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Abstract 

 

Objective: Examine the feasibility of three-dimensional and whole heart coverage 23Na 

cardiac MRI at 7.0 T including single cardiac phase and CINE regimes.  

Methods: A four channel transceiver RF coil array tailored for 23Na MRI of the heart at 

7.0 T (f=78.5 MHz) is proposed. An integrated bow tie antenna building block is used for 

1H MR to support shimming, localization and planning in a clinical workflow. Signal 

absorption rate simulations and assessment of RF power deposition were performed to 

meet the RF safety requirements. 23Na cardiac MR was conducted in an in vivo 

feasibility study. 3D gradient echo (GRE) imaging in conjunction with Cartesian phase 

encoding (total acquisition time TAQ=6:16 min) and whole heart coverage imaging 

employing a density-adapted 3D radial acquisition technique (TAQ=18:20 min) were 

used.  

Results: For 3D GRE based 23Na MRI, acquisition of standard views of the heart using 

a nominal in-plane resolution of (0.5 x 0.5) mm2 and a slice thickness of 15 mm were 

feasible. For whole heart coverage 3D density-adapted radial 23Na acquisitions a 

nominal isotropic spatial resolution of 6 mm was accomplished. This improvement 

versus 3D conventional GRE acquisitions reduced partial volume effects along the slice 

direction and enabled retrospective image reconstruction of standard or arbitrary views 

of the heart. Sodium CINE imaging capabilities were achieved with the proposed RF coil 

configuration in conjunction with 3D radial acquisitions and cardiac gating.  Cardiac 

gated reconstruction provided an enhancement in blood-myocardium contrast of 20% 

versus the same data being reconstructed without cardiac gating. 
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Conclusions: The proposed transceiver array enables 23Na MR of the human heart at 

7.0 T within clinical acceptable scan times. This capability is in positive alignment with 

the needs of explorations that are designed to examine the potential of 23Na MRI for the 

assessment of cardiovascular and metabolic diseases.  
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magnetic resonance imaging; ultrahigh field MR; cardiovascular MRI; sodium imaging; 

RF coil technology; transceiver array 

  



page 5 

 

List of Abbreviations 
 
 
23Na MRI    sodium magnetic resonance imaging 
B0     main magnetic field strengths  
B1

+     electromagnetic transmission field 
BMI    body mass index 
CP    circular polarized 
CNR    contrast-to-noise ratio 
ECG    electrocardiogram 
Na+/K+ ATPase   sodium-potassium adenosine triphosphatase 
EMF    electromagnetic fields 
f     frequency in Hertz 
FA    flip angle in degree 
FLASH   Fast Low Angle Shot 
FOV    field of view 
FR4 copper clad sheet for electronic applications using glass-

epoxy resin 
IEC    International Electrical Commission 
NA    number of averages 
NEMA    National Electrical Manufacturers Association 
Qun    unloaded quality factor 
Ql    loaded quality factor 
RF     radio frequency 
RX    reception 
S    scattering parameter 
SAR     specific absorption rate 
SAR10g   specific absorption rate averaged over 10 g 
SD    standard deviation 
SNR    signal-to-noise ratio 
T1    longitudinal relaxation time 
T2*    effective transversal relaxation time 
TE     echo time 
TR    repetition time 
TX    transmission  
UHF-MR    ultrahigh field magnetic resonance 
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Graphical Abstract (Title, Authors, 80 Words + 5x6cm figure) 

Sodium Magnetic Resonance Imaging of the Human Heart at 7.0 T: Preliminary Results 
 

Andreas Graessl, Anjuli Ruehle, Stefan Hoffmann, Helmar Waiczies, Ana Resetar, Jan 

Rieger, Friedrich Wetterling, Lukas Winter, Armin M. Nagel and Thoralf Niendorf 

 

This pilot study demonstrated the feasibility of sodium MRI of the human heart at 7.0T 

using a dedicated transceiver RF coil array. The proposed setup afforded the 

acquisition of sodium images with reasonable myocardial signal in clinically acceptable 

scan times.  3D density adapted radial acquisitions yielded a signal gain compared to 

Cartesian gradient echo acquisitions. This improvement supported whole heart, CINE 

sodium imaging of the heart with an isotropic spatial resolution of 6 mm within 

approximately 19 minutes scan time.  
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Introduction 

 

Knowledge about compromised cell integrity of myocardial tissue provides 

valuable information for the assessment of myocardial viability, with tissue sodium 

concentration being a potent indicator of impaired cellular ion homeostasis and cell 

membrane integrity. In healthy tissue the Na+/K+ATP-ase maintains a transmembrane 

concentration gradient with an intracellular sodium concentration of about 15 mmol/L 

against an extracellular concentration of about 140 mmol/L (1,2). During ischemia, for 

instance, the function of the sodium/potassium pump is compromised by declining 

energy reserves resulting in increased intracellular sodium concentration. 

Sodium MRI (23Na MRI) is a viable approach for gaining better insights into 

cellular metabolism with a broad spectrum of biomedical imaging research applications 

(3). Previous studies eloquently reported credible data on 23Na MRI of the heart and 

demonstrated that 23Na-MRI is suitable for the detection and assessment of acute and 

chronic heart disease due to increased sodium concentration after myocardial infarction 

(4-9). These pioneering explorations were primarily limited to animal studies. 

Constraints dictated by the rapidly decaying 23Na signal and the low sensitivity of 23Na 

MRI versus clinical 1H-MRI induced scan times being not clinically acceptable and 

hence constituted a challenge for 23Na MRI of the human heart. Notwithstanding this 

obstacle ECG gated 23Na MRI of the heart was accomplished for magnetic field 

strengths commonly used in today’s clinical practice (B0 ≤ 3.0 T) (10-14). Yet, the low 

gyromagnetic ratio of 23Na and the low Na+ tissue concentrations compared with 

hydrogen resulted in long acquisition times and modest spatial resolution for 23Na MRI 
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of the heart. Although ample signal-to-noise was demonstrated for ventricular blood, the 

limited myocardial 23Na signal constitutes a challenge for cardiac sodium MRI en route 

to a clinical tool.  Recognizing the sensitivity gain intrinsic to ultrahigh magnetic fields 

(B0 ≥ 7.0 Tesla) and yet unimpaired transmission field homogeneity (15) due to the 

comparably low 23Na resonance frequency which is close to 1H MRI at 1.5 T it is 

conceptually appealing to pursue cardiac 23Na-MRI at 7.0 Tesla. 

Realizing the challenges of human 23Na MRI alongside the opportunities of 

ultrahigh field MR (UHF-MR), this study examines the feasibility of cardiac 23Na MRI at 

clinically acceptable acquisition times using free breathing 3D Cartesian gradient echo 

and cardiac gated 3D density-adapted radial acquisition techniques at 7.0 T. To meet 

this goal a local four-element transceiver RF surface coil that is customized for cardiac 

23Na MRI at 7.0 T is proposed. To meet the safety and RF power deposition limit 

requirements of MRI, electromagnetic field (EMF) simulations and specific absorption 

rate (SAR) considerations are conducted. The feasibility and applicability of the 

proposed approach for 23Na MRI of the heart at 7.0 T is presented and its suitability for 

single cardiac phase and for cinematic 23Na MRI is demonstrated in initial volunteer 

studies, as a precursor to broader clinical studies. The merits and limitations of the 

proposed transceiver surface coil are discussed and implications for clinical MRI of the 

human heart at 7.0 T are considered. 



page 9 

 

Experimental 

 

RF coil design 

The proposed dual-frequency RF coil setup (Figure 1a) consists of separate 

elements for 23Na and 1H MR. For 23Na MR a four channel RF coil array was 

constructed using two modestly curved lightweight formers to conform to an average 

anterior and superior chest as illustrated in Figure 1a. Each section contains two 

rectangular loop elements (size: (210 x 140) mm²) which each share a common 

conductor as shown in Figure 1b, c. The structure shown in Figure 1b was etched from 

32 μm copper on 1 mm FR4 substrate. The conductor thickness was chosen to be more 

than four times the skin depth of 7.45 μm for copper at 78.6 MHz. Each loop element is 

divided into five sections by chip capacitors to form a uniform and balanced current 

distribution along the loop. Distributing the overall capacitance also reduces the voltage 

at every capacitor and thus reduces coupling to the sample as well as local SAR. A 

trimmer capacitor (C4) was integrated in the shared conductor to afford adjustable 

decoupling of the neighboring loop elements (16). The common conductor of the 

anterior coil section also includes a parallel resonant trap circuit (C6/L6) tuned to 297 

MHz to prevent 1H signals to couple into the loop structure. The ports were connected 

to the coaxial RF feeding cables with a tune/match network consisting of a parallel 

tuning capacitor and a serial matching trimmer capacitor for each loop element. The coil 

was tuned to 78.6 MHz which corresponds to the resonance frequency of 23Na at 7.0 T 

and matched to 50 Ω. Unbalanced currents on the coaxial cables were suppressed by 
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parallel resonant cable traps. Cable traps were designed as double-turn solenoids of the 

coaxial cable with an appropriate capacitor soldered to the outer conductor at the 

crossing of the cable.  

Basic 1H imaging capabilities were achieved by a dipole bow tie element tuned to 

297 MHz (Figure 1d) as described in (17). The dipole bow tie element was placed inside 

the left loop element of the anterior section of the 23Na coil as depicted in Figure1 b. 

This approach provides basic means for localization, B0 shimming and slice positioning 

based on 1H images.  

Bench measurements and characterization of the RF coil performance were 

performed using an 8-channel vector network analyzer (ZVT 8, Rohde & Schwarz, 

Memmingen, Germany). The quality factor ratio QU/ QL of the loop elements was 

determined based on the measured resonance bandwidth with the array placed on an 

exemplary human subject. A high value indicates a predominant impact of sample noise 

over coil noise, which is a key requirement for the applicability of RF coil arrays.  

 

MR hardware 

MR experiments were conducted on a 7.0 T whole body MR scanner (Magnetom, 

Siemens Healthcare, Erlangen, Germany), equipped with an gradient system that offers 

a maximum slew rate of 200 mT/ m/ ms and a maximum gradient strength of 40 mT/ m 

(Siemens Medical Solutions, Erlangen, Germany).  

An 8 kW single channel RF amplifier was used for 1H MR. An 8 kW broadband 

single channel x-nuclei RF amplifier (Dressler HF-Technik GmbH, Germany) was used 

for 23Na MR. The x-nuclei amplifier output was split into 4 equal-amplitude signals by 



page 11 

 

means of three hybrid couplers (Anaren Microwave Inc., New York, US) compiled to a 

splitting cascade from 1:2 and 2:4. Phase adjustments of the single channels were 

implemented by phase-shifting coaxial cables connected to the power splitting network. 

The four 23Na elements and the one 1H element were connected to the RF system using 

an interface box with transmit/receive switches and integrated low-noise preamplifiers 

designed for the corresponding frequencies (Stark Contrast, Erlangen, Germany). 

 

Electromagnetic field simulations 

EMF and SAR simulations were performed using the finite integration technique 

of CST Studio Suite 2012 (CST AG, Darmstadt, Germany) together with human voxel 

model Duke (BMI: 23.1) (18). The simulations included the RF shield of the gradient coil. 

The voxel model was truncated at the neck and at the hips as displayed in Figure 1e, 

allowing for a high resolution mesh in the target region formed around the heart. Two 

simulations were performed with voxel model tissue parameters corresponding to 

78.6 MHz and 297 MHz as listed in (19) to estimate SAR values for the respective 

frequencies. Decoupling capacitors and the feeding points of the elements were 

modeled as 50 Ω ports. Final field results were accomplished incorporating lumped 

decoupling, tuning and matching capacitors in the built-in circuit simulator of CST Studio 

Suite (CST Design Studio 2012), following the circuit co-simulation workflow proposed 

in (20). The capacitor values were optimized with respect to the S-parameter simulation 

and were used as a starting point for the practical realization. For the final configuration 

and phase settings used in in vivo measurements SAR values were calculated. The 

input power was adjusted to meet the regulations of the IEC guideline IEC 60601-2-33 
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Ed.3 (21). At 78.6 MHz, which is in the frequency range of 1.5T proton imaging, 

transmission field non-uniformities are expected to present no major practical obstacle 

for 23Na MRI at 7.0 T. A circular polarized (CP) like mode is used for transmission. The 

CP mode refers to a phase setting with each channel driven by a phase corresponding 

to its angular position relative to the body center in the transversal plane (Channel1: 0°, 

channel2: -305°, channel3: -136°, channel4: -93°).  

 

Ethics statement 

For the in vivo feasibility study, subjects without any known history of cardiac 

disease were included after due approval by the local ethical committee (registration 

number DE/CA73/5550/09, Landesamt für Arbeitsschutz, Gesundheitsschutz und 

technische Sicherheit, Berlin, Germany). Informed written consent was obtained from 

each volunteer prior to the study.  

 

Cardiac imaging protocol 

In vivo cardiac MR was performed in three healthy subjects (2 male, 1 female; 

age range: 26 - 29; BMI range: 19 - 22, heart rate range: 62 - 78 bpm).  

1H imaging was performed using 2D CINE FLASH imaging (matrix size 256x256, 

TE=1.84 ms, TR=4.14 ms, voxel size (1.4x1.4x4.0) mm³, number of cardiac phases=30, 

total acquisition time= 0:16 min). For cardiac imaging slice positioning was carried out 

following international consensus (22,23). For this purpose the heart was localised in 

three orthogonal thoracic slices placed along each main axis of the upper torso using 
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single breath-hold, low spatial resolution 2D gradient echo scout images.  The long axis 

of the left ventricle was dissected twice, and finally a stack of short axes was obtained. 

These slices provided the basis for planning standard long axis views (four-chamber, 

three-chamber and two-chamber view) derived from 2D CINE FLASH imaging. Based 

on the four-chamber view, a mid-ventricular short axes view positioned parallel to the 

mitral valve plane was planned. The obtained slice positions were subsequently used 

for slab and 3D volume positioning for 23Na imaging.  

For 23Na MRI of the heart flip angle calibration was done offline (Matlab, Mathworks, 

Natick, USA) using a curve fitting algorithm on a set of signal intensity points which 

were acquired with a series of RF transmitter reference amplitudes. For flip angle 

calibration the whole field of view was taken into account. 23Na MRI of the heart was 

performed with two imaging protocols: 

• short axis views and four chamber views of the heart were acquired using 

untriggered, free breathing 3D gradient echo (3D FLASH) imaging with Cartesian 

phase encoding: matrix size 64 x 48, echo time TE=1.91 ms, repetition time 

TR=28 ms, voxel size (5 x 5 x 15) mm³, number of averages 35, receiver 

bandwidth=120 Hz/pixel, flip angle= 28°, 8 slices per slab, total acquisition time 

6:16 min.  

• whole heart coverage 23Na datasets were acquired with a density-adapted 3D 

radial acquisition technique (24): TE= 0.4 ms, TR=11 ms, TRO= 7.1 ms, flip 

angle= 36°, number of projections=10000, number of averages=10, voxel 

size=(6 x 6 x 6 mm)³, total acquisition time=18:20 min.  
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For 1H and 23Na MRI of the heart synchronization of the data acquisition with the 

cardiac cycle was achieved using an acoustic cardiac gating device using an MR 

compatible stethoscope (easyACT, MRI.Tools GmbH, Berlin, Germany) (25-28). 

 

Data reconstruction and image analysis 

For 3D radial 23Na acquisitions the slice positioning given by the 1H images was 

used to extract the standard cardiac views from the reconstructed 3D dataset. Three 

reconstruction modi were applied for the 3D datasets obtained with the density-adapted 

3D radial acquisition technique: 

• ungated reconstruction of the acquired data 

• retrospectively gated reconstruction using a temporal resolution of 0.1 s and 

time increments of 0.05 s. With this approach 23Na CINE images with 20 

frames per cardiac cycle were reconstructed from the 3D acquisitions. 

• retrospectively gated and cardiac phase selective reconstruction for data 

acquired during diastole. Based on the trigger information data acquired 

during systole were discarded. 

Signal-to-noise ratio (SNR) maps were estimated using method 4 proposed in 

the NEMA standard MS-1 (29). According to (29) the noise in magnitude images is 

given by the standard deviation of the signal in a noise-only region divided by the factor 

0.66. To eliminate the impact of potential artifacts of the radial acquisition scheme in 

any region of the image, the standard deviation of noise was derived from a separate 

noise scan. Contrast-to-noise-ratio (CNR) values were estimated by subtraction of the 

mean SNR value inside myocardium from the mean SNR of the left ventricular blood 
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pool. To examine the SNR profile along a circular trajectory inside the myocardium mid-

ventricular short axis SNR maps were analyzed. For this purpose a standardized 

myocardial segmentation and nomenclature for tomographic imaging of the heart was 

used (30). 
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Results 

 

Hardware and RF characteristics 

The loaded (QL) and unloaded quality factor (QU) were obtained by loading and 

unloading the RF coil on a subject. The 23Na loop elements provided an average QL/QU 

ratio of 0.12, indicating the dominance of sample noise. Reflection coefficients of -15 dB 

or less were observed. Element coupling was below -20 dB for the neighboring 

elements. Anterior posterior coupling was below noise level. The reflection coefficient of 

the 1H dipole was -26 dB. The decoupling of the 23Na loop elements to the 1H dipole 

was below -49 dB at 78.6 MHz and below -26 dB at 297 MHz for all 23Na loop elements. 

The complete set of S-parameters for both frequencies is surveyed in Figure 2 a, b. 

Overall losses from the systems RF output to the individual coil connectors were 

determined to be -0.7 dB for the 23Na RF chain and –1.4 dB for the 1H path, which were 

considered for the RF input power settings. 

 

EMF and SAR Simulations 

Figure 2c shows the combined transmit field for the 23Na array driven with the CP 

like phase setting for a transversal slice through the human voxel model’s heart. SAR10 g 

values derived from the EMF simulations are outlined in Figure 2d. For the CP like 

mode the maximum local SAR10 g per input power was found to be 0.39 1/kg. For the 1H 

dipole element the transmit field is shown in Figure 2e. The local SAR10 g assessment 

yielded a local SAR10 g per input power of 1.46 1/kg. With an input power of 25 WRMS for 



page 17 

 

the 23Na array and 6.8 WRMS input power for the 1H dipole and with considering the 

measured power losses in the RF chain, SAR10 g values were below the limits permitted 

by the IEC guidelines (21). The first and second level controlled mode given by the IEC 

guidelines were not used for in vivo imaging which limits the maximum local SAR10 g to 

10 W/kg and preserves a safety margin of factor 2.  

 

Cardiac MR imaging 

 The integrated dipole element supported basic 1H MR for localization as 

illustrated in Figure 3a. This enabled shimming planning of standard cardiac views in a 

clinical workflow for subsequent 23Na imaging. For 23Na MRI the transmitter reference 

amplitude was found to be 680±11 V, leading to a 180° pulse with a rectangular pulse 

applied for 1 ms.  

 For 3D gradient echo based 23Na MRI of the heart a nominal in-plane resolution 

of (5 x 5) mm² and a slice thickness of 15 mm was found to be feasible. Figure 3b 

depicts a short axis view of the heart derived from 3D gradient echo based imaging. The 

cardiac SNR evaluated over all volunteers was found to be 15±4 in the blood pool and 

10±3 in the myocardium. A detailed SNR evaluation along the myocardial segments of a 

mid-ventricular short axis view is outlined in Figure 3c. A blood myocardium contrast of 

4 was obtained. A high signal intensity caused by the high 23Na concentration of rib 

cartilage was observed (Figure 3b).  

 For whole heart coverage 3D density-adapted radial 23Na acquisitions a nominal 

spatial resolution of 6 mm isotropic was achieved. This improvement versus 3D 

conventional gradient echo acquisitions helped to reduce partial volume effects along 
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the slice direction and enabled retrospective image reconstruction of standard or 

arbitrary views of the heart. Figure 4a shows a whole heart coverage short axis view of 

the heart reconstructed from 3D radial acquisitions without using cardiac gating. A stack 

of short axis views covering the heart form the apex to the base shows consistent image 

quality for all slices reconstructed. Averaged over all subjects, mid-ventricular short axis 

views (Figure 4b) exhibited a SNR of 38±4 for the blood pool while myocardium 

revealed an SNR of 25±4. This provided a mean blood/ myocardium contrast of 13. An 

exemplary SNR evaluation along the myocardial segments of a mid-ventricular short 

axis view shown in Figure 4b is illustrated in Figure 4c. In companion, a four chamber 

view of the heart reconstructed from the same 3D data set is shown in Figure 4d. 

 Figure 5 illustrates the sodium CINE imaging capabilities achieved with the 

proposed RF coil configuration in conjunction with 3D radial acquisitions and cardiac 

gating. Figure 5 a,b show end-systolic and end-diastolic short axis views of the heart 

derived from a CINE dataset consisting of 20 cardiac phases. To illustrate the 

movement and contrast throughout the cardiac cycle, a signal intensity profile along the 

long axis of the heart was extracted for every cardiac phase and summarized in the M-

mode like view shown in Figure 5c.  

 Figure 5 d-e illustrates the impact of cardiac gating on the delineation of the 

myocardium. Figure 5d shows an un-triggered reconstruction. Figure 5e depicts the 

result of a cardiac gated reconstruction, based on data acquired during diastole only. 

The difference map in Figure 5f reveals a higher signal for the cardiac gated 

reconstruction inside the blood pool for regions in proximity to the myocardium. This 
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results in a blood-myocardium contrast enhancement of 20% versus the same data 

being reconstructed without cardiac gating.  
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Discussion 

 

 This feasibility study adds to the literature by demonstrating the feasibility of 23Na 

MRI of the human heart at 7.0 T. The evidence herein suggests that 23Na MRI at 7.0 T 

provides sensitivity and spatiotemporal resolution advantages over studies at 1.5 T and 

3.0 T (10-12). The proposed RF coil setup exhibits adequate RF characteristics, 

transmission field homogeneity and penetration depth that support sodium imaging of 

the heart at 7.0 T in clinically acceptable scan times including free breathing, cardiac 

gated and ungated acquisitions. Depending on the acquisition technique used the SNR 

of myocardium was found to be between 10 and 27 for mid-ventricular short axis views 

of the heart. This achievement supports clear delineation of the myocardium including 

deep lying regions of the heart. The latter was reported to constitute a challenge for 

23Na MR at a field strength of 3.0 T (31). Our in vivo studies in healthy subjects revealed 

that the use of a density-adapted 3D radial acquisition protocol used here provides an 

SNR advantage of roughly 80% compared to the used 3D gradient echo protocol. 

Pointing out this large gain we anticipate that differences in the calculation of the spatial 

resolution between Cartesian and radial acquisition protocols might slightly alter this 

value. The signal gain is related to the different echo times feasible for the 3D radial 

acquisition and the 3D gradient echo protocol due to the fast transverse relaxation of 

the sodium signal. Assuming a rapidly decaying component with T2,rapid*=(0.5-4.0) ms 

and a slowly decaying component with T2,low*=(12-20) ms (14), an SNR gain of 27% to 

85% can be expected when TE is reduced from 1.9 ms to 0.4 ms. Additionally, different 
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pulse sequence parameters (e.g. TR) might contribute to the SNR gain. Yet, the 

sensitivity gain of the density-adapted 3D radial acquisition protocol enabled sodium 

CINE imaging of the heart with 10 frames per cardiac cycle within an acquisition time of 

approximately 19 min. Cardiac triggering can be considered being beneficial to enhance 

the delineation of myocardium and the blood pool for a diastolic cardiac phase, since 

the epi- and endocardial boarder sharpness was improved by not including data 

acquired during cardiac phases of myocardial contraction and relaxation. The 6 mm 

isotropic resolution of the whole heart 3D radial acquisitions facilitated the 

reconstruction of arbitrary cardiac views including a stack of short axis and four 

chamber standard cardiac views from a single acquisition.  

 Efficient and uniform RF excitation of the upper torso might present a challenge. 

This can be accomplished with a whole body RF coil as recently reported for 23Na MR at 

3.0 T using a 16-rung birdcage resonator body coil (32). Since available transmit RF 

power is limited the high transmit power requirements of volume coils constrain the flip 

angles needed for short excitation pulses used in sodium MRI. The higher efficiency of 

a local transceiver array proposed in this work offsets this constraint since the 

applicable flip angles are restricted by SAR limitations rather than by RF peak power 

constraints. To our knowledge, this is the first cardiac 23Na MR study conducted with a 

multi-element transceiver coil.   

 The preliminary results reported for this feasibility study are likely to pave the way 

for further advances in RF coil technology tailored for assessment of myocardial sodium 

content. These efforts will help to further gain sensitivity by reducing loop element size 

and by including more loop elements and hence will contribute to further improvements 
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in spatio-temporal resolution. For example a two channel transmit loop together with a 8 

channel receive array was reported to be feasible for sodium cardiac imaging at 3.0 T 

(33). The measured Q-ratio of 8 for the proposed four channel transceiver array leaves 

reasonable space for further subdivision of the elements into an array of eight or more  

TX/RX elements as recently demonstrated for transceiver arrays customized for 1H MRI 

at 7.0 T (34-41), To advance the proton imaging capabilities it stands to reason to 

incorporate multiple 1H elements into the anterior and posterior sections of the 23Na 

array  to support high spatial resolution and accelerated imaging of the heart (42-48). 

This can either be achieved by dipole elements placed inside the loops or by 

overlapping loops for proton imaging as reported previously for a lower abdomen RF 

coil (49). For this purpose the bowtie radiative elements used here can be replaced by 

other dipole configurations including loopoles or bended dipoles (50,51). 

We recognized limitations in our feasibility study, which included healthy 

volunteers before extra variances due to pathophysiological conditions are introduced. 

Taking into account that cardiac MR at 7.0 T is a field in a state of creative flux we felt 

that it is important to begin by reporting on the details of our preliminary results deduced 

from 23Na MRI of the heart before the technology will be placed in the hands of a 

broader group of clinical colleagues. Because of the physiological relevance of the intra- 

versus the extracellular sodium compartment, a separation between these pools 

constitutes another goal for the development of 23Na-MRI techniques employing 

relaxation-weighted imaging, multiple-quantum filtering (52-56) or bi-exponential-

weighted imaging (57,58). Explorations into appropriate suppression or selective 

excitation techniques would be beneficial for suppression of signal contributions from 
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blood and cartilage which would help to enhance the dynamic range available for 

myocardial signal. For example, the cartilage signal could be spoiled by using a local 

surface gradient coil placed around the stenum on top of the chest. We are aware that 

spill-over effects from signal contributions of the blood pool might still constitute a 

challenge for myocardial sodium assessment in routine clinical applications of 23Na MRI. 

In analogy to recent pioneering reports on 23Na MR of the brain iterative reconstruction 

techniques that consider information from 1H imaging could be utilized to improve 

spatial resolution for sodium imaging of the heart at 7.0 T (59). Additionally, the blood 

signal could be eliminated by using inversion-recovery or relaxation-weighted imaging. 

For quantitative assessment of myocardial tissue sodium concentration, partial volume 

correction methods might be applied. For this purpose the geometric transfer matrix 

algorithm might be used (60). This algorithm was designed for positron emission 

tomography and recently transferred to non-proton MRI (61).  

With the preliminary results achieved in this study we anticipate to make use of 

the proposed RF configuration for driving translational research. While being important 

but beyond the scope of this work, application of the proposed 23Na MRI setup could 

benefit the assessment of sodium homeostasis and myocardial viability (2,3,5). 

Furthermore, 23Na MRI at 7.0 T could provide means for the examination of cardiac 

sodium channelopathies (62). It is also clinically appealing to pursue sodium MRI of the 

heart at 7.0 T to gain better insights into hypertrophic cardiomyopathy (HCM).  Previous 

animal studies reported a decrease in Na+,K-ATPase activity for HCM, which resulted in 

a 40% increase in intracellular sodium concentration (63). 23Na MR at 7.0 T could be 
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also beneficial for scrutinizing alterations in the myocardial Na+ concentration evoked by 

cardiac drugs acting upon sodium ion channels (64-66).  

Quantification of myocardial sodium concentration requires correction of coil-

array sensitivity variation over the heart. This can be accomplished with B1 mapping to 

derive the coil array’s transmission field distribution and the coil array’s sensitivity profile 

as demonstrated for various RF coil configurations tailored for 23Na or other x-nuclei 

MRI at 3.0 T and 7.0 T (67-69). Improving in‐plane spatial resolution of sodium MRI may 

be another important aspect to support these clinical applications. While the proposed 

RF coil design is tailored to the heart it can be adapted to support in vivo assessment of 

human sodium content in body sections other than the heart including the kidney or skin 

(67,70).  

 To conclude, the proposed transceiver array enables sodium imaging of the 

human heart at 7.0 T within clinical acceptable scan times and provides encouragement 

for further explorations into densely packed multichannel transceiver coil arrays tailored 

for 23Na cardiac MR. The benefits of such improvements would be in positive alignment 

with the needs of explorations that are designed to examine the potential of 23Na MRI 

for the assessment of myocardial ischemia and cell integrity. We suggest that 23Na 

CMR at 7.0 T can also help to unlock questions regarding Na+ balance and Na+ storage 

functions of myocardial tissue with the ultimate goal to provide imaging means for 

diagnostics and for guiding treatment decisions in cardiovascular and metabolic 

diseases. 

  



page 25 

 

 

Acknowledgements 

This work was funded in part (A. Graessl, Armin M. Nagel, T. Niendorf) by the 

Helmholtz Alliance ICEMED – Imaging and Curing Environmental Metabolic Diseases, 

through the Initiative and Network Fund of the Helmholtz Association. H. Waiczies and 

L. Winter were funded by the German Federal Ministry of Education and Research 

(“KMU-innovativ: Medizintechnik MED-373-046). 

 

  



page 26 

 

References 

 

1. Polimeni PI. Extracellular space and ionic distribution in rat ventricle. Am J 

Physiol 1974;227(3):676-683. 

2. Robinson J. The (Na+ + K+)-activated ATPase Enzymatic and transport 

properties. Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics 

1979;549(2):145–176. 

3. Madelin G, Regatte RR. Biomedical applications of sodium MRI in vivo. J Magn 

Reson Imaging 2013;38(3):511-529. 

4. Constantinides CD, Kraitchman D, O'Brien K, Boada F, Gillen J, Bottomley PA. 

Noninvasive quantification of total sodium concentrations in acute reperfused 

myocardial infarction using 23Na MRI. Magn Reson Med 2001;46(6):1144-1151. 

5. Kim RJ, Lima JAC, Chen EL, Reeder SB, Klocke FJ, Zerhouni EA, Judd RM. 

Fast 23Na magnetic resonance imaging of acute reperfused myocardial 

infarction: potential to assess myocardial viability. Circulation 1997;95(7):1877. 

6. Rochitte CE, Kim RJ, Hillenbrand HB, Chen E, Lima JAC. Microvascular integrity 

and the time course of myocardial sodium accumulation after acute infarction. 

Circ Res 2000;87(8):648. 

7. Sandstede J, Pabst T, Beer M, Harre K, Bäurle K, Lipke C, Butter F, Kenn W, 

Völker W, Neubauer S. 23 Natrium-MRT zur Infarktdarstellung am menschlichen 

Herzen. ROFO 2000;172(9):739-743. 

8. Beer M, Sandstede J, Pabst T, Landschütz W, Harre K, Kienlin Mv, Voelker W, 

Neubauer S, Hahn D. Assessment of myocardial viability by 31P-MR-

spectroscopy and 23Na-MR imaging. MAGMA 2000;11(1-2):44–46. 

9. Sandstede JJW, Hillenbrand H, Beer M, Pabst T, Butter F, Machann W, Bauer 

W, Hahn D, Neubauer S. Time course of 23Na signal intensity after myocardial 

infarction in humans. Magn Reson Med 2004;52(3):545–551. 

10. Jerecic R, Bock M, Nielles-Vallespin S, Wacker C, Bauer W, Schad LR. ECG-

gated 23Na-MRI of the human heart using a 3D-radial projection technique with 

ultra-short echo times. MAGMA 2004;16(6):297–302. 



page 27 

 

11. Konstandin S, Schad LR. Two-dimensional radial sodium heart MRI using 

variable-rate selective excitation and retrospective electrocardiogram gating with 

golden angle increments. Magn Reson Med 2013;70(3):791–799. 

12. Robson MD, Titus L, Neubauer S. Cardiac sodium imaging with phased arrays at 

3 Tesla using a 3D Ultra-short TE (UTE) approach. J Cardiovasc Magn Reson 

2008;10(Suppl 1):A109. 

13. Ouwerkerk R, Weiss RG, Bottomley PA. Measuring human cardiac tissue sodium 

concentrations using surface coils, adiabatic excitation, and twisted projection 

imaging with minimal T2 losses. J Magn Reson Imaging 2005;21(5):546–555. 

14. Bottomley PA. Sodium Sodium MRI in human heart: a review. NMR Biomed 

2015; DOI: 10.1002/nbm.3265 [epub ahead of print]. 

15. Niendorf T, Graessl A, Thalhammer C, Dieringer MA, Kraus O, Santoro D, Fuchs 

K, Hezel F, Waiczies S, Ittermann B, Winter L. Progress and promises of human 

cardiac magnetic resonance at ultrahigh fields: a physics perspective. J Magn 

Reson 2013;229:208-222. 

16. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased 

array. Magn Reson Med 1990;16(2):192-225. 

17. Winter L, Özerdem C, Hoffmann W, Santoro D, Müller A, Waiczies H, Seemann 

R, Graessl A, Wust P, Niendorf T, Yacoub E. Design and Evaluation of a Hybrid 

Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced 

Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-

Concept at 7.0 Tesla. PLoS ONE 2013;8(4):e61661. 

18. Christ A, Kainz W, Hahn EG, Honegger K, Zefferer M, Neufeld E, Rascher W, 

Janka R, Bautz W, Chen J, Kiefer B, Schmitt P, Hollenbach H-P, Shen J, Oberle 

M, Szczerba D, Kam A, Guag JW, Kuster N. The Virtual Family--development of 

surface-based anatomical models of two adults and two children for dosimetric 

simulations. Phys Med Biol 2010;55(2):N23-38. 

19. Gabriel C, Gabriel S. Compilation of the Dielectric Properties of Body Tissues at 

RF and Microwave Frequencies. 

20. Kozlov M, Turner R. Fast MRI coil analysis based on 3-D electromagnetic and 

RF circuit co-simulation. J Magn Reson 2009;200(1):147–152. 



page 28 

 

21. Commission IE. Medical electrical equipment. Part 2-33: Particular requirements 

for the safety of magnetic resonance equipment for medical diagnosis. IEC 

60601-2-33. Geneva: IEC. 

22. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Standardized 

cardiovascular magnetic resonance imaging (CMR) protocols, society for 

cardiovascular magnetic resonance: board of trustees task force on standardized 

protocols. J Cardiovasc Magn Reson 2008;10:35. 

23. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E. Standardized 

cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc 

Magn Reson 2013;15:91. 

24. Nagel AM, Laun FB, Weber M-A, Matthies C, Semmler W, Schad LR. Sodium 

MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 

2009;62(6):1565–1573. 

25. Frauenrath T, Niendorf T, Kob M. Acoustic method for synchronization of 

Magnetic Resonance Imaging (MRI). Acta Acustica united with Acustica 

2008(94):148-155. 

26. Frauenrath T, Hezel F, Heinrichs U, Kozerke S, Utting JF, Kob M, Butenweg C, 

Boesiger P, Niendorf T. Feasibility of cardiac gating free of interference with 

electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-

stethoscope. Invest Radiol 2009;44(9):539-547. 

27. Becker M, Frauenrath T, Hezel F, Krombach GA, Kremer U, Koppers B, 

Butenweg C, Goemmel A, Utting JF, Schulz-Menger J, Niendorf T. Comparison 

of left ventricular function assessment using phonocardiogram- and 

electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T. Eur 

Radiol 2010;20(6):1344-1355. 

28. Frauenrath T, Hezel F, Renz W, d'Orth Tde G, Dieringer M, von Knobelsdorff-

Brenkenhoff F, Prothmann M, Schulz Menger J, Niendorf T. Acoustic cardiac 

triggering: a practical solution for synchronization and gating of cardiovascular 

magnetic resonance at 7 Tesla. J Cardiovasc Magn Reson 2010;12:67. 



page 29 

 

29. Association NEM. NEMA Standards Publication MS 1-2008 Determination of 

Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging. 

Rosslyn, VA 22209: National Electrical Manufacturers Association. 

30. Cerqueira M, Weissman N, Dilsizian V, Jacobs A, Kaul S, Laskey W, Pennell D, 

Rumberger J, Ryan T, Verani M. Standardized myocardial segmentation and 

nomenclature for tomographic imaging of the heart: a statement for healthcare 

professionals from the Cardiac Imaging Committee of the Council on Clinical 

Cardiology of the American Heart Association. Circulation 2002;105:539 - 542. 

31. Gai ND, Rochitte C, Nacif MS, Bluemke DA. Optimized three-dimensional 

sodium imaging of the human heart on a clinical 3T scanner. Magn Reson Med 

2015;73:623-632. 

32. Wetterling F, Corteville DM, Kalayciyan R, Rennings A, Konstandin S, Nagel AM, 

Stark H, Schad LR. Whole body sodium MRI at 3T using an asymmetric birdcage 

resonator and short echo time sequence: first images of a male volunteer. Phys 

Med Biol 2012;57(14):4555–4567. 

33. Lanz T, Mayer M, Robson MD, Neubauer S, Ruff J, Weisser A. An 8 Channel 

23Na Heart Array for Application at 3 T. In: Ismrm, editor. Proc Intl Soc Mag 

Reson Med 15; 2007. p 241. 

34. Niendorf T, Sodickson DK, Krombach GA, Schulz-Menger J. Toward 

cardiovascular MRI at 7 T: clinical needs, technical solutions and research 

promises. Eur Radiol 2010;20(12):2806-2816. 

35. Dieringer MA, Renz W, Lindel T, Seifert F, Frauenrath T, von Knobelsdorff-

Brenkenhoff F, Waiczies H, Hoffmann W, Rieger J, Pfeiffer H, Ittermann B, 

Schulz-Menger J, Niendorf T. Design and application of a four-channel 

transmit/receive surface coil for functional cardiac imaging at 7T. J Magn Reson 

Imaging 2011;33(3):736-741. 

36. Winter L, Kellman P, Renz W, Grassl A, Hezel F, Thalhammer C, von 

Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T. 

Comparison of three multichannel transmit/receive radiofrequency coil 

configurations for anatomic and functional cardiac MRI at 7.0T: implications for 

clinical imaging. Eur Radiol 2012;22(10):2211-2220. 



page 30 

 

37. Thalhammer C, Renz W, Winter L, Hezel F, Rieger J, Pfeiffer H, Graessl A, 

Seifert F, Hoffmann W, von Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-

Menger J, Kellman P, Niendorf T. Two-dimensional sixteen channel 

transmit/receive coil array for cardiac MRI at 7.0 T: design, evaluation, and 

application. J Magn Reson Imaging 2012;36(4):847-857. 

38. Grassl A, Winter L, Thalhammer C, Renz W, Kellman P, Martin C, von 

Knobelsdorff-Brenkenhoff F, Tkachenko V, Schulz-Menger J, Niendorf T. Design, 

evaluation and application of an eight channel transmit/receive coil array for 

cardiac MRI at 7.0 T. Eur J Radiol 2013;82(5):752-759. 

39. Graessl A, Muhle M, Schwerter M, Rieger J, Oezerdem C, Santoro D, Lysiak D, 

Winter L, Hezel F, Waiczies S, Guthoff RF, Falke K, Hosten N, Hadlich S, 

Krueger PC, Langner S, Stachs O, Niendorf T. Ophthalmic magnetic resonance 

imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy 

subjects and patients with intraocular masses. Invest Radiol 2014;49(5):260-270. 

40. Graessl A, Renz W, Hezel F, Dieringer MA, Winter L, Oezerdem C, Rieger J, 

Kellman P, Santoro D, Lindel TD, Frauenrath T, Pfeiffer H, Niendorf T. Modular 

32-channel transceiver coil array for cardiac MRI at 7.0T. Magn Reson Med 

2014;72(1):276-290. 

41. Niendorf T, Paul K, Oezerdem C, Graessl A, Klix S, Huelnhagen T, Hezel F, 

Rieger J, Waiczies H, Frahm J, Nagel A, Oberacker E, Winter L. W(h)ither 

Human Cardiac and Body Magnetic Resonance at Ultrahigh Fields? Technical 

Advances, Practical Considerations, Applications, and Clinical Opportunities 

NMR Biomed 2015; DOI: 10.1002/nbm.3268 [epub ahead of publication]. 

42. von Knobelsdorff-Brenkenhoff F, Frauenrath T, Prothmann M, Dieringer MA, 

Hezel F, Renz W, Kretschel K, Niendorf T, Schulz-Menger J. Cardiac chamber 

quantification using magnetic resonance imaging at 7 Tesla--a pilot study. Eur 

Radiol 2010;20(12):2844-2852. 

43. Hezel F, Thalhammer C, Waiczies S, Schulz-Menger J, Niendorf T. High spatial 

resolution and temporally resolved T2* mapping of normal human myocardium at 

7.0 Tesla: an ultrahigh field magnetic resonance feasibility study. PLoS One 

2012;7(12):e52324. 



page 31 

 

44. von Knobelsdorff-Brenkenhoff F, Tkachenko V, Winter L, Rieger J, Thalhammer 

C, Hezel F, Graessl A, Dieringer MA, Niendorf T, Schulz-Menger J. Assessment 

of the right ventricle with cardiovascular magnetic resonance at 7 Tesla. J 

Cardiovasc Magn Reson 2013;15:23. 

45. Niendorf T, Sodickson DK. Highly accelerated cardiovascular MR imaging using 

many channel technology: concepts and clinical applications. Eur Radiol 

2008;18(1):87-102. 

46. Niendorf T, Sodickson DK. Parallel imaging in cardiovascular MRI: methods and 

applications. NMR Biomed 2006;19(3):325-341. 

47. Niendorf T, Sodickson D. [Acceleration of cardiovascular MRI using parallel 

imaging: basic principles, practical considerations, clinical applications and future 

directions]. Rofo 2006;178(1):15-30. 

48. Niendorf T, Hardy CJ, Giaquinto RO, Gross P, Cline HE, Zhu Y, Kenwood G, 

Cohen S, Grant AK, Joshi S, Rofsky NM, Sodickson DK. Toward single breath-

hold whole-heart coverage coronary MRA using highly accelerated parallel 

imaging with a 32-channel MR system. Magn Reson Med 2006;56(1):167-176. 

49. Bae KT, Kim J-H, Furlan A, Moon C, Park B, Zhao T. Proton and sodium MR 

imaging of in vivo human prostate using dual-tuned body and endorectal coils at 

7T. In: Ismrm, editor. Proc Intl Soc Mag Reson Med 18; 2010. p 2693. 

50. Lakshmanan K, Cloos M, Lattanzi R, Sodickson DK, Wiggins GC. The Loopole 

Antenna: Capturing Magnetic and Electric Dipole Fields with a Single Structure to 

Improve Transmit and Receive Performance. In: Ismrm, editor. Proc Intl Soc Mag 

Reson Med 22; 2014. p 397. 

51. Chen G, Cloos M, Lattanzi R, Sodickson DK, Wiggins GC. Bent Electric Dipoles: 

A Novel Coil Design Inspired by the Ideal Current Pattern for Central SNR at 7 

Tesla. In: Ismrm, editor. Proc Intl Soc Mag Reson Med 22; 2014. p 402. 

52. Fiege DP, Romanzetti S, Mirkes CC, Brenner D, Shah NJ. Simultaneous single-

quantum and triple-quantum-filtered MRI of 23Na (SISTINA). Magn Reson Med 

2013;69(6):1691-1696. 

53. Konstandin S, Nagel AM. Measurement techniques for magnetic resonance 

imaging of fast relaxing nuclei. MAGMA 2014;27(1):5-19. 



page 32 

 

54. Nagel AM, Amarteifio E, Lehmann-Horn F, Jurkat-Rott K, Semmler W, Schad LR, 

Weber M-A. 3 Tesla sodium inversion recovery magnetic resonance imaging 

allows for improved visualization of intracellular sodium content changes in 

muscular channelopathies. Invest Radiol 2011;46(12):759–766. 

55. Pekar J, Leigh JS. Detection of biexponential relaxation in sodium-23 facilitated 

by double-quantum filtering. J Magn Reson 1986;69(3):582–584. 

56. Jaccard G, Wimperis S, Bodenhausen G. Multiple-quantum NMR spectroscopy 

of S=3/2 spins in isotropic phase: A new probe for multiexponential relaxation. J 

Chem Phys 1986;85(11):6282. 

57. Benkhedah N, Bachert P, Semmler W, Nagel AM. Three-dimensional 

biexponential weighted (23) Na imaging of the human brain with higher SNR and 

shorter acquisition time. Magn Reson Med 2012. 

58. Benkhedah N, Bachert P, Nagel AM. Two-pulse biexponential-weighted 23Na 

imaging. J Magn Reson 2014;240:67–76. 

59. Gnahm C, Nagel AM. Anatomically weighted second-order total variation 

reconstruction of 23Na MRI using prior information from 1H MRI. Neuroimage 

2015;105:452-461. 

60. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: 

principle and validation. J Nucl Med 1998;39(5):904-911. 

61. Hoffmann SH, Radbruch A, Bock M, Semmler W, Nagel AM. Direct (17)O MRI 

with partial volume correction: first experiences in a glioblastoma patient. 

MAGMA 2014;27(6):579-587. 

62. Amin AS, Asghari-Roodsari A, Tan HL. Cardiac sodium channelopathies. 

Pflugers Arch 2010;460(2):223-237. 

63. Norgaard A, Baandrup U, Larsen JS, Kjeldsen K. Heart Na,K-ATPase activity in 

cardiomyopathic hamsters as estimated from K-dependent 3-O-MFPase activity 

in crude homogenates. J Mol Cell Cardiol 1987;19(6):589-594. 

64. Fredj S, Sampson KJ, Liu H, Kass RS. Molecular basis of ranolazine block of 

LQT-3 mutant sodium channels: evidence for site of action. Br J Pharmacol 

2006;148(1):16-24. 



page 33 

 

65. Duff HJ, Cannon NJ, Sheldon RS. Mexiletine-quinidine in isolated hearts: an 

interaction involving the sodium channel. Cardiovasc Res 1989;23(7):584-592. 

66. Sheldon RS, Hill RJ, Duff HJ. Antiarrhythmic drugs and the cardiac sodium 

channel: current models. Clin Chem 1989;35(5):748-754. 

67. Linz P, Santoro D, Renz W, Rieger J, Ruehle A, Ruff J, Deimling M, Rakova N, 

Muller DN, Luft FC, Titze J, Niendorf T. Skin sodium measured with (23) Na MRI 

at 7.0 T. NMR Biomed 2015;28(1):54-62. 

68. Kopp C, Linz P, Wachsmuth L, Dahlmann A, Horbach T, Schofl C, Renz W, 

Santoro D, Niendorf T, Muller DN, Neininger M, Cavallaro A, Eckardt KU, 

Schmieder RE, Luft FC, Uder M, Titze J. (23)Na magnetic resonance imaging of 

tissue sodium. Hypertension 2012;59(1):167-172. 

69. Yiyi J, Waiczies H, Winter L, Neumanova P, Hoffmann D, Rieger J, Mekle R, 

Waiczies H, Niendorf T. Eight channel transceiver radiofrequency coil array 

tailored for 1H/19F magnetic resonance of the human knee and fluorinated drugs 

at 7.0 Tesla. NMR Biomed; in press 2015. 

70. Haneder S, Juras V, Michaely HJ, Deligianni X, Bieri O, Schoenberg SO, Trattnig 

S, Zbyn S. In vivo sodium (23Na) imaging of the human kidneys at 7 T: 

preliminary results. Eur Radiol 2014;24(2):494-501. 

 
 

 



page 34 

 

 

 

 
 
Figure 1:  
Overview of the proposed 1H/23Na RF coil array tailored for cardiac 23Na MR at 7.0 T. a) 
Anterior and posterior coil section of the proposed sodium RF coil array placed on a 

mannequin. b) Basic loop structure and element numbering of the sodium array shown 

in the simulation model. c) Circuit diagram of the anterior section of the sodium loop 

array. d) Picture photograph of the dipole element used for proton imaging, which was 

placed inside loop element two as illustrated in b). e) Simulation setup consisting of the 

sodium array, the dipole element and the voxel model Duke inside the bore given by the 

gradient shield. 
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Figure 2:  

Synopsis of the results derived from EMF simulations and measurements of the RF 

characteristics of the 23Na/1H setup. a) Scattering parameters measured on a subject to 

demonstrate the resonance behavior of the 23Na/1H setup at 78.6 MHz. b) Scattering 

parameters measured on a subject at 297 MHz. c) Transmission field simulation for the 

four channel 23Na array using a circular polarized phase setting depicted in a 

transversal plane through the heart marked by the ROI shown in red. d) Maximum 

projection plot of the local SAR10 g distribution of the 23Na array simulated for the human 

voxel model Duke based on the circular polarized phase setting. e) Transmission field 

simulation at 297 MHZ for the 1H dipole element depicted in a transversal plane through 

the heart (ROI in red). f) Maximum projection plots of the local SAR10 g distribution of the 
1H dipole element simulated for the human voxel model Duke.  
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Figure 3:  
a) 1H four chamber view localizer of the heart derived from 2D CINE gradient echo 

imaging using the dipole element. This systolic view was used for planning the 3D slabs 

employed in 23Na MRI, which were centered around a mid-ventricular short axis view 

marked by the orange line. b) 23Na short axis view of the heart acquired with the four 

channel loop array at the mid-ventricular slice position indicated in the 1H four chamber 

view shin in a). A 3D gradient echo imaging protocol was applied for data acquisitions. 

c) SNR evaluation for the mid-ventricular short axis view shown in b) following a 

trajectory along the myocardial segments 7-12. To guide the eye, the standardized 

myocardial segment model proposed in (30) is illustrated in orange. 
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Figure 4:  
Cardiac 23Na images derived from ungated reconstruction of a 3D dataset which was 

acquired with a nominal isotropic spatial resolution of 6 mm using the 3D density-

adapted radial acquisition protocol. Standard cardiac views were extracted using normal 

vectors from 1H image positioning. a) A stack of short axis views covering the whole 

heart from the apex to the atrium. b) Mid-ventricular short axis view used for SNR 

evaluation. c) SNR evaluation for the mid-ventricular short axis view shown in b) 

following a trajectory along the myocardial segments 7-12. d) Four chamber view of the 

heart retrospectively reconstructed from the 3D whole heart coverage data set. 
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Figure 5:  
Cardiac CINE images reconstructed from a 3D dataset with a nominal isotropic spatial 

resolution of 6 mm which was acquired with the 3D density-adapted radial protocol. 

Retrospective gating was applied during reconstruction using time increments of 0.05 s 

and time frames of 0.1 s. Short axis views were extracted using the normal vector from 
1H image positioning. a) Mid-ventricular short axis CINE frame in diastole. b) Mid-

ventricular short axis CINE frame in systole. c) M-mode like, temporally resolved signal 

evolution extracted from the profile placed along the long axis of the heart, as depicted 

in a) and b), for all 20 frames of the CINE acquisition. The line shown in a) and b) are 

marked by the arrows A and B. d) Ungated reconstruction based on the complete 

dataset. e) Selective reconstruction of diastolic data acquired between 0.6 s and 1.2 s 

after recognition of the onset of the cardiac cycle using the acoustic cardiac triggering 

device. f) Difference map of images deduced from ungated and gated reconstruction 

which revealed a blood pool signal gain of +20% of the gated image. This behavior 

helped to enhance the delineation between blood and myocardium. 
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