Preview |
PDF (Original article)
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
4MB |
Preview |
PDF (Supplementary data)
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
729kB |
Item Type: | Article |
---|---|
Title: | Amyloid-β(1-42) aggregation initiates its cellular uptake and cytotoxicity |
Creators Name: | Jin, S., Kedia, N., Illes-Toth, E., Haralampiev, I., Prisner, S., Herrmann, A., Wanker, E.E. and Bieschke, J. |
Abstract: | The accumulation of amyloid beta peptide(1-42) (Abeta(1-42)) in extracellular plaques is one of the pathological hallmarks of Alzheimer disease (AD). Several studies have suggested that cellular reuptake of Abeta(1-42) may be a crucial step in its cytotoxicity, but the uptake mechanism is not yet understood. Abeta may be present in an aggregated form prior to cellular uptake. Alternatively, monomeric peptide may enter the endocytic pathway and conditions in the endocytic compartments may induce the aggregation process. Our study aims to answer the question whether aggregate formation is a prerequisite or a consequence of Abeta endocytosis. We visualized aggregate formation of fluorescently labeled Abeta(1-42) and tracked its internalization by human neuroblastoma cells and neurons. beta-Sheet-rich Abeta(1-42) aggregates entered the cells at low nanomolar concentration of Abeta(1-42). In contrast, monomer uptake faced a concentration threshold and occurred only at concentrations and time scales that allowed Abeta(1-42) aggregates to form. By uncoupling membrane binding from internalization, we found that Abeta(1-42) monomers bound rapidly to the plasma membrane and formed aggregates there. These structures were subsequently taken up and accumulated in endocytic vesicles. This process correlated with metabolic inhibition. Our data therefore imply that the formation of beta-sheet-rich aggregates is a prerequisite for Abeta(1-42) uptake and cytotoxicity. |
Keywords: | Aggregation, Amyloid, Amyloid-{beta} (AB), Kinetics, Protein Folding, Internalization |
Source: | Journal of Biological Chemistry |
ISSN: | 0021-9258 |
Publisher: | American Society for Biochemistry and Molecular Biology |
Volume: | 291 |
Number: | 37 |
Page Range: | 19590-19606 |
Date: | 9 September 2016 |
Official Publication: | https://doi.org/10.1074/jbc.M115.691840 |
PubMed: | View item in PubMed |
Repository Staff Only: item control page