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Abstract 

Less than half of patients with suspected genetic disease receive a molecular diagnosis. We 

have therefore integrated next-generation sequencing, bioinformatics, and clinical data into 

an effective diagnostic workflow. We used variants in the 2741 established Mendelian 

disease genes (the disease-associated genome (DAG)) to develop a targeted enrichment 

DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of bases. 

Furthermore, we established a computational method (Phenotypic Interpretation of eXomes 

(PhenIX)) that evaluated and ranked variants based on pathogenicity and semantic similarity 

of patients’ phenotype described by Human Phenotype Ontology (HPO) terms to those of 

3991 Mendelian diseases. In computer simulations, ranking genes based on the variant 

score put the true gene in first place less than 5% of the time; PhenIX placed the correct 

gene in first place over 86% of the time. A retrospective test of PhenIX on 52 patients with 

previously identified mutations and known diagnoses, achieving a mean rank of 2.1 for the 

correct gene. In a prospective study on 40 individuals without a diagnosis, PhenIX analysis 

enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4). Thus, the combination of 

targeted next generation sequencing (NGS) investigation of the DAG followed by phenotype-

driven bioinformatic analysis allows quick and effective differential diagnostics in medical 

genetics.  
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Introduction 

At the time of this writing, roughly 7,000 Mendelian diseases are recognized (1-3). Although 

these diseases are individually rare, up to 8% of the population is affected by a specific 

genetic disorder (4). Because of the vast number of diseases, many of which have a broad 

and incompletely understood phenotypic spectrum, and the high genetic heterogeneity of 

many clinical syndromes such as intellectual disability, the diagnostic process in medical 

genetics is often challenging, even for experienced and expert clinicians. The traditional 

medical genetics evaluation relies upon recognizing a characteristic pattern of signs or 

symptoms to guide targeted genetic testing for confirmation of the diagnosis, with the major 

diagnostic methods including karyotyping, array comparative genomic hybridization (CGH), 

biochemical testing, and Sanger sequencing of individual genes. However, the diagnostic 

yield remains less than 50% even after extensive workups (5), with the costs of clinical and 

molecular genetic analysis for patients whose diagnosis is not clear after the first visit 

reaching 25,000 US dollars or more (5). 

The term “diagnostic odyssey” has been used to describe the experience of patients and 

families affected by rare diseases that cannot be diagnosed; for instance, the average time 

between the onset of symptoms and the correct diagnosis is currently 14 years for patients 

with type 2 myotonic dystrophy (6). The lack of a diagnosis can mean missed opportunities 

for tailored approaches to clinical management and treatment strategies, a substantial 

burden of guilt and uncertainty for families, and the inability to make accurate statements on 

recurrence risk and prognosis, not to mention the economic costs of unnecessary diagnostic 

procedures. 

Whole-exome sequencing (WES), first used in 2010 to identify the cause of a Mendelian 

disease (7), is rapidly becoming attractive as a tool for diagnostic testing in general medical 

genetics (8). Additionally, NGS-panel, WES, and whole genome sequencing (WGS) 

approaches have been introduced for carrier screening (9) as well as in neonatal intensive 

care units (10). However, medical interpretation of WES results remains challenging, and the 

successes have for the most part been limited to single cases or small groups of patients 
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(11). Identifying the one or two causative mutations amongst the myriad of variants present 

in the WES findings of an individual has been compared to finding a needle in a haystack 

(12). A typical exome contains well over 30,000 variants when compared to the human 

reference sequence, with about 10,000 of them representing nonsynonymous amino acid 

substitutions, alterations of conserved splice site residues, or small insertions or deletions 

(13, 14). Although the community has developed numerous bioinformatic tools to filter out 

common variants and predict their pathogenicity (15, 16), each human genome harbors 

about 100 genuine loss of function variants with ~20 genes completely inactivated (17). 

Therefore, purely sequenced-based evaluation of genes in diagnostic WES typically 

identifies tens or hundreds of candidates. While this is acceptable in a research context, in 

which other strategies such as genetic linkage or comparison with a study group of 

individuals thought to have the same disease can often reduce the search space, extensive 

evaluation of long lists of candidate genes does not scale well to the diagnostic setting.  

Depth and uniformity of coverage have a major influence on the performance of targeted 

capture for next-generation sequencing. For instance, at a mean on-target read depth of 20x, 

up to 15% of heterozygous single nucleotide variants will be missed (18). Although initial 

WES studies aimed for a coverage of 20-fold, deeper coverage is needed for accurate 

detection of heterozygous variants (19), and current studies typically employ a coverage of 

50-70-fold (20, 21) or higher. This has led to debate in the community as to the relative value 

of various NGS approaches for diagnostics, with proponents of targeted panel sequencing 

(22), WES (23), and whole genome sequencing (WGS) (24).  

In this work, we explore a different approach towards the translation of NGS-based 

diagnostics into clinical diagnostics in a medical genetics clinic. We contend that WES is not 

optimal in a purely diagnostic setting, since we can currently offer a confident interpretation 

of variants only in ~2740 known Mendelian disease genes; the identification of a potentially 

pathogenic variant in a gene regarded as a good candidate because of biochemical or 

model-organism data often represents the starting point for a good research project, but is 

more likely to engender confusion in a diagnostic setting. Therefore, by enriching for genes 
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known to be associated with Mendelian disease, we shift the focus from the whole exome to 

that part of the exome/genome that is clinically interpretable in a diagnostic setting. We refer 

to this portion of our genome as the disease-associated genome (DAG). A pathogenic 

variant in one of these genes is, in principle, interpretable in the context of the presenting 

clinical phenotype and our knowledge of the diseases associated with the gene in question.  

We have previously shown that phenotypically driven genomic data fusion (25) and 

comparison of human to model organism phenotypes (26) dramatically improves the ability to 

correctly identify candidate disease-causing mutations in WES studies. Here, we use the 

Human Phenotype Ontology (HPO) and associated data to develop a computational 

procedure for differential diagnosis with the DAG panel. The HPO provides a structured, 

comprehensive and well-defined set of over 10,000 terms describing human phenotypic 

abnormalities. It provides annotations of nearly 7,300 human hereditary syndromes that yield 

computable representations of the diseases, associated disease genes, as well as the signs, 

symptoms, laboratory findings, and other phenotypic abnormalities that characterize the 

diseases (3, 27). Here, we adapt our semantic similarity approach towards differential 

diagnosis, using terms and annotations from the HPO (28), to rank candidate genes in a 

diagnostic setting. Our algorithm is freely available for academic use through the website 

http://compbio.charite.de/PhenIX/. 
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Results 

 

Here we present an approach to Mendelian disease diagnostics that involves the targeted 

sequencing of the DAG panel combined with a phenotype-driven computational analysis 

strategy (PhenIX) that ranks candidate genes on the basis of the presence of rare, predicted 

pathogenic variants and the clinical relevance of the genes with associated disease 

phenotypes.  Our algorithm first filters the variants according to rarity, target region location, 

and predicted pathogenicity. Next, the remaining candidate genes are evaluated for clinical 

relevance on the basis of the semantic similarity of the patient’s phenotypic abnormalities to 

the phenotypic spectrum of diseases associated with each candidate gene. In brief, our 

method aims to identify and rank disease genes by combining potential clinical relevance 

with deleterious variants found within those genes (see Methods section). 

 

Design and Validation of the Disease-Associated Genome Panel 

We established a comprehensive catalog of Mendelian disease genes using data from the 

Human Phenotype Ontology project (3), part of which is derived from information in the 

Online Mendelian Inheritance in Man (OMIM) (1) and Orphanet (2) resources. The HPO 

project, which was initiated in 2007, has grown to include over 10,000 terms describing 

individual phenotypic abnormalities that have been used to generate over 110,000 

annotations to over 7000 mainly Mendelian disease entries (3, 27). The data in the HPO thus 

provides a powerful curated resource for translational research by providing the means to 

capture, store, and exchange phenotypic information about human disease and has been 

used to integrate phenotypic information into computational analysis (25, 26, 28-32). We 

additionally surveyed the recent literature to obtain additional information about plausible 

candidate disease genes from recent publications describing large-scale WES studies were 

also included (8, 33-37), for a total of 2741 genes (genes and references are included in 

Table S6). 
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Since our aim was to obtain nearly complete coverage of the DAG, we designed enrichment 

probes for the DAG using SureSelect technology (38). In total 96 samples were sequenced 

(six samples per lane of an Illumina HiSeq 1500 sequencer), resulting in an average 

coverage of 361.7±81.6 reads (135.6 ±10.6 after removal of duplicates), with 98% of the 

DAG target region being covered by at least 20 reads (Figure S1; Tables S1 and S2).  

In order to estimate the advantage of the high coverage of the DAG panel with respect to 

comprehensive variant calling, we randomly sampled reads from the Binary Alignment/Map 

(BAM) files from the DAG target region (twice over each of the 96 sequenced DAG samples) 

to a target average coverage of 100-fold to simulate the coverage expected from typical 

exome sequencing. After this, the down-sampled BAM files were processed in the same way 

as the original BAM files, and the distribution of called variants was compared (Table S3). A 

substantial number of variants called from the original BAM file were not called from the files 

simulated to have exome or genome coverage, including an average of 5.2 ± 2.0 variants 

listed in the Human Gene Mutation Database (HGMD) (39).  

 

Phenotypic Interpretation of eXomes: PhenIX 

We developed a computational algorithm to filter and rank candidate genes according to 

variant rarity and pathogenicity and potential clinical relevance of the gene harboring the 

variants. As input, PhenIX requires (i) a variant call format (VCF) file representing the results 

of sequencing the DAG target region (or an exome or genome), and (ii) a list of Human 

Phenotype Ontology (HPO) terms representing the clinical features of the individual being 

sequenced. Each variant is scored on the basis of rarity and predicted pathogenicity; after 

this, all variants mapping to a given gene are combined. The genes harboring predicted 

pathogenic variants are assigned a phenotype score by using the semantic similarity 

between associated disease phenotypes and the patient’s phenotype. However, the gene is 

down-weighted if the distribution of variants in a gene is incompatible with the mode of 

inheritance of the associated disease, e.g., if a single heterozygous variant is observed in a 
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gene associated with an autosomal recessively inherited disease. Finally, a rank is 

calculated based on the combined variant and phenotype scores. 

 

To estimate the performance of our method, we conducted extensive computational 

simulations using mutation data from the HGMD. Sample datasets were simulated for a 

given disease and inheritance model by spiking with mutations from HGMD into a VCF file 

generated with the DAG panel. Appropriate HPO terms were chosen from the annotations of 

the corresponding disease. Several test scenarios were considered. The performance of the 

method was near 100% when all the HPO terms annotating the disease (e.g., Greig 

cephalopolydactyly syndrome is annotated with 44 HPO terms representing individual signs 

and symptoms of that disease). In another, more realistic, test scenario, up to five terms 

were chosen, of which two were made imprecise by exchanging them with the more general 

parent term, and two unrelated confounder (“noise”) terms were added at random. Here, the 

correct gene was ranked in first place in 86.5% of 8504 simulations, corresponding to a 32.5-

fold improvement over pure variant filtering (Figure 1, Figure S2).   

 

Retrospective analysis 

We then tested the performance of our method with the generated DAG data from 52 

individuals with a diagnosis of Mendelian disease that had been confirmed by Sanger 

sequencing (Table 1). HPO terms were entered and filtering was performed at a frequency 

threshold of 1%. The average rank of the correct gene amongst the 2741 disease genes in 

the DAG panel was 2.1. The mean rank of the autosomal recessive genes was 5, 

substantially lower than for the autosomal dominant genes (1.7). The lower rank for the 

recessive genes was partially related to results for an individual with eczematoid 

acrodermatitis enteropathica, who had a missense mutation in SLC39A4 that was correctly 

flagged as pathogenic as well as a synonymous mutation that had been shown to cause a 

splice defect. The latter mutation was not identified as deleterious by PhenIX, resulting in a 

final rank of 14 for SLC39A4.  
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Prospective analysis 

To further validate our methodology, we investigated 40 individuals who, after extensive 

clinical genetic evaluation (physical exam by medical geneticist, array CGH, and often 

targeted Sanger gene sequencing), remained without a diagnosis (clinical features 

summarized in Table 2). We designed a standard evaluation procedure in which deep 

phenotyping (40) with the selection of representative HPO terms (3, 27) was followed by 

targeted NGS of the DAG panel. Computational analysis was performed as described above 

to generate a ranked list of candidates based on the combined variant and clinical relevance 

scores. Since our computational simulations almost always placed the true disease gene in 

the top 10 candidates, we limited our evaluation to the top 20 ranked genes as well as any 

gene with a pathogenic mutation at the same nucleotide position listed in HGMD (39) or 

ClinVar (41) for each patient. Initial clinical evaluation was performed by one of the authors, 

and a short list of the most likely candidates was presented to the entire group in clinical 

rounds, where up to the best two candidate genes were chosen based on clinical experience. 

These genes were subjected to Sanger validation and cosegregation studies. If the variants 

in the selected genes cosegregated as expected and the clinical manifestations of the patient 

were sufficiently explained by a disease associated with the gene, then a positive diagnosis 

was made. Otherwise, the short list was re-examined for additional candidates (Fig 2). We 

estimate an experienced clinical geneticist would spend a total of one hour in the initial 

evaluation of the patient and decision whether to perform DAG panel sequencing and an 

additional one hour studying the list of top 20 candidates, evaluating the results of Sanger 

validation and cosegregation studies before being able to decide whether a definitive 

diagnosis can be made. 

 

By applying this procedure to 40 individuals, we identified a definitive diagnosis in eleven 

(28%) cases.  Table 2 shows a clinical summary of these cases, and Tables S4 and S5 

include a full list of HPO terms used to search in PhenIX. PhenIX analysis was performed 
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according to the flow chart in Figure 2, and the top 20 genes were inspected. Discussion at 

clinical genetics rounds flagged one (n=16 only one) or two (n=6) genes as being likely 

candidates. These genes were then subjected to Sanger validation, cosegregation studies 

and close examination. This led to definitive diagnoses being made in 11 of 40 patients 

(28%) (Table 3). 

 

Discussion 

Genomic medicine, including WES and WGS, is poised to transform clinical practice in many 

fields (42). Here, we present a phenotype-driven computational and clinical workflow for the 

efficient diagnosis of rare Mendelian diseases. Our approach uses the results of clinical 

analysis to substantially improve the ranking of candidate genes, and provides a clear 

pathway to integrate the results of bioinformatic analysis into the clinical workflow by clinical 

evaluation of phenotypic matching amongst the best candidates. 

In this work, we have shown how to use a computable representation of clinical phenotypes 

to prioritize candidate genes in diagnostic sequencing with a target panel of 2741 known 

Mendelian disease genes. Our workflow represents a tight integration of clinical and 

bioinformatic analysis (Fig. 2). Clinical expertise is required to perform deep phenotyping and 

choose representative HPO terms to describe the clinical features of the patient being 

investigated. Experience is necessary to realize whether a given phenotypic abnormality is 

likely to be characteristic of a disease or an incidental finding, e.g. a feature such as low-

grade myopia may not be related to the genetic disease being sought and adding this feature 

to PhenIX analysis may lower the score of the actual disease-causing gene. Following 

sequencing, alignment, and variant calling, PhenIX analysis is used to generate a list of the 

top 20 candidates. Additional candidates can be listed if desired. Clinical expertise is 

required to examine this list for promising candidates based on additional information from 

original publications and databases, such as OMIM. To assist with this process, the PhenIX 

webpage provide links to a number of useful resources including OMIM, the UCSC Genome 

Browser, ClinVar, and HGMD. We suggest that a presentation of the case together with a 
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description of the best PhenIX candidates at clinical genetics rounds should be performed, 

followed by validation of the most plausible candidate(s) by Sanger sequencing and 

cosegregation studies. In our experience, discussions on the differential diagnosis proceed 

quickly when organized in this fashion and fit well into a typical clinical workflow. We chose to 

limit our NGS analysis only to the sample from the affected individual, because in the 

diagnostic setting family samples (trios) may not be available initially. In addition, the cost of 

sequencing may be a factor. However, trio sequencing could easily be adapted into our 

workflow. 

On the basis of our results, we suggest that targeting all known disease genes, that is a 

DAG, rather than the whole exome or genome, is advantageous in terms of target coverage, 

cost per sample, and the ability to provide quick and accurate clinical interpretation of the 

variants. Cases that remain unsolved after PhenIX analysis of the DAG Panel can be 

considered for more time-intensive clinical research WES/WGS studies, as these 

approaches are able to search for potential mutations in previously undescribed disease 

genes.  

There are several areas in which our approach can be improved and extended. The 

phenotypic analysis based on semantic similarity depends on an annotated corpus of 

information about the phenotypic features that characterize various diseases. The 

HPO currently has over 110,000 annotations to over 7000 diseases listed in the 

Online Mendelian Inheritance in Man (3). Increasing the depth of annotation to these 

diseases would improve the performance (43). A number of challenges remain in the 

ontological modeling of certain classes of diseases and phenotypes in areas such as 

neurobehavioral abnormalities (44). The DAG panel as presented here currently 

contains baits only for protein coding genes. However, other medically relevant 

sequences of the genome could be captured in a similar way, such as enhancers of 

the sonic hedgehog gene, in which point mutations can cause characteristic skeletal 

malformations (45). Hand in hand with this, future bioinformatics research will be 
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required to confidently identify medically relevant variants in non-coding sequences 

as well as presumptive synonymous variants that actually lead to a deleterious effect 

such as defective splicing in the case of the “silent” SLC39A4 mutation mentioned 

above. Our approach concentrates on known disease genes, and is thus not 

designed or intended to  identify novel disease genes; other computational tools such 

as the Exomiser (26) and eXtasy (25) have been presented for this purpose. 

In summary, we have presented a diagnostic tool for genetics professionals that combines 

targeted enrichment and next-generation sequencing of a comprehensive panel of genes 

known to be associated with Mendelian disease; bioinformatics analysis of sequencing 

results is tightly coupled to the expertise and workflow of genetics professionals, allowing a 

complete workup of NGS results in roughly two hours per patient. A recent study on the use 

of diagnostic exome sequencing of 250 unselected, consecutive cases achieved a diagnostic 

yield of 25% (8), and another larger scale exome-based study on persons with intellectual 

disability reached a diagnostic yield of 16% (46). Although it is hard to compare the 

diagnostic yield between different studies, the results presented here are competitive, with an 

average rank of the correct gene of 2.1 in a retrospective study on representative diseases 

and a yield of 28% in prospective study with cases chosen for the fact that a diagnosis could 

not be achieved. Additionally, our method requires less sequencing than high coverage WES 

or WGS which may translate into cost benefits. Our bioinformatic and clinical workflow could 

be completed in roughly two hours per patient, and PhenIX analysis is easy to use, requiring 

only a VCF file and a list of HPO terms. Our method thus provides the means for quick and 

effective differential diagnostics in medical genetics.  
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MATERIALS AND METHODS 

Consent 

This study was approved by the Institutional Review Board of the Charité Universitätsmedizin 

Berlin. Informed written consent was obtained from adult subjects and parents of children. 

Case selection 

The control group consisted of 52 individuals with suspected genetic diagnoses seen at the 

Institute of Medical Genetics and Human Genetics of the Charité university hospital between 

2010 and 2013, and who received an etiological diagnosis based on clinical findings and the 

identification of mutations in the genes indicated in Table 1. In addition, 38 patients seen 

during this time frame who remained without an etiological diagnosis were investigated in this 

study. Patients were chosen on the basis of availability of DNA samples from parents (for 

validation of cosegregation by Sanger sequencing), consent for research, and the inability to 

identify a genetic diagnosis despite a high index of suspicion of an underlying genetic cause. 

Two additional cases were referred from external clinics and were not seen in our 

department (P6 and P10 in Table 3). 

 

Capture of the targeted disease-related genome and Next-Generation Sequencing 

A SureSelectXT Automation Custom Capture Library (Agilent) target enrichment panel was 

generated using the coordinates given in Table S6. The enrichment panel comprised all 

coding exons of 2741 genes associated with at least one Mendelian disease as well as 133 

control genes. Capture was performed according to the manufacturer’s instructions using an 

NGS Workstation Option B (Agilent) for automated library preparation starting with 3 µg DNA 

per sample. Then, sequencing of 100 bp paired-end reads was carried out on a HiSeq 1500 

(Illumina). Sequence reads were mapped to the haploid human reference genome (hg19) 

with Novoalign (Novocraft Technologies). Single nucleotide variants (SNVs) and short 

insertions and deletions (indels) were called using GATK version 2.8 (47). Variant annotation 

was performed with Jannovar (48). In total, 96 samples were sequenced on two HiSeq 1500 

flowcells. 
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PhenIX: Bioinformatic ranking of candidate genes. Ranking of candidate genes was 

performed in two steps. First, off-target and synonymous variants were removed, and the 

remaining variants were analyzed with respect to population frequency by using data from 

dbSNP (49) and from the Exome Variant Server (NHLBI GO Exome Sequencing Project 

2014, http://evs.gs.washington.edu/EVS/). For the purposes of analysis, we assumed the 

minor allele frequency of each variant to be the maximum frequency reported by dbSNP or 

that of the African American or European American populations represented in the Exome 

Variant Server. A frequency score is calculated as max�0,1 − 0.13533𝑒100∗𝑓�, and variants 

with no frequency data (𝑓 = 0) were assigned a score of 1.0, and results in values between 

1.0 and 0.0 for variants with frequencies of up to 2%. Predicted pathogenicity of missense 

variants was derived from dbNSFP version 2.4 (50) using the fields for MutationTaster (16), 

polyphen-2 (15), and SIFT (51). Scores from these three prediction tools were normalized to 

be between 0.0 (benign) and 1.0 (pathogenic), and the single most pathogenic score was 

taken for each variant. For classes of variants other than missense mutations, a 

pathogenicity score was calculated as described (26). Finally, the overall variant score was 

calculated as the product of the frequency and pathogenicity score. A clinical relevance 

score was calculated using the semantic similarity between phenotypic abnormalities entered 

by the user and 2741 disease genes in our database. The phenotypic abnormalities of all 

diseases associated with a given gene were assigned to the gene, since our method ranks 

candidate genes rather than individual diseases. For instance, the FBN1 gene is mutated in 

Marfan syndrome, acromicric dysplasia, and a number of other diseases, and the phenotypic 

abnormalities of each of those diseases were assigned to FBN1. Then, the semantic 

similarity score of the Phenomizer algorithm (28) was calculated for each of the genes. The 

maximum score was set to 1.0, and the other scores were normalized accordingly. The final 

score was calculated as the average of the variant and the gene-relevance score. However, 

if the variant distribution for a gene was not compatible with the mode of inheritance of the 

associated diseases (e.g., a gene has only a single heterozygous mutation but the 
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associated disease is autosomal recessive, or the gene has only a single homozygous 

mutation but the disease is autosomal dominant), then the gene relevance score was divided 

by 2 before calculating the final score. The final score was calculated as the mean of the 

variant score and the gene relevance score. The major distinction between PhenIX and our 

previously published algorithm PHIVE, which is implemented in the Exomiser (26) is thus the 

restriction of the analysis to variants in clinically interpretable disease genes using only 

human phenotype information rather than model organism phenotype data, the analysis of 

sequencing results for previously reported mutations in ClinVar and the public version of 

HGMD, and the use of prioritization based on the modes of inheritance of diseases 

associated with candidate genes compared with the distribution of sequenced variants.  

Computational evaluation of PhenIX prioritization 

To test the performance of PhenIX prioritization with DAG panel sequencing, we used a 

simulation approach based on known disease-causing mutations from the Human Gene 

Mutation Database (HGMD). A total of 28,516 mutations were selected on the basis of being 

assigned as a disease-causing, single-nucleotide mutations (including indels) by HGMD and 

with HPO annotations available for the disease in question. For the simulations, 10,000 

variants were randomly selected from this set. We first removed the causative mutations 

from the 52 VCF files generated from the retrospective cohort with known mutations. Then, 

we added an additional mutation to one of these files. For autosomal dominant diseases, one 

heterozygous mutation was added; and for autosomal recessive diseases, either one 

homozygous mutation or two heterozygous mutations were added. The phenotypic (HPO) 

annotations for the corresponding disease were then compared to the HPO annotations 

associated with the 2741 disease genes (if a disease gene was associated with 

multiple diseases, all annotations were merged). There were three test scenarios. In 

the first case, all HPO annotations for the disease in question were used. In order to 

simulate incomplete phenotyping, we performed the simulations with up to five HPO 
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terms chosen at random from the annotations of the disease. Finally, in order to 

simulate the effects of noise, we randomly chose 2 or the 5 terms and promoted 

them to their less specific parent terms, and finally 2 new terms were chosen 

randomly from the whole of HPO and added to the annotations 

A rank was determined for the original disease gene following PhenIX analysis. In all 

the analysis, an ordinal ranking method was used in which equal scoring genes are 

resolved arbitrarily but consistently by assigning a unique rank to each of the ties. In our 

case, we simply sorted the equally scored genes alphabetically and assign the ranks. We 

recorded the number of times the correct disease gene was ranked in first place, as well as 

the total recall (correct gene listed at any rank). For each simulation, one of the 52 DAG 

panel VCF files was chosen.  

 

Clinical evaluation and validation of NGS results 

We clinically evaluated the NGS results using the PhenIX server, which implements the 

algorithm described above.  PhenIX presents a ranked gene list together with links to various 

other resources such as the UCSC browser (52), Entrez Gene (53), OMIM (1), Orphanet (2), 

ClinVar (41), MutationTaster (16), and HGMD (39). Evaluation was performed by trained 

genetics professionals. For each unsolved case, the top 20 ranked candidates were 

examined by comparison with the above mentioned data sources and as appropriate with the 

original literature. An initial assessment of these 20 candidates was possible in about two 

hours, and resulted in a short list of candidates thought to be potential matches. These were 

discussed at clinical rounds by a team of clinicians and researchers including LM, TZ, LGM, 

SD, NE, MS, NCØ, MRS, UK, PK, PNR, SM, and DH. A consensus decision was reached on 

candidates to be validated by Sanger sequencing and cosegregation studies. We considered 

a case to be solved after clinical analysis and cosegregation studies if a degree of certainty 

was reached that led to reporting of the mutation and diagnosis in our clinical setting. 
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TABLES 
 
 
Mode of 
inheritance 

Genes Average 
rank 

AD ACVR1, ATL1, BRCA1, BRCA2, CHD7 (4), CLCN7, COL1A1, COL2A1, 
EXT1, FGFR2 (2), FGFR3, GDF5, KCNQ1, MLH1 (2), MLL2/KMT2D, 
MSH2, MSH6, MYBPC3, NF1 (6), P63, PTCH1, PTH1R (2), PTPN11 (2), 
SCN1A, SOS1, TRPS1, TSC1, WNT10A 

1.7 
 

AR ATM, ATP6V0A2, CLCN1 (2),  LRP5, PYCR1, SLC39A4 5 
X EFNB1, MECP2 (2), DMD, PHF6  1.8 
 
Table 1. 52 control patient cases with known mutations. The number of patients with a 
mutation in the given gene is indicated in parentheses.  
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Clinical presentation N 
Intellectual disability + multiple congenital anomalies (= more than 2 other organ systems 
affected) 

13 

Intellectual disability + other neuropsychological features 7 
Intellectual disability + musculoskeletal abnormalities 5 

Intellectual disability + eye abnormalities 1 
Intellectual disability + dysmorphic features 1 
Multiple congenital anomalies (more than 2 organ systems affected) without intellectual 
disability 

6 

Skeletal phenotype 5 
Eye and/or Ear phenotype 2 

 
Table 2. Summary of clinical signs and symptoms in 40 patients with unknown 
diagnosis 
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ID Age, Sex Presentation Gene  Rank Diagnosis  MoI 

P1 3y (f) Intellectual disability + 
multiple congenital 
anomalies 

MLL 2 Wiedemann-Steiner 
syndrome (54)  

AD 

P2 5y (f) Intellectual disability + 
multiple congenital 
anomalies  

SYNGAP1 4 Mental retardation, MRD5 
(55)  

AD 

P3 6y (f) Skeletal phenotype FGFR2 1 Pfeiffer syndrome (56) 
 

AD 

P4 Death at 
5.5m (f) 

Multiple congenital 
anomalies without 
intellectual disability 

SH3PXD2B 6 Frank-ter Haar syndrome 
(57)  

AR 

P5 6m (f) Intellectual disability + 
neurological abnormalities
  

SLC6A3 1 Parkinsonism-dystonia (58)  AR 

P6 Fetus 
(m) Death 
at 22w of 
gestation 

Skeletal phenotype ALPL 2 Infantile hypophosphatasia 
(59) 
 

AR 

P7 7y 
(m) 

Eye phenotype NHS 2 Nance-Horan Syndrome / 
Cataract 40, X-linked (60)  

XR 

P8 14y (m) Intellectual disability + 
multiple congenital 
anomalies 

MLL  1 Wiedemann-Steiner 
syndrome (54) 

AD 

P9 6y (f) Intellectual disability + 
multiple congenital 
anomalies 

DYRK1A 4 Mental retardation, MRD7 
(61) 

AD 

P10 4 children 
between 1 
½ and 7y 

Intellectual disability + 
multiple congenital 
anomalies 

MCOLN1 1 Type IV mucolipidosis (62) AR 

P11 3y (m) Intellectual disability + 
multiple congenital 
anomalies 

RBM10 3 TARP syndrome (63) 
 

XR 

 
Table 3. Clinical category and final diagnosis of 11 patients whose diagnosis was identified 

by PhenIX analysis. Additional information, including complete lists of HPO terms used to 

describe the phenotypic abnormalities seen in these patients is available in Table S4. 

Patients P6 and P10 were referred from external centers. The “Rank” column shows the rank 

after PhenIX analysis before clinical evaluation. The average rank for all 11 cases was 2.5. 

MoI: mode of inheritance, AD: autosomal dominant, AR: autosomal recessive, XR: X-linked 

recessive. 
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FIGURE LEGENDS 
 

Fig.1. Computational evaluation of PhenIX. HGMD mutations were inserted into variant files 

from DAG panels from which the causative mutations had been removed and phenotypic 

annotations of the corresponding diseases were extracted from the HPO database. The 

genes were ranked using PhenIX. Results were simulated either on the entire disease set 

(All), or by filtering for known autosomal dominant (AD) or autosomal recessive (AR) 

diseases (see Figure S2). A total of 8504 (All), 3471 (AD), and 5006 (AR) simulations were 

performed. Data are shown as the percentage of simulations in which the correct genes was 

ranked in first place. Variant, only variant scores used to rank candidate genes. All terms, All 

HPO terms used to annotate a disease were used for PhenIX analysis. ≤5 terms, Up to 5 

HPO terms were chosen at random from the terms used to annotation the disease. ≤5 terms 

& noise, Up to 5 annotations are used, 2 of which are made imprecise by exchanging them 

with a more general parent term; additionally, two random “noise” terms were added. Results 

are shown for the correct gene being ranked as the single top hit, or being among the top 5, 

10, or 20 hits for the three test scenarios. 
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Fig 2. PhenIX workflow showing the clinical and bioinformatic analysis steps. After initial 

clinical evaluation, a decision is made to perform PhenIX analysis if no clinical diagnosis can 

be found. After sequencing and computational analysis, clinical evaluation of the top 20 gene 

candidates identifies genes for validation by Sanger sequencing and cosegregation studies. 

 

Figure S1. Distribution of the coverage fraction for all sequenced 96 samples. 

Figure S2.  Computational evaluation of PhenIX. 

Table S1. Percentage of target bases that exceed coverages of 10, 20, ..., 100 reads.  

Table S2. Read alignment and coverage summary statistics for the 96 DAG panels 

sequenced for this project (40 patients with unknown diagnosis P1-P40, 52 patients with 

known diagnosis C41-C92, 4 control samples R93-R96). 

Table S3. Average number of variants called only from the original BAM files from the DAG 

panels but not in simulated BAM files generated down-sampling reads to a typical exome 

coverage (100x). 

Table S4. Detailed clinical and molecular findings for the 11 individuals in whom a previously 

unknown diagnosis was clarified by PhenIX analysis.  HPO terms shown in bold match with 

the disease profiles in the HPO database for these diseases. 

Table S5. Clinical presentation of 29 patients for whom PhenIX analysis failed to reveal a 

molecular diagnosis. 

Table S6. List of genes (with references) present in the DAG panel. 

 
References 
 
1. J. Amberger, C. Bocchini, A. Hamosh, A new face and new challenges for Online 

Mendelian Inheritance in Man (OMIM(R)). Hum Mutat 32, 564 (May, 2011). 
2. A. Rath et al., Representation of rare diseases in health information systems: the 

Orphanet approach to serve a wide range of end users. Hum Mutat 33, 803 (May, 
2012). 

3. S. Köhler et al., The Human Phenotype Ontology project: linking molecular 
biology and disease through phenotype data. Nucleic Acids Res 42, D966 (Jan 1, 
2014). 

4. P. A. Baird, T. W. Anderson, H. B. Newcombe, R. B. Lowry, Genetic disorders in 
children and young adults: a population study. Am J Hum Genet 42, 677 (May, 
1988). 



 22 

5. V. Shashi et al., The utility of the traditional medical genetics diagnostic 
evaluation in the context of next-generation sequencing for undiagnosed genetic 
disorders. Genet Med 16, 176 (Feb, 2014). 

6. J. E. Hilbert et al., Diagnostic odyssey of patients with myotonic dystrophy. J 
Neurol 260, 2497 (Oct, 2013). 

7. S. B. Ng et al., Exome sequencing identifies the cause of a mendelian disorder. Nat 
Genet 42, 30 (Jan, 2010). 

8. Y. Yang et al., Clinical whole-exome sequencing for the diagnosis of mendelian 
disorders. N Engl J Med 369, 1502 (Oct 17, 2013). 

9. C. J. Bell et al., Carrier testing for severe childhood recessive diseases by next-
generation sequencing. Sci Transl Med 3, 65ra4 (Jan 12, 2011). 

10. C. J. Saunders et al., Rapid whole-genome sequencing for genetic disease 
diagnosis in neonatal intensive care units. Sci Transl Med 4, 154ra135 (Oct 3, 
2012). 

11. K. A. Johansen Taber, B. D. Dickinson, M. Wilson, The promise and challenges of 
next-generation genome sequencing for clinical care. JAMA Intern Med 174, 275 
(Feb 1, 2014). 

12. G. M. Cooper, J. Shendure, Needles in stacks of needles: finding disease-causal 
variants in a wealth of genomic data. Nat Rev Genet 12, 628 (Sep, 2011). 

13. K. Pelak et al., The characterization of twenty sequenced human genomes. PLoS 
Genet 6, e1001111 (Sep, 2010). 

14. M. X. Li et al., Predicting mendelian disease-causing non-synonymous single 
nucleotide variants in exome sequencing studies. PLoS Genet 9, e1003143 (2013). 

15. I. A. Adzhubei et al., A method and server for predicting damaging missense 
mutations. Nat Methods 7, 248 (Apr, 2010). 

16. J. M. Schwarz, C. Rodelsperger, M. Schuelke, D. Seelow, MutationTaster evaluates 
disease-causing potential of sequence alterations. Nat Methods 7, 575 (Aug, 
2010). 

17. D. G. MacArthur et al., A systematic survey of loss-of-function variants in human 
protein-coding genes. Science 335, 823 (Feb 17, 2012). 

18. A. M. Meynert, L. S. Bicknell, M. E. Hurles, A. P. Jackson, M. S. Taylor, Quantifying 
single nucleotide variant detection sensitivity in exome sequencing. BMC 
Bioinformatics 14, 195 (2013). 

19. S. S. Ajay, S. C. Parker, H. O. Abaan, K. V. Fajardo, E. H. Margulies, Accurate and 
comprehensive sequencing of personal genomes. Genome Res 21, 1498 (Sep, 
2011). 

20. K. E. Lohmueller et al., Whole-exome sequencing of 2,000 Danish individuals and 
the role of rare coding variants in type 2 diabetes. Am J Hum Genet 93, 1072 (Dec 
5, 2013). 

21. F. M. Williams et al., Genes contributing to pain sensitivity in the normal 
population: an exome sequencing study. PLoS Genet 8, e1003095 (2012). 

22. H. L. Rehm, Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev 
Genet 14, 295 (Apr, 2013). 

23. B. O. Choi et al., Exome sequencing is an efficient tool for genetic screening of 
Charcot-Marie-Tooth disease. Hum Mutat 33, 1610 (Nov, 2012). 

24. M. P. Ball et al., A public resource facilitating clinical use of genomes. Proc Natl 
Acad Sci U S A 109, 11920 (Jul 24, 2012). 

25. A. Sifrim et al., eXtasy: variant prioritization by genomic data fusion. Nat Methods 
10, 1083 (Nov, 2013). 



 23 

26. P. N. Robinson et al., Improved exome prioritization of disease genes through 
cross-species phenotype comparison. Genome Res 24, 340 (Feb, 2014). 

27. P. N. Robinson et al., The Human Phenotype Ontology: a tool for annotating and 
analyzing human hereditary disease. Am J Hum Genet 83, 610 (Nov, 2008). 

28. S. Köhler et al., Clinical diagnostics in human genetics with semantic similarity 
searches in ontologies. Am J Hum Genet 85, 457 (Oct, 2009). 

29. S. Bauer, S. Kohler, M. H. Schulz, P. N. Robinson, Bayesian ontology querying for 
accurate and noise-tolerant semantic searches. Bioinformatics 28, 2502 (Oct 1, 
2012). 

30. S. C. Doelken et al., Phenotypic overlap in the contribution of individual genes to 
CNV pathogenicity revealed by cross-species computational analysis of single-
gene mutations in humans, mice and zebrafish. Dis Model Mech 6, 358 (Mar, 
2013). 

31. R. Hoehndorf, P. N. Schofield, G. V. Gkoutos, PhenomeNET: a whole-phenome 
approach to disease gene discovery. Nucleic Acids Res 39, e119 (Oct, 2011). 

32. T. Hwang et al., Co-clustering phenome-genome for phenotype classification and 
disease gene discovery. Nucleic Acids Res 40, e146 (Oct, 2012). 

33. P. S. Tarpey et al., A systematic, large-scale resequencing screen of X-
chromosome coding exons in mental retardation. Nat Genet 41, 535 (May, 2009). 

34. G. Cho, Y. Lim, J. A. Golden, XLMR candidate mouse gene, Zcchc12 (Sizn1) is a 
novel marker of Cajal-Retzius cells. Gene Expr Patterns 11, 216 (Mar-Apr, 2011). 

35. H. Najmabadi et al., Deep sequencing reveals 50 novel genes for recessive 
cognitive disorders. Nature 478, 57 (Oct 6, 2011). 

36. M. G. Kapetanaki et al., The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in 
xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA 
sites. Proc Natl Acad Sci U S A 103, 2588 (Feb 21, 2006). 

37. A. Rauch et al., Range of genetic mutations associated with severe non-syndromic 
sporadic intellectual disability: an exome sequencing study. Lancet 380, 1674 
(Nov 10, 2012). 

38. A. Gnirke et al., Solution hybrid selection with ultra-long oligonucleotides for 
massively parallel targeted sequencing. Nat Biotechnol 27, 182 (Feb, 2009). 

39. P. D. Stenson et al., The Human Gene Mutation Database: building a 
comprehensive mutation repository for clinical and molecular genetics, 
diagnostic testing and personalized genomic medicine. Hum Genet 133, 1 (Jan, 
2014). 

40. P. N. Robinson, Deep phenotyping for precision medicine. Hum Mutat 33, 777 
(May, 2012). 

41. M. J. Landrum et al., ClinVar: public archive of relationships among sequence 
variation and human phenotype. Nucleic Acids Res 42, D980 (Jan, 2014). 

42. S. F. Kingsmore, C. J. Saunders, Deep sequencing of patient genomes for disease 
diagnosis: when will it become routine? Sci Transl Med 3, 87ps23 (Jun 15, 2011). 

43. M. Oti, M. A. Huynen, H. G. Brunner, The biological coherence of human phenome 
databases. Am J Hum Genet 85, 801 (Dec, 2009). 

44. P. N. Robinson, C. Webber, Phenotype ontologies and cross-species analysis for 
translational research. PLoS Genet 10, e1004268 (Apr, 2014). 

45. M. M. Al-Qattan, I. Al Abdulkareem, Y. Al Haidan, M. Al Balwi, A novel mutation in 
the SHH long-range regulator (ZRS) is associated with preaxial polydactyly, 
triphalangeal thumb, and severe radial ray deficiency. Am J Med Genet A 158A, 
2610 (Oct, 2012). 



 24 

46. J. de Ligt et al., Diagnostic exome sequencing in persons with severe intellectual 
disability. N Engl J Med 367, 1921 (Nov 15, 2012). 

47. A. McKenna et al., The Genome Analysis Toolkit: a MapReduce framework for 
analyzing next-generation DNA sequencing data. Genome Res 20, 1297 (Sep, 
2010). 

48. M. Jäger et al., Jannovar: A Java library for Exome Annotation. Hum Mutat in 
press,  (2014). 

49. S. T. Sherry et al., dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 
29, 308 (Jan 1, 2001). 

50. X. Liu, X. Jian, E. Boerwinkle, dbNSFP v2.0: a database of human non-synonymous 
SNVs and their functional predictions and annotations. Hum Mutat 34, E2393 
(Sep, 2013). 

51. P. C. Ng, S. Henikoff, SIFT: Predicting amino acid changes that affect protein 
function. Nucleic Acids Res 31, 3812 (Jul 1, 2003). 

52. D. Karolchik et al., The UCSC Genome Browser database: 2014 update. Nucleic 
Acids Res 42, D764 (Jan, 2014). 

53. NCBI Resource Coordinators, Database resources of the National Center for 
Biotechnology Information. Nucleic Acids Res 42, D7 (Jan, 2014). 

54. W. D. Jones et al., De novo mutations in MLL cause Wiedemann-Steiner syndrome. 
Am J Hum Genet 91, 358 (Aug 10, 2012). 

55. M. H. Berryer et al., Mutations in SYNGAP1 cause intellectual disability, autism, 
and a specific form of epilepsy by inducing haploinsufficiency. Hum Mutat 34, 
385 (Feb, 2013). 

56. S. Jay et al., The fibroblast growth factor receptor 2 p.Ala172Phe mutation in 
Pfeiffer syndrome--history repeating itself. Am J Med Genet A 161A, 1158 (May, 
2013). 

57. Z. Iqbal et al., Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) 
causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar 
Syndrome. Am J Hum Genet 86, 254 (Feb 12, 2010). 

58. M. A. Kurian et al., Homozygous loss-of-function mutations in the gene encoding 
the dopamine transporter are associated with infantile parkinsonism-dystonia. J 
Clin Invest 119, 1595 (Jun, 2009). 

59. M. J. Weiss et al., A missense mutation in the human liver/bone/kidney alkaline 
phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U 
S A 85, 7666 (Oct, 1988). 

60. S. P. Brooks et al., Identification of the gene for Nance-Horan syndrome (NHS). J 
Med Genet 41, 768 (Oct, 2004). 

61. J. B. Courcet et al., The DYRK1A gene is a cause of syndromic intellectual 
disability with severe microcephaly and epilepsy. J Med Genet 49, 731 (Dec, 
2012). 

62. M. Sun et al., Mucolipidosis type IV is caused by mutations in a gene encoding a 
novel transient receptor potential channel. Hum Mol Genet 9, 2471 (Oct 12, 
2000). 

63. J. J. Johnston et al., Massively parallel sequencing of exons on the X chromosome 
identifies RBM10 as the gene that causes a syndromic form of cleft palate. Am J 
Hum Genet 86, 743 (May 14, 2010). 

64. W. D. Jones et al., De novo mutations in MLL cause Wiedemann-Steiner syndrome. 
Am J Hum Genet 91, 358 (Aug 10, 2012). 

65. F. F. Hamdan et al., Mutations in SYNGAP1 in autosomal nonsyndromic mental 
retardation. N Engl J Med 360, 599 (Feb 5, 2009). 



 25 

66. S. Jay et al., The fibroblast growth factor receptor 2 p.Ala172Phe mutation in 
Pfeiffer syndrome--history repeating itself. Am J Med Genet A 161A, 1158 (May, 
2013). 

67. Z. Iqbal et al., Disruption of the podosome adaptor protein TKS4 (SH3PXD2B) 
causes the skeletal dysplasia, eye, and cardiac abnormalities of Frank-Ter Haar 
Syndrome. Am J Hum Genet 86, 254 (Feb 12, 2010). 

68. M. A. Kurian et al., Homozygous loss-of-function mutations in the gene encoding 
the dopamine transporter are associated with infantile parkinsonism-dystonia. J 
Clin Invest 119, 1595 (Jun, 2009). 

69. J. M. Schwarz, C. Rodelsperger, M. Schuelke, D. Seelow, MutationTaster evaluates 
disease-causing potential of sequence alterations. Nat Methods 7, 575 (Aug, 
2010). 

70. C. Draguet, Y. Gillerot, E. Mornet, [Childhood hypophosphatasia: a case report due 
to a novel mutation]. Arch Pediatr 11, 440 (May, 2004). 

71. M. Spentchian et al., Characterization of missense mutations and large deletions 
in the ALPL gene by sequencing and quantitative multiplex PCR of short 
fragments. Genet Test 10, 252 (Winter, 2006). 

72. I. Brun-Heath et al., Delayed transport of tissue-nonspecific alkaline phosphatase 
with missense mutations causing hypophosphatasia. Eur J Med Genet 50, 367 
(Sep-Oct, 2007). 

73. S. P. Brooks et al., Identification of the gene for Nance-Horan syndrome (NHS). J 
Med Genet 41, 768 (Oct, 2004). 

74. J. B. Courcet et al., The DYRK1A gene is a cause of syndromic intellectual 
disability with severe microcephaly and epilepsy. J Med Genet 49, 731 (Dec, 
2012). 

75. M. Sun et al., Mucolipidosis type IV is caused by mutations in a gene encoding a 
novel transient receptor potential channel. Hum Mol Genet 9, 2471 (Oct 12, 
2000). 

76. M. K. Raychowdhury et al., Molecular pathophysiology of mucolipidosis type IV: 
pH dysregulation of the mucolipin-1 cation channel. Hum Mol Genet 13, 617 (Mar 
15, 2004). 

77. K. W. Gripp et al., Long-term survival in TARP syndrome and confirmation of 
RBM10 as the disease-causing gene. Am J Med Genet A 155A, 2516 (Oct, 2011). 

78. M. G. Reese, F. H. Eeckman, D. Kulp, D. Haussler, Improved splice site detection in 
Genie. J Comput Biol 4, 311 (Fall, 1997). 

 
 
 Acknowledgements: The authors thank the patients and their families for taking part in this 

study. Funding: The study was supported by grants from the Bundesministerium für Bildung 

und Forschung (BMBF project number 0313911), core infrastructure funding from the 

Wellcome Trust, NIH 1R24OD011883-02, and by the Director, Office of Science, Office of 

Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-

05CH11231, and a grant to SM by the Max Planck Foundation (MPF).  

Author contributions: TZ, SM, NCØ, DH, PNR participated in drafting/or revising the 
manuscript; TZ, DH, DS, SM, PNR designed the study; TZ, SK, LM, MJ, JH, PK, LGN, SD, 
NE, MS, NCØ, MRS, UK, GF, BF, UK, RF, AA, YM, SEL, MH, DS, DS, SM, PNR participated 



 26 

in the acquisition and/or analysis of data; TZ, DH, SM, PNR, GF provided administrative, 
technical or supervisory support. 
 
 

Competing interests: None. 

Data and materials availability 

The PhenIX server is freely available for academic use at http://compbio.charite.de/PhenIX/ 

The HPO is freely available for all users at: http://www.human-phenotype-ontology.org 

 



 

 

Figure 1 

 

 

 



 

 

Figure 2 


	14339_Cover
	14339_FinalDraft
	Abstract
	Introduction
	Results
	Discussion
	Materials and Methods
	Tables

	Figure Legends
	References
	Acknowledgements

	Figure 1
	Figure 2

