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Many biological processes depend on the guided migration 
of single cells or cell collectives.1 Directed migration is based 
on gradients of attractive or repulsive molecular cues that are 
either diffusible or surface bound.2,3 Guidance mechanisms 
share some characteristic hallmarks that distinguish them 
from tissue patterns generated by random processes. One of 
the most striking hallmarks resulting from directed migration 
is stereotypic tissue patterns such as that observed in neuronal 
and blood vascular networks. However, the final pattern is 
highly adapted to function, where neuronal activity fine-tunes 
synaptic connectivity and blood flow shapes the blood vessel 
pattern.

Axonal growth cones navigate to their target over large 
distances with a precision and timing that is highly conserved 
from animal to animal.3 Modulation of attractive and repulsive 
gradients leads to erroneous pathfinding with misprojections. 
For example, Netrin is an axonal guidance cue acting from the 
neural tube midline that, if presented from an ectopic source, 
causes axonal growth cone turning toward the ectopic site of 
presentation within explant cultures.4 Furthermore, its genetic 
deletion induces misguidance in vivo.5 Although it is difficult 
to experimentally show protein gradients of diffusible cues, a 
tissue gradient of Netrin in the developing neural tube has been 
described.6

The blood vascular network is also highly organized and 
displays branching patterns that are very similar between 
animals. This is particularly true for major arteries and veins. 
Live imaging of intersegmental vessel (ISV) development in the 
zebrafish embryo reveals that directed migration of endothelial 
cells lay the foundation of the vascular network (Fig.  1A).7 
Ectopic expression of the vascular cue vascular endothelial 
growth factor, VEGF-A, in muscle cells leads to altered ISV 
trajectory from one side of the trunk to the other (Fig.  1B), 
suggesting misguidance of the vessels. This observation suggests 
that physical barriers provided by tissues are insufficient for 
steering vessel patterning and that guidance cues may direct 
endothelial cell migration. Indeed, the VEGF,8-11 Netrin1/
Unc5B,11 and Semaphorin/PlexinD112-14 signaling pathways 
regulate ISV patterning.

In mouse hindbrain and retina, VEGF-A mRNA production 
shows a tissue gradient and there is some evidence for graded 
protein distribution in the hindbrain.15,16 The c-terminal 
heparin-binding domain of VEGF-A is important for VEGF-A 
protein distribution such that its deletion results in more 
diffused VEGF-A distribution, perturbed vessel morphology 
and mispatterning of the vasculature.15,16 These data suggest 
that extracellular VEGF-A resembles axonal guidance cues 
by steering vascular sprouts by means of a protein gradient.17 
This concept is further supported by the presence of a gradient 
of internalized VEGF-A and VEGF-C in the developing 
retina vasculature, with endothelial cells at the migrating 
front displaying the highest level of endocytosed VEGF 
protein.18 Although a gradient of VEGF-A protein has not been 
demonstrated in the zebrafish embryo, indirect evidence exists. 
For instance, loss of soluble decoy receptor sFlt1 (VEGFR1) 
expression in Plexin-D1 mutants leads to ISV misprojections, 
presumably via the modulation of VEGF-A availability and 
therefore gradient formation.14 sFlt1 has also been proposed 
to locally shape the VEGF gradient in the mouse retina and 
thereby ensures appropriate angles of vascular sprouting.19 In 
addition, the CXCL12-CXCR4 chemokine signaling pathway 
plays an essential role in the patterning of arteries and nerve-
artery alignment in the skin of the embryonic mouse limb.20 
Hence, it seems likely that vascular sprouts, like axonal growth 
cones, are guided by gradients of diffusible cues. However, the 
mechanism of how blood vessels integrate signaling cues to 
form a hierarchical network of vessels is as yet unknown.
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Filopodia are highly dynamic, rod-like protrusions that are 
found in abundance at the leading edge of migrating cells 
such as endothelial tip cells and at axonal growth cones of 
developing neurons. One proposed function of filopodia 
is that of an environmental probe, which serves to sense 
guidance cues during neuronal pathfinding and blood 
vessel patterning. However, recent studies show that tissue 
guidance occurs unhindered in the absence of filopodia, 
suggesting a dispensability of filopodia in this process. Here, 
we discuss evidence that support as well as dispute the role 
of filopodia in guiding the formation of stereotypic neuronal 
and blood vessel patterns.
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Is There a Role for Filopodia in Cell Guidance?

Guided cell migration requires the generation of polarized 
plasma membrane protrusions such as filopodia, lamellipodia, 
blebs and invadopodia. Although these protrusions differ 
structurally and in their composition, they each contribute 
to cell movement by pushing the leading edge forward. Both 
axonal growth cones and endothelial tip cells display abundant 
filopodia protrusions (Fig.  2). Their dynamic behavior of 
extension and retraction is reminiscent of antennae probing 
their environment and are generally thought to serve as 
environmental sensors that integrate extracellular signals during 
directed migration. Growth cone morphology, reflected for 

instance by filopodia number, has been correlated with guidance 
decisions at choice points21-24 and filopodia preferentially 
contact target cells, sometimes over long distance.23,25 In vivo 
experiments with titrated doses of an inhibitor of F-actin 
polymerization, cytochalasin B, blocked growth cone filopodia 
formation in grasshopper Ti1 neurons and in Xenopus retinal 
ganglion cell neurons.26,27 While pathfinding was disrupted in 
conditions without filopodia, only minor effects were seen on 
axonal extension, suggesting that filopodia are dispensable for 
growth but essential for guidance. Similarly, in vitro treatment 
with cytochalasin B abolished glutamate-induced growth cone 
turning with only slight effects on neurite extension.28 However, 
a little known study on retinal ganglion cells suggests that axon 
guidance can occur without filopodia.29 Here, the authors 
demonstrate that growth cones extend few or no filopodia after 
inhibiting Ena/VASP function.29 While axonal elongation was 
slowed down, retinal ganglion cell axons devoid of filopodia 
showed normal trajectories in vivo and growth cone navigation 
across several choice points was unaffected. Thus, the role of 
filopodia in mediating growth cone navigation is unclear.

Similar to growth cones, endothelial tip cells at the 
leading edge of vascular sprouts produce many long filopodia 
that extend toward the direction of vascular growth during 
angiogenesis. These filopodia express the VEGF-A receptor, 
VEGFR2, and become misdirected and shorter upon disruption 
of VEGF-A distribution in the mouse retina.16 As filopodia 
have been proposed to act as sensors of the extracellular milieu 
and endothelial cells respond to axon guidance molecules 
such as Slits and Roundabouts, Netrins and Unc5 receptors, 
Semaphorins, Plexins and Neuropilins, and Ephrins and Eph 
receptors,30 it has been widely assumed that they sense and 
integrate pro-angiogenic and repulsive cues in tip cells to enable 
guided migration and stereotypic vessel patterning. However, 
the role of filopodia in vessel guidance has never been proven 
nor questioned.

Recently, work from our laboratory demonstrated that 
filopodia are not essential for mediating endothelial tip cell 
guidance.31 By using low concentrations of Latrunculin B 

Figure  1. Intersegmental vessels form a highly stereotypic vessel 
pattern in the zebrafish embryo (A). Misexpression of Vegfa165 in 
the embryonic trunk leads to misguidance of an ISV (arrows) toward 
cells expressing ectopic Vegfa165 (green, arrowheads) (B). DA, dorsal 
aorta; ISV, intersegmental vessel. Scale bars, 20µm. Plasmid encoding 
Vegfa165 is a gift from Nathan Lawson.

Figure 2. Axonal growth cones (A, image courtesy of Isabelle Brunet) and endothelial tip cells (B) extend long filopodia (arrowheads) in the direction 
of migration. Scale bars, 10µm.
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(Lat. B), which prevents F-actin polymerization, endothelial 
filopodia formation was abolished in the zebrafish embryo. Live 
microscopy revealed that endothelial tip cells of ISVs without 
filopodia continued to migrate along normal trajectories to 
form the stereotypic ISV pattern and to anastomose with other 
tip cells. At the low concentrations of Lat. B used, tip cells were 
able to generate lamellipodia that provided the driving force for 
cell movement although at a decreased velocity. Furthermore, 
the induction of new vascular sprouts toward sources of ectopic 
Vegfa165 ensued in the absence of filopodia.

Filopodia are Dispensable for Tip Cell Guidance

In summary, our study shows that during angiogenesis, 
endothelial filopodia are dispensable for tip cell guidance. This 
finding complements that of Dwivedy et al.,29 who showed that 
filopodia are also not essential for axonal growth cone navigation 
and challenges the long-standing notion that filopodia are 
required for guided migration. In fact, filopodia or filopodia-like 

structures have been ascribed many other functions. These 
include facilitating cell-cell matching and epithelial sheet 
adherence during dorsal closure in Drosophila,32,33 transmitting 
signals such as Delta-Notch and Sonic Hedgehog signaling 
between non-neighboring cells,34,35 inducing cell shape changes 
required for preimplantation embryonic development by 
providing tension36 and positioning nuclei in nurse cells during 
oogenesis in Drosophila.37 In endothelial cells, we propose that 
filopodia serve as templates from which lamellipodia emerge 
and that both protrusive structures coordinate to allow efficient 
migration and expansion of new vascular sprouts.31 In addition, 
tip cell filopodia facilitate the process of anastomosis, a process 
whereby tip cells meet, fuse and establish new junctions to 
form a connected vascular network. Thus, the mechanism(s) 
by which blood vessels are guided by extracellular cues is still 
unresolved.
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