Item Type: | Article |
---|---|
Title: | Cytochrome P450-generated metabolites derived from ω-3 fatty acids attenuate neovascularization |
Creators Name: | Yanai, R., Mulki, L., Hasegawa, E., Takeuchi, K., Sweigard, H., Suzuki, J., Gaissert, P., Vavvas, D.G., Sonoda, K.H., Rothe, M., Schunck, W.H., Miller, J.W. and Connor, K.M. |
Abstract: | Ocular neovascularization, including age-related macular degeneration (AMD), is a primary cause of blindness in individuals of industrialized countries. With a projected increase in the prevalence of these blinding neovascular diseases, there is an urgent need for new pharmacological interventions for their treatment or prevention. Increasing evidence has implicated eicosanoid-like metabolites of long-chain polyunsaturated fatty acids (LCPUFAs) in the regulation of neovascular disease. In particular, metabolites generated by the cytochrome P450 (CYP)-epoxygenase pathway have been shown to be potent modulators of angiogenesis, making this pathway a reasonable previously unidentified target for intervention in neovascular ocular disease. Here we show that dietary supplementation with {omega}-3 LCPUFAs promotes regression of choroidal neovessels in a well-characterized mouse model of neovascular AMD. Leukocyte recruitment and adhesion molecule expression in choroidal neovascular lesions were down-regulated in mice fed {omega}-3 LCPUFAs. The serum of these mice showed increased levels of anti-inflammatory eicosanoids derived from eicosapentaenoic acid and docosahexaenoic acid. 17,18-epoxyeicosatetraenoic acid and 19,20-epoxydocosapentaenoic acid, the major CYP-generated metabolites of these primary {omega}-3 LCPUFAs, were identified as key lipid mediators of disease resolution. We conclude that CYP-derived bioactive lipid metabolites from {omega}-3 LCPUFAs are potent inhibitors of intraocular neovascular disease and show promising therapeutic potential for resolution of neovascular AMD. |
Keywords: | Choroidal Neovascularization, Immune Cell Recruitment, PPAR{gamma}, Adhesion Molecules, Epoxy-Metabolites, Animals, Mice |
Source: | Proceedings of the National Academy of Sciences of the United States of America |
ISSN: | 0027-8424 |
Publisher: | National Academy of Sciences |
Volume: | 111 |
Number: | 26 |
Page Range: | 9603-9608 |
Date: | 1 July 2014 |
Official Publication: | https://doi.org/10.1073/pnas.1401191111 |
PubMed: | View item in PubMed |
Repository Staff Only: item control page