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ABSTRACT

Rationale: Pericytes are essential for vessel maturation and endothelial barrier function. Long non-coding
RNAs (IncRNAs) regulate many cellular functions, but their role in pericyte biology remains unexplored.

Obijective: Here we investigate the effect of Hypoxia-Induced Endoplasmic Reticulum Stress Regulating
IncRNA (HypERInc, also known as ENSG00000262454) on pericyte function in vitro and its regulation in
human heart failure and idiopathic pulmonary arterial hypertension.

Methods and Results: RNA sequencing in human primary pericytes (hPCs) identified hypoxia regulated
IncRNAs, including HypERInc. Silencing of HypERInc decreased cell viability, proliferation and resulted
in pericyte de-differentiation, which went along with increased endothelial permeability in co-cultures
consisting of hPC and human coronary microvascular endothelial cells. Consistently, Cas9-based
transcriptional activation of HypERInc was associated with increased expression of pericyte marker genes.
Moreover, HypERInc knockdown reduced endothelial-hPC recruitment in matrigel assays (P<0.05).
Mechanistically, transcription factor reporter arrays demonstrated that endoplasmic reticulum stress related
transcription factors were prominently activated upon HypERInc knockdown, which was confirmed via
immunoblotting for the endoplasmic reticulum stress markers IREla (P<0.001), ATF6 (P<0.01) and
soluble BiP (P<0.001). Kyoto encyclopedia of genes and gene ontology pathway analyses of RNA
sequencing experiments following HypERInc knockdown indicate a role in cardiovascular disease states.
Indeed, HypERInc expression was significantly reduced in human cardiac tissue from heart failure patients
(P<0.05, n=19) compared to controls. In addition, HypERInc expression significantly correlated with
pericyte markers in human lungs derived from patients diagnosed with idiopathic pulmonary arterial
hypertension and from donor lungs (n=14).

Conclusion: Here we show that HypERInc regulates human pericyte function and the endoplasmic
reticulum stress response. In addition, RNA sequencing analyses in conjunction with reduced expression
of HypERInc in heart failure and correlation with pericyte markers in idiopathic pulmonary arterial
hypertension indicate a role of HypERInc in human cardiopulmonary disease.

Keywords:
Pericytes, long non-coding RNAs, cardiac disease, pulmonary heart disease, ER stress, cardiovascular
disease, vascular biology.



Nonstandard Abbreviations and Acronyms:

ARV Arrhythmogenic right ventricular cardiomyopathy
DTT Dithiothreitol

ER Endoplasmic reticulum

FPKM Frames per kilobases mapped per million

GO Gene ontology

HCMEC Human coronary microvascular endothelial cells
HF Heart Failure

hPC Human pericytes

HUVEC Human umbilical vein endothelial cells
HypERInc Hypoxia-Induced Endoplasmic Reticulum Stress Regulating IncRNA
IPAH Idiopathic pulmonary arterial hypertension
KEGG Kyoto Encyclopedia of Genes

IncRNA Long non-coding RNA

poly A Polyadenylated

PDGF Platelet-derived growth factor

PDGFRJ Platelet-derived growth factor receptor
RNA-FISH RNA-fluorescent in situ hybridization

RNA-seq RNA sequencing

RT-gPCR Reverse transcription quantitative polymerase chain reaction
Stauro Staurosporine

TF Transcription factor

UPR Unfolded protein response

VSMC Vascular smooth muscle cells

INTRODUCTION

Pericytes are perivascular mural cells that contribute to endothelial maturation and vessel stability
at the level of the microvasculature'. Pericyte recruitment towards the vessel wall is mainly driven by the
platelet-derived growth factor (PDGF) signaling axis'?. In vivo, a block of PDGF signaling results in
pericyte death and impaired pericyte recruitment towards endothelial cells resulting in endothelial
dysfunction, including endothelial barrier breakdown®. These events facilitate extravasation of
macromolecules with subsequent inflammation and organ remodeling. In organ injury and fibrotic disease,
pericytes may hyper-proliferate and contribute to wound healing and organ remodeling®’. Despite their
important role within the cardiovascular system and various disease states such as idiopathic pulmonary
arterial hypertension (IPAH)®, molecular mechanisms that control human pericyte (hPC) survival and
differentiation are poorly understood.

Long non-coding RNAs (IncRNAs) represent a large proportion of the non-coding transcriptome’ and
act by various mechanisms that affect transcriptional and epigenetic control of gene expression. In addition,
it is well documented that IncRNAs can regulate posttranscriptional processes such as splicing®. Previous
studies have shown a regulatory role of IncRNAs in endothelial and smooth muscle cells. For example
IncRNA MALAT] has been shown to regulate endothelial cell function’ whereas IncRNA SENCR has
been demonstrated to stabilize the smooth muscle cell contractile phenotype'®. Recent experimental work
has outlined the importance of IncRNAs in modulating clinically relevant processes such as cholesterol
synthesis'' and cardiac hypertrophy'?, making them promising molecular targets in cardiovascular disease.
However, the contribution of IncRNAs to hPC function is yet unclear.



Here we show that the previously uncharacterized Hypoxia-Induced Endoplasmic Reticulum Stress
Regulating IncRNA (HypERInc) controls hPC function and propose a role for HypERInc in disease states
such as human heart failure (HF) and idiopathic pulmonary arterial hypertension.

METHODS

Please see online supplement.

RESULTS
Characterization of human pericytes.

RNA sequencing (RNA-seq) of hPC in normoxic and hypoxic conditions demonstrates robust
expression of pericyte markers (e.g. PDGFRJ and NG2), which was confirmed by immunoblotting (Online
Figure I). In addition, hPC formed functional intercellular junctions as indicated by intercellular dye transfer
live cell imaging experiments with HUVEC (Online Figure II), suggesting that the cells in the present study
are indeed pericytes'.

HypERInc is induced by hypoxia and is expressed in the nucleus and cytosol of human pericytes.

In order to detect regulatory IncRNAs in hPC, they were subjected to 24 hours of hypoxia followed
by RNA-seq. Along with known hypoxia regulated transcripts (e.g. H19 and MIR210HG'* (Figure 1A), we
found that IncRNA HypERInc was upregulated by hypoxia which was validated by RT-qPCR (Figure 1B).
Figure 1C demonstrates HypERInc read coverage under normoxic and hypoxic conditions. Average cycle
threshold values for HypERInc under normoxia were 25.5 and 24.8 under hypoxic conditions, documenting
robust expression of the transcript.

Gene expression pattern analyses demonstrate that HypERInc is expressed in most human organ
systems (Online Figure III). Given that not all IncRNAs own poly A tails'>, RT-qPCR in poly A" enriched
RNA fractions was conducted. Here we found that HypERInc is polyadenylated (Figure 1D). Since IncRNA
function is dependent on subcellular localization, we performed RNA-fluorescent in situ hybridization
(RNA-FISH), demonstrating that HypERInc is present in the nucleus as well as in the cytosol of the cell
(Figure 1E). Furthermore, RT-qPCR in cytosolic and nuclear fractions indicates that HypERInc is enriched
in the nucleus under both normoxic and hypoxic conditions (Figure 1F).

To evaluate whether HypERInc is conserved in mice, we performed RNA-seq in primary mouse
brain pericytes under normoxic and hypoxic conditions. As the conservation across species is sparse for
IncRNAs?', we only found 13 commonly annotated IncRNAs in human and mouse pericytes (Online Figure
IVA-C). However, we found a robust read coverage at the locus that is conserved between the neighboring
genes MKL2 and PARN. Murine HypERInc expression was validated by RT-PCR, suggesting that a murine
HypERInc orthologue is expressed in mouse pericytes (Online Figure IVD-F).

HypERInc knockdown results in pericyte de-differentiation and loss of pericyte function.
LNA GapmeR mediated HypERInc knockdown (Figure 2A) resulted in a downregulation of the

pericyte markers PDGFRp, aSMA, Desmin, and NG2 (Figure 2B-E), which was confirmed using siRNAs
directed against HypERInc (Online Figure V). Likewise, in HypERInc gain of function experiments using



RNA guided gene activation, the expression of HypERInc significantly correlated with the expressions of
respective pericyte markers, pointing towards an important role of HypERInc in pericyte differentiation
(Figure 2F-J). Since pericyte differentiation is important for proper pericyte function, we hypothesized that
HypERInc knockdown impairs the capability of pericytes to induce endothelial barrier function. HypERInc
knockdown in hPC in a co-culture model of hPC and human coronary microvascular endothelial cells
(HCMEC) significantly increased permeability for macromolecules compared to control (Figure 3A,B).
Next, we studied the impact of HypERInc knockdown on pericyte recruitment towards endothelial cells
because endothelial pericyte recruitment is known to be required for proper endothelial barrier function®.
Upon HypERInc silencing, hPC recruitment towards HCMEC was significantly reduced in matrigel co-
culture assays (Figure 3C,D). To address whether impairment of pericyte differentiation and recruitment
was associated with a loss of viable pericytes or altered pericyte proliferation, we analyzed cell viability
and proliferation following HypERInc knockdown. Here we found a significant reduction in hPC viability
(Figure 3E, Online Figure VIA) and Ki67 staining (Figure 3F-G). We did not detect enhanced apoptosis,
autophagy and necrosis upon HypERInc knockdown (Figure 3H, Online Figure VIB-E).

HypERInc knockdown induces ER stress.

Since HypERInc is also present in the nucleus, we tested the hypothesis that HypERInc regulates
transcription factor (TF) activity, which is a known molecular mechanism of IncRNAs®. Using TF activity
luciferase reporter assays upon HypERInc knockdown, we found increased activity of CBF/NF-Y/YY1 and
ATF6 (Figure 4A); both of which are known to be involved in the cellular ER Stress response pathway'®!”.
Induction of ER stress was confirmed by enhanced expression of ER stress markers such as IRE1a, soluble
BiP and ATF6 (50kDa) following HypERInc knockdown at protein level (Figure 4B-D, Online Figure VII).
Interestingly, induction of ER stress significantly lowered HypERInc levels and induced pericyte de-
differentiation, indicating a regulatory feedback role between the ER stress response and HypERInc
expression that affects pericyte function (Online Figure VII).

HypERInc expression in cardiopulmonary disease.

To determine the impact of HypERInc on gene regulatory pathways, we performed RNA-seq in
hPC upon HypERInc knockdown with subsequent analyses of Gene Ontology (GO) (Online Figure VIII,
Online Table V) and Kyoto Encyclopedia of Genes (KEGG) terms. Strikingly, KEGG analysis revealed
that genes involved in several cardiovascular disease states and in vascular smooth muscle cell (VSMC)
contractility are significantly upregulated (Figure 4E, Online Table VI).

Cardiac disease states, including heart failure, are known to go along with enhanced ER stress'®. In
order to address the question whether HypERInc is regulated in human cardiovascular disease, we measured
HypERInc expression in the left ventricular myocardium of patients diagnosed with heart failure. HypERInc
was significantly reduced compared to healthy controls (Figure 4F,G), corroborating a role of HypERInc
in human cardiovascular disease. We additionally addressed whether HypERInc is associated with pericyte
marker expression in disease states that go along with altered pericyte and VSMC function such as IPAH®.
While there was no significant difference in HypERInc levels between healthy donors and IPAH lungs, we
found that HypERInc significantly correlates with pericyte markers in healthy and diseased human lungs
(Online Figure IX).



DISCUSSION

Here we characterize the expression and function of HypERInc in human pericytes and demonstrate
that HypERInc is de-regulated in human heart failure and correlates with pericyte marker expression in
human lung disease. We show that hypoxia-regulated HypERInc exerts biologically relevant functions in
pericytes by modulating pericyte differentiation, proliferation and recruitment towards endothelial cells.
Mechanistically, loss of HypERInc resulted in enhanced ER stress. Interestingly, ER stress has been
proposed to play a major role in cardiovascular pathology and ageing'® . For example, it has recently been
shown that the histone deacetylase sirtuin 1 is cardioprotective by reducing ER stress in cardiac myocytes,
thereby inhibiting apoptosis®’. Moreover, it has been documented that pharmacological inhibition of ER
stress in hypertensive mice reduces cardiac injury and results in improved endothelium-dependent
relaxation in the aorta®'. So far, only few IncRNAs have been shown to be associated with the unfolded
protein response (UPR)* 2%, Kato et al. recently demonstrated that Inc-MGC, which is induced by ER stress,
is upregulated in a mouse model of diabetic nephropathy®. In addition, some studies have shown that
IncRNAs influence the UPR. Overexpression of IncRNA MEG3 has been documented to induce ER stress
markers (e.g. IRE1a) and also induces apoptosis in human hepatoma cells®, whereas gain of function of
IncRNA TUG] partly blocked ER stress pathways and was organ protective in a model of cold-induced
liver injury in mice**. ER stress affects multiple cellular processes and may result in adaptive or pro-
apoptotic pathways'®. We found a significant upregulation of IRE 10 that is known to affect both respective
pathways in the UPR and is an ER stress sensor in all eukaryotic cells®.

However, we were not able to detect enhanced apoptosis, autophagy and necrosis in human
pericytes following HypERInc knockdown using LNA GapmeRs as well as siRNAs. Human pericytes
demonstrated cellular de-differentiation in HypERInc loss of function experiments, which is one of the
known physiological effects of UPR?.

These results point towards an adaptive UPR response in pericytes following HypERInc
knockdown. This observation is particularly of importance since we silenced HypERInc using LNA
GapmeRs, which may cause apoptosis due to unspecific off-target effects®’. Since we did not observe
enhanced apoptosis in our experimental setting, we conclude that enhanced ER stress is not caused by a
non-specific toxic effect of LNA GapmeRs. In addition, an induction of ER stress resulted in
downregulation of HypERInc and pericyte de-differentiation, indicating a regulatory feedback loop
between ER stress level and HypERInc expression. We argue that the cellular mechanism for the observed
loss of cell viability following HypERInc knockdown is mediated by a decrease in proliferation. We found
that HypERInc loss significantly downregulates the PDGFRP which is a tyrosine kinase receptor that is
crucial for pericyte proliferation and recruitment'?,

However, we are aware that the exact mechanism by which HypERInc loss mediates enhanced ER
stress is currently unknown and will need further mechanistic investigation.

With regard to our data on impairment of pericyte proliferation and recruitment towards endothelial
cells as well as impaired coronary endothelial barrier function upon HypERInc knockdown, recent
experimental data from myocardial infarction in mice have shown that FOX0O4 dependent coronary
endothelial barrier breakdown facilitates the migration of inflammatory cells into the myocardial
parenchyma, thereby fostering tissue injury?®. LncRNAs in pericytes may therefore be of clinical relevance
in cardiac injury. Moreover, our data on ER stress as well as GO and KEGG analyses upon HypERInc
knockdown and reduced expression of HypERInc in human heart failure samples corroborate a potential
role of HypERInc in cardiac disease. Furthermore, the clinical relevance of HypERInc is supported by our
findings that HypERInc significantly correlates with pericyte marker expression in disease states that go
along with altered pericyte and VSMC function such as IPAH. Further in vivo studies would be desirable
to dissect HypERInc function in disease models such as myocardial infarction or transaortic constriction.



However, IncRNA conservation across species is sparse. Particularly the gene loci of mouse IncRNA
orthologues lack sequence homology, which makes it difficult to draw a conclusion from mouse data
towards human cells and vice versa. Our RNA-seq analyses from mouse pericytes demonstrate a potential
mouse orthologue. It will be interesting to develop silencing strategies and study the role of murine
HypERInc in vivo.

In conclusion, our results outline that HypERInc significantly regulates human pericyte function and
may have a role in human cardiopulmonary disease.
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FIGURE LEGENDS

Figure 1: Identification and characterization of HypERInc in pericytes. A, RNA sequencing
demonstrates significant upregulation of HypERInc and the known hypoxia regulated transcripts H19 and
MIR210HG. B, Upregulation of HypERInc was verified using RT-qPCR. C, HypERInc read coverage
under normoxic and hypoxic conditions. D, Biochemical analyses of HypERInc in Poly A positive and
negative fractions indicate that HypERInc is polyadenylated. circRNA cHIPK3 was used as negative
control. E, RNA-FISH shows HypERInc expression in the nucleus and the cytosol of cells (right panel).
Oligos directed against MALAT1 were used as nuclear-localized positive controls (left panel). F, RT-qPCR
in cellular and nuclear fractions demonstrate that HypERInc is about 1.5-fold enriched within the nucleus
of the cell and that this localization does not change under hypoxic conditions. RPLPO (P0) was used as a
cytosolic control while MALAT]1 served as nuclear control. All experiments are n>3;* P<(.05; ***P<0.001

Figure 2: HypERInc regulates pericyte differentiation. A, HypERInc knockdown using LNA GapmeRs.
B-E, Loss of HypERInc results in cellular de-differentiation as reflected by a loss of pericyte markers such
as PDGFRp, aSMA, Desmin and NG2. F, RNA guided gene activation strategy. G-J, Pericyte markers
PDGFRp, aSMA, Desmin and NG2 significantly correlate with HypERInc expression in gain of function
experiments. All experiments are n>3; **P<(.01; ***P<0.001

Figure 3: HypERInc knockdown impairs pericyte function. A, Assessment of endothelial barrier
function in a co-culture model consisting of pericytes and human coronary microvascular endothelial cells
(HCMEC). B, Loss of HypERInc significantly enhances passage of macromolecular 70kDa FITC-Dextran.
C,D, Silencing HypERInc significantly reduces pericyte (in green) recruitment towards HCMEC (in red)
in matrigel assays. E, HypERInc knockdown decreases pericyte viability and F,G, cell proliferation. H,
Loss of HypERInc does not result in enhanced apoptosis, staurosporin (Stauro) was used as a positive
control in a caspase 3/7 assay. All experiments are n>3; *P<0.05; ***P<0.001

Figure 4:HypERInc modulates the endoplasmic reticulum stress response and is regulated in human
heart failure. A, Luciferase transcription factor reporter assays in HypERInc knockdown demonstrate
enhanced luciferase activity in CBF/NF-Y/YY1 and ATF6 responsive elements which are part of the ER
stress response. B, Representative immunoblots for ER stress markers IRE1a and soluble BiP following
HypERInc knockdown and Dithiothreitol (DTT) treatment. DTT was used as a positive control for ER
stress. C, D, Quantitative analyses of soluble BiP and IRE1a protein levels confirm enhanced ER stress in
LNA HypERInc treated pericytes, E, KEGG pathway analyses following RNA-seq in HypERInc
knockdown demonstrate that VSMC contraction related genes and several cardiomyopathies are among the
top 20 upregulated pathways. F, HypERInc expression was analyzed via RT-qPCR in left ventricular
myocardium from patients diagnosed with heart failure (HF, n=19). G, HypERInc RNA levels were
significantly reduced compared with controls (n=5 patients without a known history of heart failure). All
experiments are n>3; *P<0.05; ***P<(0.001
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NOVELTY AND SIGNIFICANCE
What Is Known?

. Pericytes are essential perivascular cells that induce vessel maturation, stabilize endothelial barrier
function and contribute to organ remodeling in pathologic conditions.

. Pericyte survival and recruitment towards endothelial cells is mainly driven by platelet-derived
growth factor signaling, however molecular regulatory mechanisms that control pericyte
differentiation and survival are poorly understood.

. Long non-coding RNAs (IncRNAs) represent non-coding transcripts that have been found to
significantly regulate endothelial as well as smooth muscle cell function, but their role in pericyte
biology remains unclear.

What New Information Does This Article Contribute?

. Here we characterize hypoxia regulated IncRNAs in pericytes and show that HypERInc
significantly regulates human pericyte function, differentiation and survival by modulating the
endoplasmic reticulum (ER) stress response.

. Analyses of HypERInc in human hearts and lungs suggest that HypERInc may have a role in
cardiopulmonary disease states such as heart failure and idiopathic pulmonary hypertension
(IPAH).

Pericytes are mural cells that contribute to vessel maturation and control endothelial barrier function.
Despite their pivotal role in the vascular system, knowledge is sparse on molecular regulatory mechanisms
of pericyte cell biology. Here we show for the first time that a IncRNA is essential for pericyte function,
survival and differentiation. Our findings on the regulation of ER stress by HypERInc may have a broad
translational impact. ER stress has been shown to be involved in various disease states, including heart
failure. Our findings that HypERInc is significantly de-regulated in human heart failure and significantly
correlates with pericyte differentiation markers in human lungs, indicate that HypERInc may have role in
human cardiopulmonary disease. The identification of a HypERInc orthologue in mouse pericytes will
enable to perform translational studies that may substantiate these findings in vivo and elucidate the role of
HypERInc in cardiopulmonary disease.
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Materials and Methods:

Human pericyte cell culture

Human pericytes were acquired from ScienCell and cultured as recommended. Pericytes were used from
passages 2-9. Pericytes were cultured in DMEM Glutamax completed with 10% fetal calf serum (both
from Gibco, Life Technologies) and Penicillin/Streptomycin (Roche Diagnostics). The humidified
atmosphere in the incubator contained 5% CO, and 20% O; at 37°C. Human coronary microvascular
endothelial cells (HCMEC; passages 2-8; ScienCell) were kept in the same atmosphere and cultured in
Endothelial Cell Medium (ECM; from ScienCell) containing provided supplements as recommended.
For Induction of endoplasmic reticulum stress, cells were treated with Dithiothreitol (DTT; 1 mM, 1
hour; Roth) or Tunicamycin (5 pg/ml, 5 hours; Sigma-Aldrich).

Isolation of primary mouse pericytes

Primary mouse brain pericytes were isolated as documented elsewhere from adult C57B16 wild type
mice' with modifications. In brief, mice were euthanized by an overdose of isoflurane followed by
decapitation. Brains were quickly removed and transferred into 4°C cold DMEM (Gibco, Life
Technologies). Next, olfactory bulb, cerebellum and medulla were dissected and brains were minced
with a sterile scalpel. Minced brain tissue was washed once in DMEM, centrifuged for 5 min at 340 g.
Medium was carefully discarded and tissue was incubated in an enzymatic digestion mixture in EBSS
containing 20 units/ml Papain and 0.005 % DNAse (all from Worthington) for 70 min at 37°C.
Following enzymatic digestion, brain tissue was homogenized by passing ten times through an 18 gauge
needle and subsequently ten times through a 21 gauge needle. Homogenate was then mixed with 1.7-
fold volume of 22% bovine serum albumin in phosphate buffered saline and centrifuged for 10 min at
3800 g. The lipid layer on top was carefully removed and cell pellet was resuspended in collagen coated
6 well plates. During the first three passages, cells were kept in ECM (ScienCell). Starting with the
fourth passage, cell culture medium was switched to pericyte medium (ScienCell). Primary mouse
pericytes from passage 7-12 were used for experimental manipulation. For validation of murine
HypERInc by reverse transcription PCR, RNA from primary mouse pericytes was isolated using an
RNeasy Mini Kit (Qiagen) as recommended including DNA digestion. RNA was reversely transcribed
as documented below.

Induction of hypoxia

Cells were kept in pre-equilibrated culture medium in a hypoxic incubator (Labotect) with humidified
atmosphere at 5% CO,, 1% O,, 37°C. Pericytes were subjected to hypoxia for 24 hours. Hypoxia was
verified with measurement of culture medium pO, levels with a hypoxia sensing probe (Oxford
Optronix) as described elsewhere’ *. Additionally, VEGFA Induction was verified via RT-gPCR and
only samples with 2-fold upregulation or higher were used for further analysis.

RNA sequencing in human and murine pericytes

Ribosomal RNA depleted total RNA isolated from human pericytes was analyzed via RNA deep
sequencing. The RNeasy Mini Kit (Qiagen) was used to isolate RNA as recommended including DNA
digestion. RNA degradation and contamination was monitored on 1% agarose gels and RNA purity
determined with a NanoPhotometer® spectrophotometer (IMPLEN). RNA concentration was measured
using Qubit® RNA Assay Kit in Qubit® 2.0 Fluorometer (Life Technologies). RNA quality was
checked with a RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent
Technologies). Isolated RNA was fragmented and primed for cDNA synthesis. Libraries were created
using a Scriptseq v2 (mouse samples, Illumina, SSV21124) or NEBNext® Ultra™ Directional RNA
Library Prep Kit (human samples, Illumina) according to the manufacturer’s instructions.

A HiSeq flow cell (Illumina) was used for sequencing. Based on the NONCODE database (noncode.org)
IncRNA annotation was performed. RNA-seq of murine pericytes and human pericytes treated with
LNA Control or LNA HypERInc were carried out by Novogene. The uploaded data is accessible on the
GEO database when published (with GEO ID: GSE92888).



GO and KEGG enrichment analyses

Gene Ontology (GO) enrichment analysis of differentially expressed genes was done using GOseq R
package, in which gene length bias was corrected. GO terms with corrected P value <0.05 were
considered significantly enriched by differential expressed genes. KEGG is a database resource for
understanding high-level functions and utilities of the biological system, such as the cell, the organism
and the ecosystem, from molecular level information, especially large scale molecular datasets generated
by genome  sequencing and  other  high-throughput  experimental  technologies
(http://www.genome.jp/kegg/). KOBAS software was used to test the statistical enrichment of
differential expression genes or IncRNA target genes in KEGG pathways.

RNA isolation and reverse transcription quantitative PCR (RT-gPCR)

To isolate total RNA from cell cultures RNeasy Mini Kit (Qiagen) was used as recommended including
DNA digestion. Fractionation of RNA for nuclear and cytosolic fractions was performed as described
elsewhere®’. RNA concentration was measured using a NanoDrop 2000 Spectrophotometer (Thermo
Fisher Scientific) and transcribed to cDNA using MulV reverse transcriptase (Life Technologies) and
random hexamer primers (Thermo Fisher Scientific) in 40 pl reaction volume. Transcribed cDNA was
used with fast SYBR Green (Applied Biosystems) in RT-qPCR performed by a Viia7 Real-Time PCR
System (Thermo Fisher Scientific). CT values were normalized against ribosomal RPLPO (P0) and
relative gene expression was determined through the formula: 22T (ACT=CTrargec-CTcontrol). The
sequences of used primers are given in Online Table III.

Transfection

Cells were transfected after reaching a confluency of 60-80% using Opti-MEM Medium, Lipofectamine
RNAiIMAX (both from Life technologies) and 50 nmol/l of LNA GapmeR (Exiqon), siRNA or gRNA
blocks. LNA GapmeR control A, scrambled siRNA or transfection medium free of gRNA blocks were
used as control for transfection experiments. After 4 hours transfection medium was exchanged to the
appropriate cell culture medium. 48 hours upon transfection cells were used for experimental
manipulation.

LNA GapmeR sequences were as follows:
LNA HypERInc: 5’-CTTGGCTGGCGGAAGG-3’
LNA Ctrl: 5>-AACACGTCTATACGC-3’

siRNA sequences directed against HypERInc were from Sigma-Aldrich ((i)sense: 5°-
ACAGCCCUUGUAACUGAUA-3’; antisense: 5’-UAUCAGUUACAAGGGCUGU-3’; (ii) sense: 5°-
AGCCCUUGUAACUGAUAAC-3’; antisense: 5’-GUUAUCAGUUACAAGGGCU-3’). siRNA
controls were transfected with siRNA targeting firefly luciferase as documented elsewhere® (from
Sigma-Aldrich, sense: 5’-CGUACGCGGAAUACUUCGA-3’; antisense: 5’-
UCGAAGUAUUCCGCGUACG-3").

RNA guided gene activation

A constitutive dCas9-VP64 lentiviral expression vector carrying a puromycin resistancy (addgene
Plasmid #50918, http://www.addgene.org/50918/; kindly provided by Fatma Kok) was used to
transduce human pericytes. To verify transduction, pericytes were kept in Pericyte Medium (ScienCell,
#1201) containing provided supplements and 1 pg/ml puromycin for at least 6 days to select for
successfully transduced pericytes. To achieve overexpression of HypERInc by RNA guided gene
activation, guide RNAs (gRNAs) were designed bearing the antisense sequence to the probable
HypERInc promoter region. gRNAs were designed with the gRNA design toll by the Zhang lab
(http://crispr.mit.edu/). gRNA blocks constitutively expressing particular gRNA sequences were bought
from IDT and amplified as endorsed by IDT via PCR. Afterwards, pericytes were transfected with the
amplification product. Multiple gRNA blocks targeting different promoter region segments were used
as described previously’. gRNA block combination and target sequences of gRNAs are shown in Online
Table IV. For gRNA block design following sequence scheme was used:




U6 promoter + target sequence (without PAM sequence) + guide RNAscaffold +
termination signal

TGTACAAAAAAGCAGGCTTTAAAGGAACCAATTCAGTCGACTGGATCCGGTACCAAG
GTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACA
AGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTAC
AAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATG
TTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTT
TATATATCTTGTGGAAAGGACGAAACACCGXXXXXXXXXXXXXXXXXXGTTTTAGA
GCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCAC
CGAGTCGGTGCTTTTTTTCTAGACCCAGCTTTCTTGTACAAAGTTGGCATTA

Luciferase reporter array

For analysis of transcription factor activity a Cignal Finder Reporter Array (Qiagen, #336821) was used
as recommended by the manufacturer. Human pericytes were transfected with LNA GapmeRs as already
described. After transfection, 4x10* pericytes/well were seeded into 96 well plates from Qiagen. Cells
were seeded in 50 pl Opti-MEM containing 10% FCS while each well contained 100 pl Opti-MEM
supplemented with Lipofectamine RNAIMAX. Cell culture plates were incubated for 4 hours
(humidified atmosphere, 5% CO,, 20% O,, 37°C). Subsequently, medium was changed to pericyte
culture medium and culture plates were incubated for another 24 hours following transfection in the
culture plates. Luciferase signals were measured with a GloMax-Multi Detection System from Promega.

Preparation of poly-A"- RNA

Preparation was performed as already described®. In brief, oligo-d(T)*-magnetic beads (NEB, #S14195)
were used to separate poly-A tail positive from poly-A tail negative RNA. Washed beads and RNA were
incubated with binding buffer while rotating for 10 min. Separation of poly-A” RNA was done by
collecting the supernatant after binding of the beads with a magnet. Afterwards, beads were washed and
incubated in elution buffer for 2 min at 50°C to obtain poly-A™ RNA. RNA levels were measured with
RT-gPCR as described above.

Matrigel co-culture assays

Human pericytes were transduced with a lentivirus for expression of a green fluorescent protein (GFP).
Transduction followed standard procedures and precise protocol is available on demand. Transduced
pericytes were transfected with LNA GapmeRs as described above. As endothelial cells are known for
acetylated LDL uptake’, we labeled HCMEC with 10 pg/ml Dil-Acetylated LDL (CellSystems, #CS-
D0120) for 16 hours. Matrigel (Corning, #354230) beforehand thawed on ice was transferred in 150 pl
doses to pre-cooled 24 or 48 well plates from Corning avoiding bubble formation. Plates were incubated
for 30 min (humidified atmosphere, 5% CO,, 20% O, 37°C). 10° stained HCMEC were seeded on top
of the matrigel layer in a maximum volume of 500 pl and incubated for 3 hours. Afterwards, medium
was removed and 10* GFP-expressing pericytes were added in a maximum volume of 500 ul for 3 hours.
Both steps had the same incubation conditions as the matrigel layer. Cell medium was removed and
another layer of 150 pl Matrigel was added avoiding bubbles and incubated at described conditions for
another 30 min. Pericyte culture medium and ECM (1:1) were added to reach a final volume of 500 pl
and the plate was incubated for another 16 hours. Next, cells were fixed for 10 min using 4%
Paraformaldehyd (PFA; Roti-Histofix, Carl Roth). 3 randomly chosen fields per view per well were
generated using confocal z-stack imaging. GFP-positive pericytes were defined as recruited when
attached to HCMEC. Recruited pericytes were counted using Fiji is just ImageJ cell counter tool. The
average of recruited pericytes per field per view is presented.

Barrier function assay

The assay was performed as described previously with modifications'’. In brief, human pericytes were
transfected with LNA GapmeRs as described above. ThinCerts (Greiner Bio-One, #662610) with 1 pm
pores were coated on the outer pore section with 70 ul of 0.001% Poly-L-Lysin (PLL; Sigma-Aldrich,



#P4832-50ML) in sterile water for 45 min at room temperature. Afterwards, the inner pore section part
was coated with 150 pl of 5 pg/cm? fibronection (FN; Sigma-Aldrich, #F0895-5MG) in PBS (Thermo
Fisher Scientific, #14190-094) for 45 min at room temperature. 24 hours after transfection, 3x10*
pericytes in 70 ul pericyte culture medium were transferred to the PLL coated outer section for 45 min
at room temperature. Subsequently, 3x10* HCMEC in 250 pl ECM were transferred to the FN coated
inner section. Cells were incubated for 48 hours (humidified atmosphere, 5% CO», 20% O,, 37°C). 0.25
mg/ml fluorescin Isothiocyanat-dextran (average molecular weight 70,000; Sigma-Aldrich, #FD70S-
100MG) in ECM were given in the inner compartment. After 30 min 80 pl out of the outer compartment
were transferred to a 96 well plate and fluorescence was measured after excitation with 485 nm using a
Synergy HT microplate reader (BioTek).

Intercellular dye transfer assay and live cell imaging

HUVEC were seeded on 6 cm dishes. At 60-80% confluency, HUVEC were stained with CellTrace
calcein red-orange AM (Life Technologies, #C34851) according to the manufacturer’s instructions.
Pericytes were grown to confluency in a culture dish and labeled with CellTrace calcein green AM (5
umol/l, 30 min; Life Technologies, #C34852). Subsequently, pericytes were washed, trypsinized and
transferred into the HUVEC grown culture 6 cm dish at a pericyte/HUVEC ratio of 1:4. After 4 hours
of co-culture, live cell imaging was performed using a Zeiss epifluorescent microscope.

MTT assay

Human Pericytes were cultured in 24 well plates and transfected with LNA GapmeRs for 48 hours. After
removal of culture medium 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid (MTT; 5
mg/ml in PBS; Life Technologies, #M-6494) diluted 1:10 in DMEM (Gibco, #41965-039) was applied.
Culture plates were incubated for 1 hour (humidified atmosphere, 5% CO,, 20% O,, 37°C). DMEM
with MTT was removed and pericytes were resuspended in DMSO. 100 ul of each well were transferred
to a 96 well plate and absorption was measured at 565 nm in a Synergy HT microplate reader (BioTek).
Blank wells treated with DMEM with MTT and DMSO were used for background subtraction.

Caspase-3/7 Assay

Human pericytes (2x10* per well) were seeded in a black 96 well plate (Corning, #353219). Pericytes
were transfected as described above. Positive control was treated with 200 nM Staurosporine for 4 hours.
All pericytes were stained with 5 uM CellTrace calcein red-orange AM (Life Technologies, #C34851)
in pericyte culture medium for 30 min. After washing, cells were incubated with Caspase-3/7 reagent
(Apo-One Homogeneous Caspase-3/7 Assay, Promega, #G7790) composited as recommended for 2
hours with light exclusion at room temperature. Fluorescence (calcein red-orange excitation: 577 nm,
Caspase-3/7 reagent excitation: 499 nm) was measured with a Synergy HT microplate reader (BioTek).

Immunofluorescence (IF)

Standard immunofluorescent staining procedures were done as already described®*!'. In brief, human
pericytes were washed with PBS (4°C) and fixed in ice cold acetone (-20°C) for 10 min. Cells were
incubated with 7% donkey serum (Dianova) and Triton X-100 in PBS (4°C) for 2 hours at room
temperature. Primary antibody incubation (anti-Ki67 and anti-PDGFR3) was performed with 2% bovine
serum albumin (BSA; Dianova), 0.05% azide and 0.1% Triton X-100 in PBS (4°C) for 16 hours at room
temperature. Secondary antibodies (anti-rabbit 488 and anti-goat Cy3) and Hoechst (1:1000) were
applied in 2% BSA and 0.05% azide in PBS (4°C) for 2 hours at room temperature. Pericytes were
embedded in Fluoromount Aqueous Mounting (Sigma-Aldrich, #F4680-25ML) for microscopy.

Flow cytometry analysis

For quantification of early apoptotic and necrotic cells, a flow cytometry detection kit was used as
recommended by the manufacturer (BD Bioscience, #556547). In brief, human pericytes were grown
on 10 cm dishes at a density of 5x10° cells/dish. Transfection procedures were carried out as documented
above. For Annexin V labeling, a V450 Annexin V antibody (BD Bioscience, #560506) was used. Cells
were starved for 4 hours in Opti-MEM medium in order to induce apoptosis (positive control). For
propidium iodide positive controls, cells were treated with 80% ethanol for 5 min at room temperature.



Upon silencing of HypERInc with siRNA or LNA GapmeRs, cells were washed once with PBS (4°C),
trypsinized and centrifuged for 5 min at 1000 g. Washing with PBS and centrifugation was repeated for
2 times. Next, cells were resuspended in binding buffer (4°C). 100 pl of cell suspension (4x10° cells/ml)
were stained using 5 pl of V450 Annexin V and 5 pl of propidium iodide solution for 15 min at room
temperature in the dark. Subsequently, 200 ul binding buffer was added to the vial and measurements
were carried out. Analysis was done using a BD FACSCantoTM 1I flow cytometer and BD FACSDiva
Software (from BD Biosciences).

RNA-fluorescent in situ hybridization (RNA-FISH)

RNA-FISH probes were designed using the Stellaris probe design tool. Incubation of RNA-FISH oligos
directed against HypERInc labelled with Quasar dye 570 were applied for in situ hybridization as
recommended by the manufacturer (Stellaris). MALAT1 RNA-FISH oligos (Quasar dye 570) were used
as a positive control. In brief, human pericytes were grown on coverslips. After reaching confluency,
cells were exposed towards 24 hours of hypoxia as described above. Following hypoxia, cells were
washed with PBS and fixed in 3.7% formaldehyde in RNAse free 1x PBS for 10 min at room
temperature. Subsequently, probes were washed twice with PBS and permeabilized using 70% ethanol
for at least 1 hour at 4°C. Next, cells were washed as recommended. Finally, probes were hybridized
with oligos against HypERInc or MALAT1 respectively for 4 hours at 37°C. Cells were then washed
and counterstained with Hoechst (Invitrogen, 1:2000) for 30 min. After a final washing step cells were
embedded in fluoromount and imaging was performed with a Zeiss epifluorescent microscope using an
oil objective with 100x magnification.

Protein isolation, SDS-PAGE, immunoblotting

Human pericytes were washed with PBS (4°C) and snap frozen in liquid nitrogen. Next, RIPA buffer
(4°C; Thermo Fisher Scientific) containing protease inhibitor (Roche Diagnostics) was applied and cells
were scraped off with a pre-cooled rubber policeman (-20°C). Pericyte lysate was incubated on ice for
45 min. Next, protein lysate was centrifuged for 10 min with 2350 g at 4°C. Supernatant was carefully
removed and transferred to ice-cooled vials. Concentration was measured with a spectrophotometer and
Bradford protein assay with Roti-Quant (Carl Roth) following manufacturer’s instructions. Equal
volumes of lysate containing 40 pg of protein were mixed with an equal volume of 2x Laemmli buffer
(Sigma-Aldrich). Mini-PROTEAN TGX Precast Gels (Bio-Rad) were used for SDS-PAGE at 150 V for
50 min in TBST (Bio-Rad). Gels were blotted using a Pierce G2 Fast Blotter (Thermo Fisher Scientific)
as recommended. Western blots (WBs) were blocked with 5% milk/BSA in TBST. Primary antibodies
were incubated for 16 hours in 5% milk/BSA in TBST at 4°C. Secondary antibodies were incubated for
1 hour in 5% milk/BSA in TBST at room temperature.

Induction of autophagy

In order to block fusion of autophagosome and lysosome cells were treated with 50 umol/l chloroquine
(CQ; Novus Biologicals) for 24 hours or with 100 pmol/l rapamycin (Invivogen) for 4 hours to induce
autophagy.

Confocal microscopy and image analysis

Fluorescent images were acquired with a Leica SP5 confocal setup (Leica Microsystems). Z-stacks with
z-stack step size smaller than 1.8 um were acquired. Three excitation wavelengths were used (405 nm,
488 nm and 552 nm). Image analysis was done with Fiji is just ImageJ for windows. To analyze Ki67
positive cells, images were randomized. Cells with a positive Ki67 signal were counted. Hoechst stained
nuclei were counted after creation of binary images with Fiji automated particle analysis. Ki67 positive
cells were set in relation to Hoechst positive cells to determine the relative number of proliferating cells.
PDGFRp was used as a control marker for pericytes.



Patient cohort analyses

Human heart samples

Isolation of left ventricular total RNA was performed with an All-Prep Kit (Qiagen) as recommended
including DNA digestion. Left ventricle samples from patients without diagnosis of heart failure (n=5)
were compared to samples from patients with diagnosed heart failure (n=19) in RT-qPCR. Participants
gave written informed consent to the current study and it was authorized by the ethics committee of the
medical faculty of Heidelberg (appl. no. S-390/2011). Symptomatic heart failure patients were
consecutively, prospectively enrolled in this study. Control samples were used correctly according to
the protected health information (45 C.F.R. 164.514 e2) (Bioserve) and the BCI informed consent F-
641-5 (Biochain).

Human lung samples

Human explanted lung tissues from subjects with IPAH (n=7), or control donors (n=7) were obtained
during lung transplantation. Samples of donor lung tissue were taken from the lung that was not
transplanted. The study protocol for tissue donation was approved by the ethics committee (Ethik
Kommission am Fachbereich Humanmedizin der Justus Liebig Universitit Giessen) of the University
Hospital Giessen (Giessen, Germany) in accordance with national law and with Good Clinical
Practice/International Conference on Harmonisation guidelines. Written informed consent was obtained
from each individual patient or the patient’s next of kin (AZ 31/93, 10/06, 58/15). All lungs were
reviewed for pathology, and the IPAH lungs were classified as grade III or IV according to Heath and
Yacoub.

Statistical analyses

Experiments and each experimental condition were carried out n>3 times if not declared otherwise.
Results are shown with mean + standard error of the mean (SEM). GraphPad 7 for windows (Graphpad)
was used for data analysis. Null hypothesis was rejected at 0<0.05. The Pearson and D'Agostino
omnibus or Shapiro-Wilk normality test was used for normalization control. If passed, the two sided
Student’s t-test was used to compare the difference between two groups, if not, analysis was done with
the two sided Mann-Whitney U test. Analyses comparing more than two groups were done with One-
Way ANOVA with correction for multiple comparisons (Dunnett). Correlation analyses were done
using Pearson correlation if data followed Gaussian distribution, or Spearman method if data did not
follow a Gaussian distribution. Grubbs’ test was used for outlier detection and outliers were removed
for in vitro experiments. Outliers in patient data sets were not removed. Venn diagram was constructed
using Venny'%.
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A, FPKM reads of PDGFRp and NG2 demonstrate robust expression in human primary pericytes. B,
Immunoblotting confirms expression of PDGFRf and NG2 in human pericytes.



Online Figure 11

Live cell imaging in pericyte-endothelial co-cultures demonstrates formation of functional intercellular
junctions between pericytes (green, indicated by asterisks) and HUVEC (red) as indicated by
intercellular dye transfer (arrows).
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A, Chart pie diagram of non-coding RNA expression based on RNA-seq analyses in human and B,
primary mouse pericytes. C, Venn diagram showing commonly annotated IncRNAs in human and
mouse pericytes. D, ECR browser (https://ecrbrowser.dcode.org/) analysis of the human HypERInc
gene position (region highlighted in purple) indicates up to 70% sequence homology (area under
the curves in red) in the mouse genome in locus conservation. HypERInc is flanked by the
neighbouring genes MKL2 and PARN. E, RNA-seq in primary mouse pericytes demonstrates high
read coverage of the possible mHypERInc orthologue (in purple). F, Primer alignment and RT-PCR
validation of mHypERInc in primary murine pericytes.
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A-C, Targeting HypERInc with small interfering RN As results in significant HypERInc knockdown that
goes along with loss of pericyte markers PDGFRJ and NG2. D-F, A combined silencing strategy using
both siRNAs and LNA GapmeRs enhances HypERInc knockdown efficacy that results in de-
differentiation of human pericytes. All experiments are n>3; *P<(.05; **P<0.01; ***P<0.001
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A, MTT assay demonstrates significant loss of cell viability upon HypERInc knockdown using siRNAs
and LNA GapmeRs. B, Quantitative analysis of the autophagy marker LC3B II demonstrates that loss
of HypERInc does not induce autophagy. C, Representative protein immunoblotting of LC3B. D, Flow
cytometry analysis of annexin V positive cells suggests that loss of HypERInc does not induce apoptosis.
E, Analysis of propidium iodide positive cells suggests that loss of HypERInc does not induce necrosis.
CQ: Chloroquine. All experiments are n>3; **P<0.01; ***P<0.001
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A, ER stress induction results in significant downregulation of HypERInc. B, Scheme depicting
regulatory feedback role between HypERInc expression and ER stress. C, ER stress results in de-
differentiation of pericytes. D, Silencing HypERInc significantly increases proteolytic ATF6 cleavage.
All experiments are n>3; *P<0.05; **P<0.01
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Gene Ontology analysis with regard to biological processes following HypERInc silencing in RNA-seq
demonstrates upregulation of genes affecting cardiovascular system development.
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RT-qPCR analyses of HypERInc and pericyte markers reveal significant correlation of HypERInc with
(A) PDGFRS, (B) NG2 and (C) Desmin in human lungs derived from healthy donors (n=7) and patients
diagnosed with IPAH (n=7).



Online Table I Primary Antibodies

Primary Antibodies Antibody concentration Item number / manufacturer
anti-Ki67 (IF) 1:200 ab15580 / Abcam
anti-PDGFRJ 1:200 (IF); 1:3000 (WB) GT15065 / Neuromics
anti-IREa (WB) 1:1000 3294 / Cell Signaling

anti-BiP (WB) 1:1000 3177 / Cell Signaling
anti-Actin (WB) 1:400 ab3280/ Abcam

anti-aTubulin (WB) 1:5000 ab6160 / Abcam

anti-HA (WB) 1:1000 23678 / Cell signaling
anti-CAS9 (WB) 1:1000 146978 / Cell signaling
anti-NG2 (WB) 1:1000 AB5320 / Millipore
anti-ATF6 (WB) 1:1000 ab122897 / Abcam

anti-LC3B (WB) 1:1000 NB100-2220 / NovusBiologicals

Online Table II Secondary Antibodies

Secondary Antibodies Antibody concentration Item number / manufacturer
anti-rabbit 488 (IF) 1:200 ab150073 / Abcam
anti-goat Cy3 (IF) 1:200 705-165-147 / Dianova
anti-rabbit HRP (WB) 1:2000 7074 / Cell Signaling
anti-rat HRP (WB) 1:5000 ab102265 / Abcam
anti-mouse HRP (WB) 1:3000 ab97030 / Abcam

Online Table III Primer Sequences
Species Target Forward Reverse
Homo RPLPO (PO) | TCGACAATGGCAGCATCTAC ATCCGTCTCCACAGACAAGG
Sapiens
Homo NG2 TGAGATCAGAAGGGACCAGC GAATACGATGTCTGCAGGTGG
Sapiens
Homo aSMA GCACCCCTGAACCCCAAG AGGCATAGAGAGACAGCACC
Sapiens
Homo VEGFA AATGTGAATGCAGACCAAAG GACTTATACCGGGATTTCTTG
Sapiens
Homo PDGFRp ACAATGACTCCCGTGGACTG CTCGGCATCATTAGGGAGGA
Sapiens
Homo HypERInc AGGCCAGAGGATGGAAAAGG TTTGCATCTCCCAACCAGCA
Sapiens
Homo Desmin CTCTACGAGGAGGAGCTGC ACTGAATCTCCTCCTGCAGC
Sapiens
Homo MALATI TGAGTGTATGAGACCTTGCAGT | GCAGCGGGATCAGAACAGTA
Sapiens
Mus mHypERInc | TGGGACAGGGACAAGGCG GTTCGCAGTTCCCAGCTC
musculus (Primer 1)
Mus mHypERInc | GGCAGCTCAGGTTCTACACA ACCTGTGTGTCCATGTGC
musculus (Primer 2)
Mus mHypERInc | ACAACCAGGGCTACATAGAGA | TGTTGGGCTGTTTTGTTTTGT
musculus (Primer 3)
Mus mHypERInc | ACCAACATTGCTGCTCCATC GCAGAAAAGAGGACAAACAA
musculus (Primer _4) CC




Online Table IV gRNA target sequences

Label

Target Sequence PAM

Guide#1 250bp up

CAAATATAGTCAGCGGATAG GGG

Guide#2 250bp up

GCCAAATATAGTCAGCGGAT AGG

Guide#1 1500bp up

CAGGAGAATCGCCTACACCT GGG

Guide#2 1500bp _up

GCAGGAGAATCGCCTACACC TGG

Guide#1 2000bp up

ATGTGCTTAGGTCTCGGGGT GGG

Guide#2 2000bp up

CTAGCCTCAGTCTTTCGATC TGG

Guide#1 2500bp up

TGAGCACTTCGCTGCCGTTA TGG

Guide#2 2500bp up

CTTGAGGAACTAGACGTCTC AGG

Online Table V

Please download from http://circres.ahajournals.org

Online Table VI

Please download from http://circres.ahajournals.org
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TG ACTCL ACTC, A5 M, CHLL LY DS, I CSE LGM DM, 8, CHD3D DRS147,D1S164, D10, DXSE0, 45235 DASIG8 DSt DA, DXSE7, MINESADCYE ACS TAE, LSk, TGkt
(CACNAZ, CACNL2A, CCHL2A, LINCOI112, InRNA-N3, MFIS3 TPM2, AMICDL, DAL, DA2S, HEL'S-273, NEMA, TMSB TGAL, HeT18964 LAMAZ, LAMM ITGAY, CDS1, MSKE, VNRA, VTNR CA

AIYLS, LC20, MLC-2C, MLC2, MRLCL, MYRL2 MYLK, AATY, KRP, MLCK, MLCKL, MLCKI0S, MLCK210, MSTPOS3, MYLKL smMLCK RAMPL ADCYS, ACS GNA3, G13 ACTAZ, AATS, ACTSA, MYMYS CALDL, COM, H.CAD, HCAD, LCA
NAG22 ACTAZ, AATE, ACTSA, MYMYS PRI, ACY, CLAG,INSPSRL, IP3R,IP3RL, PPP1RO, SCALS, SCALS, SCA29 PPPIR12A, M130, MBS, MYPTI PLCBI, EIEEL2, PPLC, PLC-154, PLC., PLCIS4, PLCB1A, PLCB1B MRVIL, IRAG, AV
(GC-5A2, GUCLAZ PRKCH, AAGE, PAC-alphs, PKCA, PRRACA

TG ACTCL ACTC A0S B, UL LY DS, G CS LGMII DM, SO, CHD3D DRS145, D164, D0, DSE0, Y5235, DASIG8 DS, DT, DSET, WIS 142 0S, TGkt CAOMADY
(CACNL2A, CCHLZA, LINCOTLLZ, IncRNAN, WIHS3 TPM: AL, DAZ8, HELS.273, NEW, TWISS

CONLIAL CaTIAL COLL, T2 VYL, A, MAC-2, WS MALEL KAEE V. AT, K30 AL, LK, MLCCI08 MLCKZHG, TPORS, VL SnMLCKTHBP TS COLA, CA4 THBSS,TP3 LAMAS TGBS 00CKL £
1GFIR, €021, IGFR, IGFR, JTK13 ACTNY, BOPLTLS PARVA, CHLKEP, M130, MBS, MYPTL T (GRF2 LAMAZ, LAMM PRKCA, AAGS, PKC-slpha, PKCA, PRIACA ITGAY, CDS1, M1

v
TGS DES, CSML, CSM2, LGMD2R DMD, BMD, CMID3B, DXS142, DXS164, DXS206, DXS230, DXS239, DXS268, DYS268, DXS270, D , CACNAZ, CACNL2A, CCHL2A, UINCOL112, IncRNA-NS, MHS3 ACTL, |
D325, COHN, COW325, NCAD ITGALL HST18964 LAMAZ, LAMM ITGAY, CDSL, MSKS, YNRA, VINR CACNGA.
COLIIAL, COLIAL, COLLS, STL2 ITGB3 THBS?2, TSP2 COLAAG, CAUA THES3, TSP3 LAMAS ITGALL, HST18954 HSPG2, HSPG, PLC, PRCAN, SIA, SIS, SISL LAMAZ, LAMIM ITGAV, CDS1, MSKS, VNRA, VTN,
INSR, CD220, HHFS MYLK, ART7, KRP, MLCK, MLCK, MLCKL08, MLCK210, MSTPO3, MYLKL, smMLCK MYLS, LC20, MLC-2C, MLCZ, MRLC1, MYRLZ NPPE, BVP ADCYS, ACE SLC25AY,
P, ACY, Utk NP, T Pk, o186, SEALS, S S CRER, CRE 8 PP RS, W13, 6, WYFTL LB, EER, L L, L 198, L1, PLCIS, PLCO A, PLES1 ML G, L YIRS G 54
13,613 5RF,

TTGRE M5, LA, MLC 2 MLEZ MALCS, MYRL2MYLK ARTY, K, MLCK MLCKL MLCKIOS, LCE10 MSTPOE), MYLKL SLCK MYVS BOPLTE, DAL EFTS, TS, Wi, G
PIPSK2A, PIPSKI-alpha, PPSKIIA, PIPK GNAL, G13 MYHL0, NMIMIHC I, NMIMHCB MRAS, M-,
DOCK1, DOCKIBO, ceds ITGAV, CDS1, MSKS, VNRA, VTNR

CCL2, GDCF-2, HCLL, HSMCR30, MCAF, MCP-1, MCP1, SCYA2, SMC-CF THES2, TSP2 THES3, TSP3 TGFB2, LOS4, TGF-beta2 VCAM, CD106, INCANI-100 SOC2, D362, HSP6, HSPG1, SYND2.

A, NVIMHC-IA, NMIMHCA PIPAKZA,
NEM7 ACTN1, BOPLT1S GSN, ADF, AGEL PPPIRL2A, M130, MBS, MYPTL (TGALL, HT18964 ENAH, ENA,

COLI1AL, COLIAL, COLLS, STL2 COL21AT, COLALL dISS2115.1, J708F5.1 SLC3GAL, D, LYAATI, PATI, TRAMDS3 COLISA, KNO, KNOI, KS ELN, SVAS, WS, S COL9A2, DI39622.4, EDM2, MED, STLS COLLAAL, UND COLIAY

COLLIAL, COLIAL COLLS, STL2 TGF82, LDSA, TGF-beta2 COLGAL CAGE LAMAS HSPBL, CMIT2F, HEL'S102, NN, HS 76067, HSP27, HSP28, Hsp25, SRP27 ACTNL, BOPLTIS PLCSL, EIEEL2, PLPLC, PLC-154, PLC| PLCISA, L.
A, AN RRCA, ARG, G PR, RRACA

RP, ML, MLCKL, MLCK108, MLCK210, MSTPOS3, MYLKL, smMLCK CACNGA ADCYE, ACS CACNAZDY, CACNAZ, CACNLZA, CCHLZA, LINCD1112, IncRNA-N3, MHS3 CAY
oy awmwm NG CLoR NS 3, 3, PPLRDA AL, SCLE SCA28 PPN, V30 MBS, WYPTL PLEB, EREES, PLLE PLC 150 A PLEIA PLCBIA. PCBEB GUCYIAR, G 6, GUC1AR RREA A
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(GCNT, C2GNT3 GALNT1S, GALNACTIS, GALNTIS, GALNTLY, GalNAC-TLS, GaINAG-T18 GALNTIO, GALNACTLO, PRGALNACTLO, PPGANTASE0 GALNT2, GaINACT2
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MSKE, VNRA, VTNR
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. PAC alpha, PKCA, PRKACA
VEAML, CD106, INCAM-100 PLCBS, EIEE12, PLPLC, PLC-154, PLCA, PLC154, PLCB1A, PLCB1S PRKCA, AXGS, PKC-alpha, PKCA, PRKACA

MDIR, CMHL, 1, ca HL2A, UINCO112, IncRNA-NS, MHS3 TP, AMCD, DAL, DA2B, HEL'-273, NEM, TMSB CREBS, CRE-69A PLCB1, EIEEA2, |
150, PLC, PLE1S4, PLCBLA, PLCB1E PRKCA, AAGS, PKC-tlphs, PKCA, PRIACA

SN, ASNSD, TSLL ABAT, GABA-AT, GABAT, NPDO03 ASS1, ASS, CTLNL

L2 GOCR-3,HEIL, HSMCRID MCAS, MR-, MCPL, SCYA2 SH.CFC2CL1 A0CD-, ot NTN, T, 5CY01, fractal o1 1 , CRE.89A TRAFS, MGC:39780, RNFL
AHD, WS, CD339, 1, JAGH

ST, 2087 CHSY3, CHSY2, €553
SCD, FADSS, MSTPODS, SCDL1, SCDOS PTPLB, HACD?.

STATL CAND? 53, STATS T8, 08k Tt X6 PATECOLUM, AR TAORL AT ACYRLEG A5, AL, 551 LDS1 OSIA LS34 SSE, S0, AR LANAS TIAS MGC:378 (AFA G, oz,
ITKL3 EPASL, ECYTA, HIF2A, HLF, MOP2, PASD?, bHLI73 CDKNZS, COKA, INKAS, M2, PLS, TP15, pLSINKIb DAPKL, DAPK LAMAZ, LAMM PRKCA, AAGE, PKC alphs, PKCA, PRKACA ITGAV, CDS1, MSKS, VNRA, VT1

GUCY1A2, 6C:5A2, GUCIAZ PLCBI, EIEEL2, PLPLC, PLC-154, PLC1, PLCISA, PLCSIA, PLCBIS ITPRL, ACY, CLAR, INSP3RL, P38, IP3RI, PPPIRSA, SCALS, SCALG, SCAZS ADCYS, ACS PRKCA, ARG, PKC alphs, PKCA, PRKACA
GUCY1A2, 6C:5A2, GUCIAZ PLCBI, EIEEL2, PLPLC, PLC-154, PLC, PLCISA, PLCSILA, PLCBIS ITPRL, ACY, CLAA, INSP3RL, P38, IP3RI, PPPIRSA, SCALS, SCALG, SCAZS ADCYS, ACS PRKCA, ARG, PKC alphs, PKCA, PRKACA
COKe, PLSTIRE TGFBRI, AATS, ACVRLKA, ALKCS, ALKS, ESS1, LDSL, LDSA, LDS2A, MSSE, SKRA, TGFR1 TGF82, LDSA, TGF-beta2 STATL, CANDFT, ISGF-3, STATO1,

EPASL ECYTA, HIF2A, HLF, MOP2, PASD?, bHLHe73 RAPGEFL, C3G, GRF2 GAB1 TGF82, LDSA, TGF beta2

(GSN, ADF, AGEL ASAP3, ACAPA, CENTB, DDEFLL, UPLC1 CFLY, NEM PRKCA, AAGS, PKC-alpha, PKCA, PRKACA ASAP1, AMAP1, CENTSA, DDEFL, PAG2, PAP, 2614,

PLCBI, EIE12, PLPL, PLC-154, PLC, PLCISA, PLCIA, PLCB1E ITPRI, ACV, CLAA,INSP3RL, P38, IP3R1, PPPIRSS, SCALS, SCAL PRKCA, ARG, PKC alphs, P HU-2, MAPKAPIC, BSK,RSK, 56K+

T, K CERBETA, AR AT AL, AT, WAL T, T TATL CANDR,SG7.3, STATSEMEDSS,ARCIS,DRPL50 WSS, THRAP, TOAPAD LCR, RS, LG, A4, S, i
A AAGE PR, PRCA MKAATGA, CO1 M, NAA VT

AT et A, RO, k5 38 51,051,514, LD, S, SR, TG TG, 05, TG bea COR, PISTIE CREDS, CRE BFA HSPG2, W5, P PRCAN S, 5515 FRKCA,
iy

EXTLL EXTLEXT, BXT, LGCR, LG5, TRPS2, TTV

SLCAN, HNBCL, KNBC, NBC1, NBC2, NBCel A, SLC4AS, BANMC, PNBC PLCSL, EIEEL2, PLPLC, PLC-154, PLC| PLCIS4, PLCBIA, PLCBL ITPR1, ACV, CLAL, INSP3RL, IP3R, IP3RL, PPPLRSA, SCALS, SCALS, SCAZ9 ADCYS, ACS PRKC

alpha, PKCA, PRY

RASGRP1, CALDAG-GEFI, CALDAG GEFI, RASGRP, , hRasGRP1 CACNGA RPSEKAL, HU-2, MAPKAPKIC, RSK, RSK3, 6K alphs, S5 slpha?, p90 5K, ppoORSK3 TGFBR1, AATS, ACVRLKA, ALK5, ALKS, ESS1, LDSL, LDSLA, D524,

T TGP L0 TG CACMAIO, CACAL CACNLZ COMIA.IGOLL2, oA, WS WA, 4 R, AASS, A 5P AT, HEL-102 M. 5760757 S8 Wi, SHFET CACNA, ¢
213.2, ECAB,EIGS PRKCA, AAG, PKC-3lphs, PKCA, PRKAC

SCD, FADSS, MSTPODS, SCD1, SCDOS PTPLB, HACD2 CPT1A, CPTL, CPTA-L, LCPTL
PATI, EPI, P54, PSAT

PLCBI, EIEE12, PLPLE, PLC-154, PLEA, PLCISE, PLCBLA, PLESTB ADCYS, ACS PRKCA, AAGE, PKC-alpha, PKCA, PRRACA

CoLtAL COIAL COL U2 NS, CO20 1S THES? 52 COLaws, CAMTHESS, PLSTIRE 1GF1R, CD221,IGFIR, G, ITK13 CREBS, CRE-89A ITGA1, M PR P
PKCA, PRKACA ITGAV, CDSL, MSK, V

KSR, CD220, HHES PRKDL, PKC-MU, PKCM, PKD, PRKCM ADCYE, ACS SIPAILL, EGTP1 IRAS, -5 & RAS3, RRAS3 IGFLR, CD221, IGFI, IGFR, ITK13 PLCBI, EIEEL2, PLPLC, PLC-154, PLC, PLC154, PLCBLA, PLCB18 RAPGEFL, |
KCA, AAGE, PKC-lpha, PKCA, PRKACA

TPA2, AMICO, DAL, DAZB, HEL'S-273, NEM, TMISB ACTCI, ACTC, ASDS, CMDIR, CMH1L, LUNGA CACNGA CACNAZDI, CACNAZ, CACNL2A, CCHL2A, UINCOLLL2, IncRNA N3, MHS3
ABAT, GABAAT, GABAT, NPDDOS ALDHIB, ALDHS, ALDHX

PRICKLED, EPMS SFRP2, FRP-2, SARP1, SDF-5 GPCA, K glypican DKK2, DKK-2 PLCBI, EIEEL2, PLPLC, PLC-154, PLC, PLC154, PLCB1A, PLCBLS PRKCA, AAGS, PKC-alphs, PKCA, PRKACA

FTPRL ACY, CLA, INSP3RL1, 3R, P3R1, PPPIRSA, SCALS, SCAL6, SCA2S PLCBL, EIEEL, PLPLC, PLC-154, PLC, PLCISA, PLCBIA, PLCBIB CREBS, CRE 8PA ADCYS, ACS PRKCA, AAGS, PKC-alph, PKCA, PRKACA
PLCBL, EIEL, PLPLC, PLC154, PLCI, PLCISA, PLCBIA, PLCSIB CREBS, CRE BPA ADCYS, ACS PRKCA, ARG, PKC-3lpha, PKCA, PRKACA

LIFR, CO118, I3, 552, STWS, SWS ZFHX3, ATBFL, ATET, NFS27 BMPRIA, 10a23del, ACVRLK3, ALK3, CD292, SKAS IGF1R, D221, IGFR, IGFR,JTK13 INHBA, EDF, FRP D4, DB, bHLH527

PIPAK2A, PISPAKA, PIPSKOA, PIPSKILalphs, PIPSKIA, PIPK PLCB, EIEE12, L, PLC-154, PLC1, PLCISA, PLCBLA, PLCSIB INPPSA, SPTASE

ALDHIB, ALDHS, ALDHX L3HYPDH, CLiorf143 ASS1, ASS, CTINT
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PLCBI, EIEL, PLPLC, PLC-154, PLCA, PLCISA, PLCBIA, PLCBIB ITPRL, ACV, CLAA,INSP3RL, [P35, IP3R1, PPPIRSA, SCALS, SCALS, SCA23 ADCYS, ACG PRKCA, AAGS, PKC alpha, PKCA, PRKACA
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