m. The
open field test was performed in chambers monitored by an
automated video system (TSE). Mice were placed in the
chambers for 90 min on three consecutive days. The distance
traveled was analyzed in 5 min intervals.

The experimental setup for the Barnes maze paradigm of
spatial learning consisted of a circular platform (92 cm in
diameter) elevated 105 cm above the floor. The maze contains
20 equally spaced holes (5 cm in diameter; 7.5 cm distance
between the individual holes). The centers of all holes were 4.5
cm away from the perimeter of the maze. A hidden escape box
was placed under the target hole. To facilitate spatial
orientation, visual cues were placed on the laboratory walls. On
day 1, mice were allowed to freely explore the maze for 3 min
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and were subsequently placed in the escape box for 2 min.
Mice were then placed in the center of the maze under a dark
circular box for 10 sec to ensure random orientation at the
beginning of the test. A fan was turned on as reinforcing
stimulus during the test phase. Mice were tested for four
consecutive days and their latency to enter the target hole was
measured by video recording and analysis using the Any-Maze
tracking software.

Extinction of fear memory was assessed using a Gemini
Avoidance System which takes advantage of the natural
preference of mice for the dark. The setup consists of a brightly
lit room and a dark room separated by a guillotine door. On the
training day, individual mice are placed in the bright room.
When entering the dark room, the door closes and the mouse
receives an electric foot shock (0.4 mA for 1 sec). Twenty-four
hours later, the mice are returned to the bright room and the
latency to enter the dark room is recorded as an indicator of
memory of the shock. Extinction of fear was achieved by
returning the animals once every 24 h into the setup and by
monitoring their latency to cross into the dark room for a total of
5 consecutive days. To test remote fear memory, animals were
shocked and than returned once into the setup after 16 days.

For statistical analysis of behavioral studies, each measure
of learning (Barnes Maze) or extinction of fear memory was
analyzed with a mixed model ANOVA using GraphPad prism
with genotype as a between-subject factor and trial day as a
within-subject factor. If the repeated measures analysis
showed significant differences between genotypes, post hoc
analyses were performed at individual time points using the
two-tailed Student’s t-test for independent samples. Differences
were considered statistically significant if p<0.05.

Results

SORCS3 is expressed in the postsynaptic density of
hippocampal neurons

Previously, in situ hybridization studies localized Sorcs3
transcripts to the brain of mice. In the adult central nervous
system, neuronal expression of Sorcs3 is most pronounced in
the CA1 region of the hippocampus. Additional patterns of
expression are seen in the mitral cell layer of the olfactory bulb,
in the piriform and cerebral cortex, as well as in the molecular
layer of the cerebellum [16]. No significant expression of the
gene in peripheral tissues has been reported thus far. Here, we
used subcellular fractionation to substantiate expression of the
receptor protein in the murine hippocampus. As shown in
Figure 1A, SORCS3 was detected in fractions encompassing
the synaptic plasma membrane or the postsynaptic density
(PSD), but not in synaptic vesicle-enriched fractions. The
localization of SORCS3 at the PSD was further supported by
unbiased proteomics approaches to identify proteins that
interact with the cytoplasmic tail of the receptor in neurons. To
do so, synthetic peptides encompassing the last 14 amino
acids of the cytoplasmic domain of SORCS3 (CS3-CT) were
coupled to sepharose resin and used to affinity purify
interacting proteins from mouse brain homogenates. Two
prominent proteins were purified on CS3-CT columns that were
identified as PSD93 and PSD95 by mass spectrometry (Figure
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Figure 1. SORCS3 localizes to the post-synaptic density of hippocampal neurons. (A) Hippocampal extracts of wild types
mice were subjected to subcellular fractionation as described in the method section. Western blot analysis identifies SORCS3 in
crude synaptosomal membranes (P2), light membrane fraction (P3), synaptic plasma membranes (SPM), as well as in the post-
synaptic densities (PSD) | and Il. The receptor is not seen in the synaptic vesicle-enriched fraction (LP2). Detection of PSD95 and
synaptophysin served as markers of post-synaptic densities and synaptic vesicles, respectively. H: Hippocampal homogenate. (B)
Total mouse brain extracts were subjected to affinity purification on resin coupled with synthetic peptides encompassing 14 amino
acids of the cytoplasmic tails of SORCS3 (CS3-CT) or SORCS2 (CS2-CT) as detailed in the method section. Two proteins purified
from CS3-CT but not the CS2-CT column as shown by SDS-PAGE and staining with Coomassie. These proteins were identified as
PSD93 and PSD95 by mass spectrometry. (C) COS7 cells were transiently transfected with constructs encoding PSD95 together
with either full-length murine SORCS3 or a receptor variant lacking the PDZ domain binding site (CS3¢™V). SORCS3 (lane 3) but
not CS3°™V (lane 4) co-immunoprecipitated with an anti-PSD95 antiserum (panel IP-PSD95). Panel Input (lanes 1 and 2)
represents the cell lysate tested for PSD95 and SORCS3 prior to immunoprecipitation.

doi: 10.1371/journal.pone.0075006.g001

1B). These proteins were not recovered on columns containing data provide experimental support for a potential interaction of
a carboxyl terminal peptide of the related receptor SORCS2 SORCS3 with PSD95 in vivo.

(CS2-CT, Figure 2B). The ability of SORCS3 to interact with

PSD95 was confirmed in transiently transfected COS7 cells Generation of a SORCS3-deficient mouse model

showing co-immunoprecipitation of SORCS3 with an antiserum To explore the relevance of SORCS3 for hippocampal
directed against PSD95 (Figure 1C). The interaction site for  activity, we next generated a mouse model carrying a targeted
PSD95 was mapped to the last four amino acids of the disruption of Sorcs3. To do so, loxP recombination sites
cytosolic part of SORCS3 containing a putative PDZ domain flanking exon 1 of the Sorcs3 locus on mouse chromosome

binding motif (CTSV) as a receptor mutant lacking this 19D1 were introduced into the genome of mice using standard
tetrapeptide failed to co-immunoprecipitate with anti-PSD95 embryonic stem cell technology (Figure 2A). Exon 1 encodes
IgG (C3°™Y; Figure 1C). Although obtained in vitro, the above 206 amino acid residues encompassing the Start-ATG, the
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Figure 2. Generation and histological analysis of a SORCS3-deficient mouse model. (A) For targeted disruption of the murine
Sorcs3 locus, a targeting vector was constructed introducing the neomycin phosphotransferase gene driven by the
phosphoglycerate kinase promoter (PGK-neoR) into intron 2 of the Sorcs3 locus. The PGK-neoR cassette was flanked by FRT sites
(open triangles). In addition, the vector introduced two loxP recombination sites (closed triangles) 5’ and 3’ of exon 1, respectively.
Following standard homologous recombination in embryonic stem cells and blastocyst injections, mice carrying the modified gene
through the germ line were bred with the flp deleter strain to remove PGK-neoR (targeted allele). For gene inactivation, mice were
crossed with cre deleter mice to excise exon 1 that encodes the start codon and signal and pro-peptides of Sorcs3 (deleted allele).
(B) RT-PCR analysis on brain tissue documents complete loss of transcripts encoding exon 1 in Sorcs3” animals as compared to
Sorcs3** controls. Minor amounts of an aberrant transcript encompassing exons 13-15 are seen. (C) Successful ablation of
SORCS3 protein expression was confirmed by Western blot analysis of extracts from hippocampus (Hip), cortex (Ctx), and
cerebellum (Cer) detecting SORCS3 in wild type mice (+/+), but in animals homozygous for the disrupted allele (-/-). Detection of Na
*/K* ATPase a-1 subunit (Na/K) served as loading control. (D) Histological sections stained with Nissl from hippocampi of Sorcs3**
and Sorcs3” mice. (E) Western blot analysis of the indicated proteins in the PSD fraction of hippocampi from Sorcs3** and Sorcs3*
mice. NR,,B, NMDA glutamate receptor subunit 1/2B; GluR1/2, AMPA glutamate receptor subunit 1/2; mGlur5, metabotropic
glutamate receptor type 5; p75NTR, nerve growth factor receptor; TrkB, neurotrophic tyrosine kinase, receptor, type 2.

doi: 10.1371/journal.pone.0075006.g002
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Figure 3. Long-term potentiation is normal in SORCS3-deficient mice. Field recordings in the stratum radiatum in the CA1 of
the hippocampus after stimulation of Schaffer collaterals in slices of wild type and SORCS3-deficient mice. (A) Exemplary traces
depicting fEPSPs before (black line) and after tetanic stimulation (red line) using a high-frequency 100 Hz protocol in slices from
wild type and SORCS3-deficient mice. Scale bar: 0.4 mV/4 ms. (B) Averaged slopes of fEPSPs in wild type and in SORCS3-
deficient slices before and after high-frequency stimulation (arrow). Data are given as mean + SEM (+/+: 157.5 + 11.0%; -/-: 142.5 £

8.7%, p>0.05).
doi: 10.1371/journal.pone.0075006.g003

signal peptide, and the propetide of SORCS3. Cre-mediated
excision of this gene region resulted in complete elimination of
Sorcs3 transcripts encoding exon 1 (Figure 2B). Trace
amounts of aberrant transcripts encompassing exons 13-15
were still produced from the targeted gene locus as shown by
RT-PCR (Figure 2B). However, no wild type protein or any
truncated receptor product were detected in hippocampus,
cortex, or cerebellum of mice homozygous for the disrupted
Sorcs3 locus confirming successful inactivation of SORCS3
expression in our mouse model (Figure 2C).

Mice homozygous for the Sorcs3 null allele (Sorcs3”) were
viable and fertile, and showed no discernable abnormalities
upon external inspection. Also, histological analysis did not
reveal any obvious histoanatomical alterations of the SORCS3-
deficient hippocampus as compared to control tissue (Figure
2D). Finally, the level of expression of proteins in the PSD was
not affected by lack of SORCS3 as shown in subcellular
fractionation experiments for the related receptor SORCS2, for
PSD95, or for subunits of AMPA receptors (GluR1, GIuR2),
NMDA receptors (NR1 and NR2B), or the metabotropic
glutamate receptor mGIuR5 (Figure 2E). Similarly, the levels of
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co-receptors to other VPS10P domain receptors such as the
neurotrophin receptors P75NR and TrkB were unaltered (Figure
2E).

SORCS3 deficiency results in loss of long-term
depression

Given the prominent expression of SORCS3 in the CA1
region of the hippocampus, we performed electrophysiological
recordings to explore the consequences of receptor deficiency
for synaptic plasticity in this brain area. Long-term potentiation
(LTP) is a major form of long-lasting synaptic plasticity [18].
During LTP, AMPA receptors are inserted into the PSD,
resulting in an increase in synaptic strength [19,20]. However,
field recordings of the stratum radiatum in the CA1 region of
the hippocampus following stimulation of Schaffer collaterals
failed to reveal any difference in early LTP in slices from
SORCS3-deficient compared with wild type brains (Figure 3).

Long-term depression (LTD) is the second major form of
long-lasting synaptic plasticity and considered important for
synaptic retraction. During LTD, AMPA receptors undergo
internalization from the PSD causing a decrease in synaptic
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Figure 4. Long-term depression is impaired in SORCS3-deficient mice. Field recordings of the stratum radiatum in the CA1 of
the hippocampus after stimulation of Schaffer collaterals in slices of wild-type and in SORCS3-deficient mice (A-B) A low-frequency
1 Hz protocol was applied to induce NMDA receptor-dependent long-term depression (LTD). (A) Representative traces depicting
fEPSPs before (black line) and after low-frequency stimulation (red line) in wild type and receptor-deficient mice. (B) Averaged
fEPSP slopes before and after low-frequency stimulation (arrow) in slices of wild type and SORCS3 deficient animals (+/+: 83.6
4.2%; -I-: 99.2 £ 4.9%, p<0.05). (C-D) A low-frequency 1 Hz paired-pulse protocol was used to elicit mGluR-dependent LTD. (C)
Exemplary traces depicting fEPSPs before (black line) and after low-frequency paired-pulse stimulation (red line) in wild type and
receptor-deficient mice. (D) Averaged fEPSP slopes before and after low-frequency paired-pulse stimulation (arrow) are given (+/+:

78.3 £ 8.3%; -/-: 98.1 £ 4.4%, p < 0.05). Scale bars in A and C: 0.4 mV/4 ms. Data in B and D are given as mean + SEM.

doi: 10.1371/journal.pone.0075006.g004

strength. The most widely studied form of LTD is NMDA
receptor-dependent. Here, the synaptic activation of NMDA
receptors triggers the induction of LTD [19,21]. As shown in
Figure 4A and B, NMDA receptor-dependent-LTD was absent
in hippocampal slices from Sorcs3” animals. Another form of
LTD is mGluR-dependent whereby synaptic activation of
metabotropic glutamate receptors triggers LTD [19,22].
Remarkably, mGluR-dependent LTD was also lost in SORCS3-
deficient mice (Figure 4C and D).

To exclude possible presynaptic effects of SORCS3
deficiency, we tested paired-pulse facilitation (PPF), a form of
short-term synaptic plasticity [23]. In PPF, postsynaptic field
potentials evoked by extracellular stimulation are increased at
the second pulse due to enhanced release of synaptic vesicles
from the presynaptic terminal [24]. As shown in Figure 5, there
was no difference in PPF in mutant as compared to wild type
mice. The GABAg receptor agonist baclofen reduces the
release probability primarily by inhibiting calcium channels,
leading to a larger pool of release-ready vesicles for the
second pulse [25]. Therefore, PPF is increased. Application of
baclofen did not differently affect PPF in SORCS3-deficient
mice compared with control animals, indicating intact
presynaptic GABAg receptor signaling cascades (Figure 5).
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Impaired learning and fear memory in mice lacking
SORCS3

To explore the consequences of altered synaptic plasticity for
learning and memory, we subjected SORCS3 null mice to a
number of behavioral tests. In the open-field test, Sorcs3” mice
failed to show any difference in locomotion compared to
controls (Figure 6). However, when tested for spatial learning
and memory using the Barnes maze (see methods for details),
SORCS3-deficient animals performed significantly poorer than
control animals with an obvious inability to learn the location of
the escape target hole over a 4-day test period (Figure 7A and
B) and a significantly increased number of nose poke errors on
the fourth test day (Figure 7C).

Fear memory is another form of long-lasting memory
involving the hippocampus. Accordingly, we applied an
inhibitory avoidance test to investigate fear memory in our
mouse model. This setup takes advantage of the natural
preference of mice for the dark and consists of a brightly lit
room and a dark room separated by a guillotine door. On the
training day, mice are placed in the bright room. When entering
the dark room, the animals receive an electric foot shock.
Twenty-four hours later, the mice are returned to the bright
room and their latency to enter the dark area is recorded as an
indicator of memory of the adverse event. Both wild type and

September 2013 | Volume 8 | Issue 9 | e75006
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Figure 5. Normal paired-pulse facilitation in SORCS3-deficient mice. (A) Representative traces of fEPSPs after paired pulses
with increasing interpulse intervals are depicted for the indicated genotypes and conditions. Scale bars: 0.3 mV/20 ms. (B) Paired-
pulse facilitation (PPF) was calculated as the ratio of the second fEPSP slope to the first fEPSP slope and plotted at different
interstimulus intervals. No significant differences (p>0.05) at any interstimulus intervals were seen comparing Sorcs3** and Sorcs3”
mice. Application of the GABAg receptor agonist baclofen increased the PPF ratio equally in mice of both genotypes. Note that y-

axis starts at 100%. Data are given as mean + SEM.
doi: 10.1371/journal.pone.0075006.g005

receptor-deficient mice displayed a marked increase in their
latencies to enter the dark room 24 h post shock, showing
intact and similar acquisition of fear memory in both genotypes
(Figure 8A, day 1). Subsequently, extinction of fear was tested
by returning the animals once every 24 h into the setup and by
monitoring their latency to cross into the dark room for a total of
4 consecutive days. As seen in Figure 8A, Sorcs3” mice

PLOS ONE | www.plosone.org

displayed a significantly accelerated extinction of short-term
fear memory as indicated by their willingness to enter the dark
room faster than control animals on days 2 through 4 of the
trial. This behavioral abnormality was not due to increased
forgetting over time as the remote fear memory retrieval of
SORCS3-deficient mice was identical to that of wild type
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Figure 6. Normal behavior of SORCS3-deficient mice in the open field paradigm. Locomotion of Sorcs3** and Sorcs3” mice
in an open field test run for 90 min on day 1 (panel A) and day 3 (panel B) of the test (n=3 per genotype). The distance traveled over
a period of 5 minutes was averaged for each time interval (mean + SD).

doi: 10.1371/journal.pone.0075006.g006

controls when shocked and returned to the setup once after 16 SORCS3 affects localization of PICK1 at the
days (Figure 8B). postsynapse
Based on the alterations seen in SORCS3-deficient mice,
SORCS3 seems to play a role in weakening of synaptic
strength. Possibly, up-regulation of Sorcs3 by synaptic activity
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Figure 7. Sorcs3” mice display defects in spatial learning and memory in the Barnes maze. (A) Representative track plots
illustrate the deficiency of individual Sorcs3” animals to locate the target hole on day 4 of the trial as compared to Sorcs3** controls.
(B) Wild type mice (Sorcs3**, n=7) display a steep learning curve as illustrated by the decreasing time required to enter the target
hole during the four test days. In contrast, Sorcs3” mice (n=15) fail to acquire spatial memory. Statistical analysis was performed by
a two-way ANOVA documenting a significant effect of genotype on learning performance: F=5.11, p<0.5. Subsequently, post hoc
analyses were performed at individual time points using the two-tailed Student’s f-test for independent samples at each time point
(*p<0.05). (C) Sorcs3” mice show significantly more nose poke errors on the fourth test day compared to wild-type controls. Two-
tailed Student’s t-test was used for testing independent samples at day 4 (*p<0.05).

doi: 10.1371/journal.pone.0075006.g007

serves as a mechanism to balance synaptic hyperactivity [16]. ought to act in a fundamental (trafficking) mechanism common
One hypothesis concerning the molecular mechanism of to both forms of LTD (Figure 4).
SORCSS3 action is involvement of this receptor in intracellular A cellular mechanism underlying both NMDA receptor-

protein trafficking. As NMDA receptor-dependent and mGlu dependent and -independent forms of LTD is the endocytosis
receptor-dependent LTD are lost in mutant mice, SORCS3 of AMPA receptors from the postsynaptic membranes,
processes controlled by interaction of the glutamate receptors
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Figure 8. Lack of SORCS3 results in increased fear extinction in mice. (A) Mice were exposed to an inhibitory avoidance
experiment as described in the method section. SORCS3-deficient mice display a more rapid extinction of fear over four
consecutive days albeit at an intact acquisition of fear memory (shock). In contrast, wild type mice show no reduction in fear
memory during the course of the experiment. Statistical analysis was performed by two-way ANOVA documenting a significant
effect of genotype on learning performance: F=5.57, p<0.5. Subsequently, post hoc analyses were performed at individual time
points using the two-tailed Student’s t-test for independent samples (*p<0.05, **p<0.01). (B) SORCS3-deficient and wild type mice
display similar remote fear memory 16 days after the foot shock.

doi: 10.1371/journal.pone.0075006.g008

with anchoring proteins (reviewed in 26). PSD95 is mainly unchanged in hippocampus, cortex or cerebellum of SORCS3-
responsible for tethering of AMPA receptors to the synaptic deficient mice (Figure 9B). However, subcellular fractionation
membrane, with evidence showing that synaptic depression studies documenting reduced levels of PICK1 in the PSD of

requires dephosphorylation of serine-295 of PSD95 [27]. On SORCS3-deficient compared to wild type hippocampi. This
the other hand, PICK1 (protein interacting with C-kinase 1) observation supported the functional significance of PICK1 and

emerges as a sorting adaptor implicated in removal of AMPA SORCSS3 interaction for adaptor sorting in vivo (Figure 9C and
receptors from the synaptic cell surface during LTD D).

[28,29,30,31,32]. Especially, PICK1 has been shown to be

essential for the clustering and intracellular retention of the Discussion

AMPA receptors, a mechanism that underlies the expression

phase of the LTD [32,33]. Accordingly, we tested whether VPS10P domain receptors emerge as central regulators of
PICK1 may represent an adaptor protein also interacting with neuronal viability and function. Their mode of action commonly
the cytoplasmic domain of SORCS3. Interaction of PICK1 with involves the ability to interact with cytosolic adaptors to sort
SORCS3 was confirmed by pull-down of the receptor from target proteins, such as Trk receptors [9] or APP [11,15,34,35].
transiently transfected HEK293 cells using a recombinant GST- Studies presented herein support this notion by elucidating a

PICK1 fusion protein (Figure 9A). Total levels of PICK1 were hitherto unknown function for the orphan receptor SORCS3 in
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Figure 9. SORCS3 interacts with PICK1 and affects its localization at the post-synaptic density. (A) Lysates of HEK293 cells
stably expressing SORCS3 were mixed with recombinant GST or GST-PICK1 as described in the method section. Pull-down
experiments with glutathione sepharose beads (lanes 3-4) recovered SORCS3 from lysates containing GST-PICK1 (lane 4) but to a
significantly lesser extent from GST-containing lysates (lane 3). Panel Input (lanes 1-2) documents the presence of SORCS3 in both
samples prior to pull-down. (B) Immunodetection of PICK1 on extracts of hippocampus (Hip), cortex (Ctx), and cerebellum (Cer)
documents equal levels of the protein in wild type (+/+) and SORCS3-deficient mice (-/-). (C) Representative Western blot analysis
of synaptosomal preparations of wild type and Sorcs3” mouse hippocampi for PICK1 documents reduces levels of PICK1 in the
SORCS3-deficient PSD as compared to the wild type control. Fractions were further probed against PSD95 as a control for
accuracy of fractionation (absent in the synaptic vesicle preparation, LP2) and of equal loading. LS1, input supernatant for synaptic
vesicle fraction; LP2, synaptic vesicle preparation; SPM, synaptic plasma membrane; PSDI and PSDII, postsynaptic densities. (D)
Densitometric measurement of PICK1 levels in PSDI and PSDII fractions (as shown in panel B) from four independent experiments
(13 mice per genotype). Intensities for PICK1 from PSDI and PSDII were combined and normalized against PSD95 for each
experiment.

doi: 10.1371/journal.pone.0075006.g009

control of LTD, an activity potentially involving PICK1- receptors. A role for SORCS3 in synaptic activity was now
dependent sorting processes as the postsynapse. confirmed by documenting distinct defects in synaptic plasticity
SORCS3 is a member of the VPS10P domain receptor gene related to LTD in mice genetically deficient for this receptor.
family that shows the most restricted pattern of expression, Postsynaptic dysfunctions coincide with distinct behavioral
with the main site of expression being the hippocampus. The anomalies in affected animals including defect in spatial
receptor is also unique in as much as it is the only VPS10P learning and memory, and in enhanced extinction of contextual
domain receptor to harbor a PDZ domain binding motif (X-S/T- fear.
X-V), arguing for a specific role of this protein at the Spatial learning as tested in the Barnes maze requires
postsynapse of hippocampal neurons not shared by the other hippocampal function. Also, modulation of fear through
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repeated exposure to the context of an adverse event is
controlled by hippocampal activities [36], providing a behavioral
correlate for the alteration in synaptic plasticity seen in the
hippocampus of Sorcs3” mice. Thus, applying antagonists of
NMDA receptor subunits to specifically erase LTP versus LTD,
blockade of LTD (but not of LTP) in the CA1 region of the
hippocampus of rats resulted in impaired consolidation of
spatial memory in the Morris water maze [37]. These data are
in line with studies in knockout mouse models wherein
selective loss of LTD [38,39] but not of LTP [40,41] affected
spatial learning. Our data in SORCS3-deficient mice support
the concept that LTD in the CA1 region is of particular
importance for establishing long-term spatial memory, a
function that apparently involves SORCS3 activity.

LTD is also implicated in other forms of learning such in the
extinction of aversive memories. For example, mice
overexpressing Rap2, a Ras-related GTPase at the synapse,
display normal LTP but enhanced LTD, which, in turns, results
in impaired extinction of contextual fear [42]. In line with such
an inverse correlation, loss of LTD in Sorcs3” animals
coincides with accelerated inhibition of contextual fear memory
(Figure 8). Several psychiatric disorders such as major
depression or posttraumatic stress disorder syndrome are
caused in part by a failure to erase aversive memory. Given the
functional implication of Sorcs3 in modulation of fear memory in
mice, this gene may represent a novel risk gene for anxiety-
related disorders in humans. Although highly speculative at
present, one genetic study reported a de novo duplication of
the chromosomal region 10923 encoding SORCS?7 and
SORCS3 in an individual with bipolar disorder [43]. Intriguingly,
bipolar disorder is known to share high comorbidity with
posttraumatic stress disorder syndrome [44].

What may be the molecular mechanism of SORCS3 action in
hippocampal neurons? Based on analogy to other VPS10P
domain receptors, sorting of target proteins at the postsynapse
seems a plausible hypothesis. This model is supported by the
ability of the receptor to interact in vitro with PSD95 and PICK1,
adaptors implicated in glutamate receptor localization. In a
simple scenario, our data suggest a model whereby SORCS3
interacts with PICK1 to modulate AMPA receptor sorting at the
PSD. Inhibitory peptides or antibodies blocking the interaction
of PICK1 with GIuR2/3 attenuate LTD induction in cerebellar
Purkinje cells in culture [45]. Furthermore, inactivation of PICK1
by gene ablation [28,30,46] or by pharmacological intervention
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