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Abstract

Motivation: Over the last decades, vast numbers of sequences were deposited in public databases.

Bioinformatics tools allow homology and consequently functional inference for these sequences.

New profile-based homology search tools have been introduced, allowing reliable detection of

remote homologs, but have not been systematically benchmarked. To provide such a comparison,

which can guide bioinformatics workflows, we extend and apply our previously developed bench-

mark approach to evaluate the ‘next generation’ of profile-based approaches, including CS-BLAST,

HHSEARCH and PHMMER, in comparison with the non-profile based search tools NCBI-BLAST,

USEARCH, UBLAST and FASTA.

Method: We generated challenging benchmark datasets based on protein domain architectures

within either the PFAMþClan, SCOP/Superfamily or CATH/Gene3D domain definition schemes.

From each dataset, homologous and non-homologous protein pairs were aligned using each tool,

and standard performance metrics calculated. We further measured congruence of domain archi-

tecture assignments in the three domain databases.

Results: CSBLAST and PHMMER had overall highest accuracy. FASTA, UBLAST and USEARCH

showed large trade-offs of accuracy for speed optimization.

Conclusion: Profile methods are superior at inferring remote homologs but the difference in

accuracy between methods is relatively small. PHMMER and CSBLAST stand out with the highest ac-

curacy, yet still at a reasonable computational cost. Additionally, we show that less than 0.1% of

Swiss-Prot protein pairs considered homologous by one database are considered non-homologous

by another, implying that these classifications represent equivalent underlying biological phenom-

ena, differing mostly in coverage and granularity.

Availability and Implementation: Benchmark datasets and all scripts are placed at (http://sonnham

mer.org/download/Homology_benchmark).

Contact: forslund@embl.de

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Modern molecular biology relies on evolutionary conservation of

properties between entities such as genes and proteins that are hom-

ologous, i.e. share descent from a common ancestor. As a historical

property homology is unobservable but can be inferred from statis-

tically significant similarity under the proper conditions (Henikoff

and Henikoff, 1992). Through homology relationships (and within

them, specifically orthology relationships where common ancestry

dates back to a species diversification rather than a gene duplica-

tion), insights into molecular function of whole sequences (Bork

et al., 1998) or specific sites (Yao et al., 2003), 3D structure

(Chothia and Lesk, 1986), (Todd et al., 2001) or context such as

regulation can be transferred. Such transfer of results from direct ex-

perimentation to the components of the vast number of genomes for

which only molecular data is available, courtesy of ‘next-generation’

nucleotide sequencing techniques, means homology inference forms

a mainstay in bioinformatics research as well as in its applications in

organismal, clinical and evolutionary biology. These methods

started with the Smith–Waterman algorithm (Smith and Waterman,

1981) for exact computation of the minimal number of changes

needed to convert one sequence into another. Gradually more com-

plex probabilistic models were developed taking implicitly into ac-

count the structural constraints and codon properties of nucleic acid

substitutions, insertions and deletions. Sequence alignment/hom-

ology search/homology scoring methods quickly became over-

whelmed by computational complexity as database sizes increased,

prompting development of heuristic tools like FASTA (Pearson and

Lipman, 1988) or NCBI-BLAST (Altschul et al., 1990) which func-

tion fast enough to screen the whole of the known sequence universe

for similarity to a novel uncharacterized query.

With heuristic approaches come increased risk of error, and

given the potential importance of downstream applications such as

function prediction, the need becomes clear to properly evaluate the

reliability of homology inference tools. This is in itself not a trivial

problem, since such benchmarking ideally should involve a ‘gold

standard’ where homology status—whether shared common ances-

try holds or not—should be known with perfect certainty, which is

in principle never the case.

The existence of well-conserved ‘building blocks’ of protein se-

quence and structure, as in domain/gene families where in many

cases subtle sequence similarity is supported by clearer similarity of

the slower-evolving protein 3D structure (Chothia and Lesk, 1986),

makes for a potential workaround. Early on a preferred benchmark

was evaluating single-domain sequences from same or different

structural superfamilies as a proxy for certain positive or negative

homology status (Chandonia et al., 2004). This disregards the theor-

etical and practical difficulties which arise when domain rearrange-

ment or other forms of horizontal evolution causes mosaic gene

lineages (Vogel et al., 2004), where different regions have different

homologs, which is a complexity that the approach described here

also disregards. More tractable difficulties for homology inference

arises either when sequences have diverged too far (risk of failing to

detect homology) or are unexpectedly similar due to similar se-

quence composition biases and/or low-complexity region features

(risk of falsely inferring homology).

Several issues in creating benchmarking datasets have been dis-

cussed earlier (Aniba et al., 2010). Low-complexity regions occur

relatively seldom within well-characterized single-domain se-

quences, but will occur elsewhere in proteins, making single-domain

benchmarks underestimate the risk of false positives in genome-scale

homology inference applications. To remedy this, we previously

(Forslund and Sonnhammer, 2009) described an approach for gener-

ating ‘gold standard’ test cases for homology inference by selecting

pairs of multi-domain proteins where either all corresponding do-

mains match at the super-family/clan level (positive gold standard)

or where none of them do (negative gold standard). Using this ap-

proach, we compared different low-complexity filter settings for the

NCBI-BLAST homology search tool, and found that compositional

adjustment of score matrices allowed minimization of false posi-

tives, though sometimes at the price of truncated alignments.

More recent developments in homology inference involve

profile-based tools for detecting remote homologies, using profile-

specific score matrices (PSSMs) (Gribskov et al., 1987), Hidden

Markov Models (HMMs) (Eddy, 1998) or other techniques

(Altschul et al., 1997, Altschul and Koonin, 1998). These ‘next-gen-

eration’ homology search tools may offer greater sensitivity and

search speed (Elofsson, 2002), and because of these promises, the

need for formal evaluation of their reliability arises (Müller et al.,

1999). Consequently, we expanded on our previous benchmark ap-

proach to construct an updated evaluation dataset, then tested the

latest versions of the ‘next-generation’ homology search tools for

precision, accuracy and speed.

Additionally, we applied our benchmarking method to all three

major domain family databases: SUPERFAMILY (extending SCOP,

Fox et al., 2014; Gough et al., 2001; Hubbard et al., 1999; Oates

et al., 2015), Gene3D (extending CATH, Lees et al., 2013) and

Pfam (Finn et al., 2014), where previously only Pfam was used. This

was done with the intent that the similarity of benchmark results

derived from different databases would provide a test of to what ex-

tent, beyond differences in scope or coverage, that these resources,

built from different types of data and using different curation proto-

cols, reflect the same underlying evolutionary entities seen through

different definition schemes, a question which has been raised in

some recent studies (Csaba et al., 2009).

2 Methods

As previously described (Forslund and Sonnhammer, 2009), pairs of

multi-domain proteins are seen as homologous for the purpose of

the benchmark if their domains, in consecutive order, belong to the

same family or clan (in the case of Pfam) or the same superfamily (in

the case of Gene3D or SUPERFAMILY). If no domain in the first

protein is part of the same family/clan/superfamily as any domain in

the second protein, the pair is instead considered non-homologous

for the purpose of the benchmark. Protein pairs where neither condi-

tion held are considered potentially ambiguous and not used. All do-

main architectures and sequences were acquired from the source

databases (version 28.0 of Pfam, version 1.75 of SCOP/

SUPERFAMILY, version 3.5.0 of Gene3D), retrieving all domain

matches via v53.0 of the InterPro database (Mitchell et al., 2015),

restricting the analysis to sequences present in SwissProt

(UniProtKB/Swiss-Prot, downloaded on August 24 2015). To ac-

count for incompleteness of present domain annotations, any se-

quence was discarded for which at least fifty consecutive residues

were not assigned to a protein domain, as has been done in previous

studies (Forslund et al., 2008; Gough, 2005). Figure 1 displays ex-

amples of homologous and non-homologous pairs based on domain

architectures from each source database.

For the specific benchmark dataset, all sequences from a specific

set of genomes were included, chosen to represent the span of

(model organism) diversity while remaining small enough to be

manageable (Sayers et al., 2012)—see Supplementary Table S1 for
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details on this set of genomes. Within this set of sequences, for each

domain database, we considered each distinct protein multi-domain

architecture (PMDA) separately. In the case of Pfam, consecutive

repeat/motif-type domains, were collapsed to a single instance as in

Forslund and Sonnhammer (2009), because repeat numbers are

highly variable. Protein pairs were sampled to avoid biasing the ana-

lysis towards highly populated gene families. For each architecture,

one (if only one exists) or two proteins with that architecture were

randomly chosen from each genome in the benchmark, and the set

of pairs these proteins define were included, aiming to ensure both

within-species and across-species homologies at different evolution-

ary distance was sampled for each architecture. Negative test cases

(pairs of non-homologous proteins) were sampled by choosing a

protein from the architecture in question and another randomly se-

lected architecture meeting the criterion for non-homology, i.e. no

domains shared in any order even at clan or superfamily level, until

there were as many negatives as positives for each PMDA. See

Supplementary Table S2 for details on the number of pairs generated

for the final benchmark dataset.

For each protein pair evaluated, each pair was aligned (i.e. one

protein used as database, one as query) using each of the profile-

based homology search tools CS-BLAST (Biegert and Söding, 2009),

HHSEARCH (Söding, 2005) and PHMMER (Finn et al., 2011) as

well as the non-profile based NCBI-BLAST (Boratyn et al., 2013),

USEARCH/UBLAST (Edgar, 2010) and FASTA (Pearson and

Lipman, 1988) for comparison. All methods were run with default

parameters where not otherwise noted (see Supplementary Table S3

for details). The recently developed DELTA-BLAST (Boratyn et al.,

2012) was omitted, because it relies on a database of sequence fami-

lies aside from what is provided at runtime via query and search

database input. Similarly tools relying on iterative searches to build

intermediate profiles from additional database sequences (e.g. PSI-

BLAST; Altschul et al., 1997; or CSI-BLAST) were not included,

since their performance depends strongly on the number of iter-

ations and the composition of the database relative to the query,

making their evaluation in the present pairwise context difficult.

While HHsearch primarily is intended for use with multiple-

sequence queries, here only its performance with single-sequence

queries is evaluated, in line with the other methods tested—perform-

ance thus might be relatively better in a context other than pairwise

sequence comparisons. The score of the best high-scoring segment

pair (HSP) reported was used, with no attempt to merge together

multiple hit fragments, which also matches the common use cases

for these tools. Each tool was applied using default settings except

for setting any inclusion/reporting thresholds maximally inclusive so

as to be able to compare scores also for non-homologous pairs. Even

so, some very divergent or non-homologous sequence pairs were not

reported even as very poorly-scoring alignments. For these pairs, a

maximally poor ‘proxy’ score (bit score¼0) was assigned. When

ordering pairs by score for comparisons (e.g. Receiver Operating

Curves (ROC)) (Gribskov and Robinson, 1996), in cases of multiple

pairs sharing the same score (either the not-found proxy or other-

wise), positive and negative cases were evenly distributed within

these stretches of pairs so as not to introduce artifacts. See Figure 2

for a schematic of the workflow as a whole.

3 Results

3.1 Accuracy of different next-generation homology

search tools
Three challenging homology benchmarks were set up using protein

domain architectures based on either the Pfam, SUPERFAMILY, or

Gene3D domain definitions. True homologs were defined as multi-

domain protein pairs with identical domain architecture, while true

non-homologs were randomly picked as multi-domain proteins pairs

with no domain in common. The main advantage of using protein

domain databases instead of protein structure databases is that also

domains with unknown structure are included, such as domains

with low sequence complexity. The benchmarks contain 455, 330

and 339 architectures for Pfam, SUPERFAMILY, or Gene3D, re-

spectively. Protein pairs for these architectures were then sampled

from 16 species to build a benchmark set of 5245, 5047 and 5656

homologous protein pairs, respectively, with equal numbers of non-

homologous protein pairs sampled as well.

Fig. 1. Diagram illustrating how multi-domain homologous and non-homolo-

gous protein pairs were selected from the three databases Pfam (with clans),

SUPERFAMILY and Gene3d. Pfam architectures were considered at the Clan

level by replacing Pfam domain IDs with Clan IDs where defined. Architectures

are listed as consecutive domain identifiers separated by an underscore (_).

Only architectures with two or more domains were considered

Fig. 2. Flowchart illustrating the construction of the benchmark dataset. Protein

pairs were selected from the UniProt-SP database based on three domain data-

bases, removing any proteins with more than 50 consecutive residues not as-

signed to any domains as an initial filtering step. The dataset was restricted to

16 selected species. Pairs of proteins were subsequently retained if definable as

clearly homologous or clearly non-homologous based on our domain architec-

ture criterion, for all three of the compared domain databases
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In total, seven homology search methods were benchmarked:

the three profile search tools CS-BLAST, HHSEARCH and

PHMMER, as well as the four single sequence search tools

FASTA, NCBI-BLAST, UBLAST and USEARCH. To make a fair

comparison, we ran all tools with single sequence queries, that is

searching the proteins of each benchmark pair against each other

in a 1 to 1 setup. Comparing the accuracy (recall/true positives re-

covered versus precision/false positives avoided) of the tested

search tools on all three benchmarks (Fig. 3A–C) shows that

CSBLAST and PHMMER perform best, though all profile-based

methods perform similarly. They range in AUC1000 (Area Under

Curve for the first 1000 false positives) between 0.89 and 0.92.

The classic FASTA method performs considerably poorer at AUC

�0.83-0.89, with USEARCH only slightly better and UBLAST

consistently scoring poorest, which makes sense as these two meth-

ods were optimized primarily for speed, but surprisingly the faster

tool, USEARCH, is clearly more accurate than the slower

UBLAST. Overall, the results were very similar using either Pfam,

SUPERFAMILY or Gene3D domains to generate the benchmark

data. To investigate whether results are stable also with proteins

that contain significant disordered regions, the analysis was also

run on a version of the benchmark dataset where pairs of proteins

with unassigned regions longer than 50 residues were not

excluded, with results shown in Supplementary Figure S1A–C. The

same overall trends were replicated. Supplementary Figure S2

show corresponding method performance on the benchmark at dif-

ferent specified E-value cutoffs.

3.2 Different domain definitions largely agree
How different are the three benchmarks? As they are all mapped to

UniProt identifiers, we can compare how often a pair in two bench-

marks have the same homology or non-homology status. Restricting

to protein pairs present in all three databases controls for difference

in coverage, as well as somewhat for differences in hierarchical

granularity. Agreement between the databases with respect to hom-

ology status reflects the extent to which their differing source data,

methodologies and curation efforts uncover the same underlying

biological entities, even though it does not guarantee that the do-

main architectures are identical. As seen in Table 1, the three data-

bases are almost never in opposition on the homology status of

shared protein pairs. Inspection of randomly sampled cases of dis-

agreement between the databases under this test indicate they largely

correspond to differences in granularity, where the databases differ

in how their hierarchies are structured, but where comparison at a

higher level would resolve the disagreement.

3.3 Run time evaluation
As a complement to benchmarking method accuracy, we also bench-

marked run time by applying each tool to 100 randomly chosen pro-

tein pairs (repeated 10 times to achieve robust run time estimates),

as shown in Figure 4. Profile-HMM methods were generally slower

than heuristic string matching searches, with HHSEARCH taking

the longest followed by CS-BLAST. PHMMER and NCBI-BLAST

were intermediate, possibly due to speed being longtime develop-

ment targets for both tools, and USEARCH and FASTA overall fast-

est. UBLAST is supposedly optimized for speed but ranked among

the slower methods here. It should be noted that some methods may

run faster on other hardware or in setups other than pairwise com-

parisons, e.g. by building a larger database and running multiple

queries against it.

4 Discussion

Given the role of homology inference in genome-scale biology, valid-

ation and comparative benchmarking of the tools in use is important,

even where it is difficult in both theory and practice to construct such

A

B

C

Fig. 3. ROC plots showing cumulative true and false positive counts as tested

protein pairs (single-sequence query and search database for each pair) are

sorted based on the bit scores provided by each method. The curves are

ranked by corresponding Area Under Curve scores computed for the first

1000 false positives (AUC1000). Results are shown based on Pfam (A),

SUPERFAMILY (B) and Gene3D (C). These benchmarks exclude any proteins

with>50AA regions without domain assignments. Supplementary Figure

S1A–C show corresponding plots for a dataset where this constraint is

removed, leading to the inclusion of many more proteins with disordered re-

gions; the here observed trends were largely replicated (Color version of this

figure is available at Bioinformatics online.)

Benchmarking the next generation 2639

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/32/17/2636/2450749
by Max-Delbrück-Centrum für Molekulare Medizin user
on 15 May 2018

Deleted Text: ,
Deleted Text: Figure 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw305/-/DC1
Deleted Text: -
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw305/-/DC1
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw305/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw305/-/DC1


benchmarks so that they will reflect the issues that may come into

play in ‘live’ applications. We previously described an extensible strat-

egy for such benchmarking and applied it to the then state-of-the-art

of homology inference methods. In the present work, we have

updated this approach and applied it to the ‘next generation’ of such

methods. We have shown these benchmark results to be robust to the

choice of underlying domain definitions, and we make the method

available in script distribution for bioinformaticians seeking e.g. to

optimize their particular analysis pipelines.

From our benchmark we observe that most profile methods have

similar accuracy, with top performance from CSBLAST and the

HMMER 3 protein search application PHMMER, whereas the

speed-optimized FASTA and UBLAST/USEARCH are substantially

less accurate. All profile-based methods outperform ‘classic’ single-

sequence homology inference tools in terms of accuracy, but some

of them do this with great sacrifice of speed.

Additionally, we show that the three most widely used protein

domain definition schemes are similar with regards to which conclu-

sions on protein full-length homology or non-homology they lead

to, implying that the differences between them with regards to

source data, curation or methods chiefly lead to differences in cover-

age and granularity, but not so much to differences in what evolu-

tionary entities end up classified as domain families. Consequently,

analysis results from one generally transfers well to the others.

It is important to note that development of tools do not take

place in a vacuum separated from curation and compilation of pro-

tein domain databases. It is therefore conceivable that currently un-

known classes of protein folds exist where method performance is

different. However, it is likely that most existing folds already are

known (Roche and Brüls, 2015).

As stated previously, this benchmark leaves out recent develop-

ments (Boratyn et al., 2012) that rely on information not contained

within the query and database sequences. Such methods may im-

prove performance beyond plain sequence comparison or iterative

query tools. Evaluating them will however be a challenge for future

benchmark efforts since they depend on additional data beyond the

family membership being tested.
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Roche,B. and Brüls,T. (2015) An assessment of the amount of untapped

fold level novelty in under-sampled areas of the tree of life. Sci. Rep., 5,

14717.

Sayers,E.W. et al. (2012) Database resources of the national center for biotech-

nology information. NAR, 40, D13–D25.

Smith,T. and Waterman,M. (1981) Identification of common molecular subse-

quences. J. Mol. Biol., 147, 195–197.
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