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Abstract

The spatial architecture of signaling pathways and the interaction with cell size and morphol-

ogy are complex, but little understood. With the advances of single cell imaging and single

cell biology, it becomes crucial to understand intracellular processes in time and space. Acti-

vation of cell surface receptors often triggers a signaling cascade including the activation

of membrane-attached and cytosolic signaling components, which eventually transmit the

signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which

cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic

interface and the ratio of cell membrane area to the enclosed cytosolic volume change the

behavior of signaling cascades significantly. We suggest an estimate of average concentra-

tion for arbitrary cell shapes depending on the cell volume and cell surface area. The nor-

malized variance, known from image analysis, is suggested as an alternative measure to

quantify the deviation from the average concentration. A mathematical analysis of signal

transduction in time and space is presented, providing analytical solutions for different

spatial arrangements of linear signaling cascades. Quantification of signaling time scales

reveals that signal propagation is faster at the membrane than at the nucleus, while this

time difference decreases with the number of signaling components in the cytosol. Our

investigations are complemented by numerical simulations of non-linear cascades with

feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is

highly dependent on cell geometry and, thereby, conveys information on cell size and shape

to the nucleus.

Author summary

Frequently, cells detect signals at their surface, which are transmitted to the nucleus. The

influence of cell shape and size is often neglected and cells are regarded as well-mixed com-

partments. However, the advance of modern microscopy has unraveled heterogeneous dis-

tribution of signaling molecules in the cell and variations depending on cell shape, size and

organelle arrangement. Understanding spatial signaling usually involves solving mathe-

matical equations in space and time including approximations or sophisticated numerical
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methods. We provide exact analytical solutions for the steady state of two different spatial

arrangements of a generic linear signaling cascade model. Furthermore, the dynamic pro-

cess is investigated using advanced computational techniques. Implications are drawn on

single-cell variation in signal transduction and on spatial regulation by cell size and shape.

Introduction

Cells need to respond to a large variety of external stimuli such as environmental changes or

extracellular communication signals. Signals transmitted from cell surface receptors to target

genes in the nucleus are frequently transduced by cascades of covalent protein modifications.

These modifications consist of inter-convertible protein forms, for instance, a phosphorylated

and an unphosphorylated protein. Signaling cascades occur in many different variations

including mitogen-activated protein-kinase (MAPK) cascades and small GTPase cascades.

Signal transduction mechanisms carried out by networks of protein-protein interactions

are highly modular and regulatory behavior arises from relatively simple modifications [1].

The spatial arrangement of signaling cascades varies in different biological systems. We focus

on the localization of signaling components, which can be tethered to the cell-membrane or

freely diffuse in the cytosol. Tethering of signaling molecules to the cell-membrane can be

mediated by lipidation modifications [2–6], co-localization by membrane-bound scaffolds [7]

or membrane anchoring proteins [8]. Frequently, the first steps of signal transduction occur at

the membrane and are then continued into the cytosol. We investigate linear signaling cas-

cades with different realizations of spatial arrangements of signaling components as shown in

Fig 1. Here, we focus on the membrane-cytosolic interface, which is included in the signaling

motif shown in Fig 1(B) and 1(C).

In many experimental and theoretical studies on signaling cascades, the cell is regarded as a

number of well-mixed compartments with no variation in size, shape or organelle location.

Attempts of a quantitative description of signaling cascades with a focus on temporal aspects

have been made in [9–12]. However, the spatial description of signaling processes has received

less attention despite its relevance in understanding cell morphology and growth regulation in

time and space [13]. Examples of spatial effects on the length scale of single cells range from

the yeast mating process [14, 15] to the propagation of spatial information in hippocampal

neurons which is controlled by cell shape and vice versa [16, 17].

Since the cytosol scales with cell volume and the cell membrane with the cell surface area,

reactions on the membrane and in the cytosol scale with the cell-surface to cell-volume ratio.

For instance, we obtain an area/volume ratio of/ 3/Rcell for a spherical cell geometry, where

Rcell is the cell radius. We will show that this scaling affects the global phosphorylation rate of

signaling proteins that diffuse in the cytoplasmic volume, which depends on cell size. While

cytosolic gradients naturally occur from the membrane to the nucleus, membrane-bound

components can only form gradients along the membrane, which changes the response to het-

erogeneous signals. Furthermore, the diffusion on the membrane is much slower for mem-

brane-bound components than for cytosolic components [18]. Both of these factors are

expected to largely change signal transduction properties of the pathway.

An analysis and comparison of spatial signal transduction motifs in response to spatially

homogeneous and heterogeneous signals is presented in this study. The natural extension

of widespread used ordinary differential equations are bulk-surface partial differential

equations [19, 20]. Here, bulk refers to the cellular compartments that are represented as a

volume such as the cytoplasm or the nucleus, while surface refers to all cellular structures
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that are represented as an area such as the cellular or nuclear membrane. Since their intro-

duction to cell signaling systems [21], bulk-surface partial differential equations have

been successfully employed in several models for cell polarization [18, 22–24]. However,

membrane-cytosolic interfaces at different stages of a signaling cascade have not yet been

investigated.

We start with an analysis of two different motifs with simplified linear kinetics, which

allows to develop exact analytical solutions of the steady state. Both motifs differ in their cell

size dependence and we show further that their behavior can be drastically different from the

assumption of well-mixed compartments. The time-scaling of signal transduction is investi-

gated using the method of local accumulation times [25]. We continue by investigating the

response and sensitivity to spatially heterogeneous signals such as signaling gradients for sym-

metrical and asymmetrical cell shapes. In the last section, we proceed with numerical investi-

gations of systems with negative feedbacks which lead to cell-size dependent oscillations. A

Fourier analysis in time is used to provide insight into the dependency of oscillation frequency

and amplitude on cell size. Depending on the spatial motif, cell size limits for the extinction of

oscillatory behavior are obtained.

We start with a linear signaling cascade with different localizations of the membrane-

cytosolic interface as shown in Fig 1. We employ a simple cascade model from [9], in which

stimulation of a receptor leads to the consecutive activation of several down-stream protein

kinases. This model is extended into space in the following. We assume a linear cascade with

N components, where the first M< N components are localized at the membrane while the

remaining N −M components are assumed to freely diffuse in the cytosol. The equations for

Fig 1. Spatial organization of signaling cascades. (A) Sketch of the classical temporal signal transduction model.

Extension of this model into three-dimensional space naturally results in a variety of different spatial motifs. (B) The

signal is first processed by signaling components tethered to the membrane, and then transduced at membrane-

cytosolic interface into the cytosol. (C) The signaling components are directly activated at the membrane-cytosolic

interface and diffuse through the cytosol. Note that diffusion coefficients for lateral diffusion along the membrane are

much lower than in the cytosol.

https://doi.org/10.1371/journal.pcbi.1006075.g001

Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006075 April 9, 2018 3 / 27

https://doi.org/10.1371/journal.pcbi.1006075.g001
https://doi.org/10.1371/journal.pcbi.1006075


the membrane-bound components read

@Pn
@t

¼ DmemDGPn þ van � v
d
n on the cell membrane; for n ¼ 1; . . . ;M: ð1Þ

Here, P1ð~x; tÞ; . . . ; PMð~x; tÞ are the local concentrations of signaling molecules on the cell

membrane. The activation rate of the first signaling component va
1

is assumed to be dependent

on the input signal, which is denoted by P0ð~x; tÞ. The input signal on the cell surface can be a

trigger on the cell membrane or arise from an extracellular signal. All of these species are func-

tions of space and time, where~x is a point on the membrane and t is the time. Diffusion along

the cell membrane, which is assumed to be a two-dimensional curved surface in three-dimen-

sional space, is described by the Laplace-Beltrami operator ΔΓ and the diffusion coefficient

Dmem. Since the membrane is a surface in three-dimensional space with negligible thickness,

the natural unit for concentrations of the cell membrane-bound species Pn (n = 1, . . .,M), is

molecules per area. Molecular concentrations of signaling molecules are frequently provided

in nanomolar or micromolar (nM or μM). For convenience, we therefore use the units nano-

molar or micromolar times micrometer (nMμm or μMμm) for the membrane-bound signaling

molecules. Note that 1 μMμm� 602 molec/μm2.

The phosphorylation rates van as well as the dephosphorylation rates vdn have units molecules

per area and time. If the input signal is homogeneous in space, meaning P0ð~x; tÞ ¼ P0ðtÞ, all

spatial fluxes DmemrΓPn are zero and the equation system for the membrane-bound species

can be described by an equivalent system of ordinary differential equations (S1 Appendix). In

contrast to the membrane-bound signaling components P1, . . ., PM, the signaling component

PM+1 can freely diffuse in the cytosol. For the modeling of the membrane-cytosolic interface,

we need to include diffusion in the cytosol and reactions on its boundaries, which are the

membranes. These processes are modeled by a reaction-diffusion equation

@PMþ1

@t
¼ DcytDPMþ1 � vdMþ1

in the cytosol; ð2Þ

with the boundary condition

� DcytrPMþ1 �~n ¼ vaMþ1
� vi on the cell membrane: ð3Þ

Since PM+1 is activated by the upstream component PM, which is tethered to the membrane,

there is a phosphorylation reaction only at the cell membrane but not in the interior of the

cytosol. This reaction is, therefore, modeled as a boundary condition. The reactions at the

membrane-cytosolic interface are described by the phosphorylation rate vaMþ1
and the inactiva-

tion rate vi, both with units molecules per area and time. The species PM+1 diffuses freely in the

cytosolic volume with the diffusion rate Dcyt and therefore its local concentration is described

in units molecules per volume. The dephosphorylation rate vdMþ1
in the cytosol is given in mol-

ecules per volume and time. Note that the inactivation rate and vi can be invoked by mem-

brane-bound phosphatases or saturation of phosphorylation at the membrane. Both, va and vi,
comprise the kinetics at the membrane-cytosolic interface. For the flux on all other membrane

enclosed organelles we assume a zero-flux condition

� DcytrPMþ1 �~n ¼ 0: ð4Þ

The equations for the components of the downstream cytosolic cascade read

@Pn
@t

¼ DcytDPn þ van � v
d
n; in the cytosol; for n ¼ M þ 2; . . . ;N: ð5Þ
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The concentrations of the cytosolic components at position~x in the cytosolic volume at time t
are described by functions Pnð~x; tÞ with n = M + 1, . . ., N. For the cytosolic components we

assume zero-flux conditions:

� DcytrPn �~n ¼ 0; on the cell membrane; ð6Þ

� DcytrPn �~n ¼ 0; on the nuclear membrane;

for n ¼ M þ 2; . . . ;N:
ð7Þ

In classical MAPK cascades the last component of the cascade, which is the phosphorylated

MAPK, is imported into the nucleus. Examples range from Hog1 nuclear import in yeast [26,

27] to the import of ERK in mammals [28]. In this case, the boundary condition Eq (7) on the

nucleus for the last cytosolic component PN needs to be modified to

� DcytrPN �~n ¼ � �PN ; ð8Þ

where � represents a nuclear-import reaction rate on the nuclear membrane. Unless otherwise

stated, a zero-flux boundary condition is assumed on the nucleus throughout this paper.

We will test and compare systems with three components N = 3 as shown in Fig 1, where

the spatial arrangement of the components is varied. Here, M = 2 describes the case of two

membrane-bound and one cytosolic element (motif Fig 1B) and M = 0 the case of only cyto-

solic components (motif Fig 1C). In the following the case M = 2 is referred to as mixed mem-

brane-cytosolic (MMC) and M = 0 as pure cytosolic (PC) cascade.

Results

The mixed membrane-cytosolic cascade is strongly size dependent

We start this section with an analysis of a spherical cell and then generalize the analysis to arbi-

trary cell shapes. A spherical cell of radius Rcell with a spherical nucleus of radius Rnuc placed in

the center of the cell is assumed in the following.

The input signal is denoted by P0(t) and is assumed to be homogeneous on the cell surface.

The concentrations of protein kinases are described by functions Pi(r, t) depending on space

and time. Note, since the cellular geometry is radially symmetric and the input signal P0 acts

homogeneously on the cell membrane, these functions depend only on the radial distance

from the cell center, denoted by r, and time t. In the following analysis, the kinetic rates are

linearized, meaning that we assume van ¼ anPn� 1 and vdn ¼ bnPn for the phosphorylation and

dephosphorylation, respectively. The inactivation rate vi at the membrane-cytosolic interface

is as well linearized by vi = γPM+1. Note that the interface kinetics can be reformulated as

vaMþ1
� vi ¼ g

aMþ1

g
PM � PMþ1

� �
, from which it can easily be seen that the activation at the

membrane saturates at PMþ1 ¼
aMþ1

g
PM . The model equations for the mixed membrane-cyto-

solic cascade (MMC) with linearized kinetics read

@P1

@t
¼ DmemDGP1 þ a1P0 � b1P1 on the membrane; ð9Þ

@P2

@t
¼ DmemDGP2 þ a2P1 � b2P2 on the membrane; ð10Þ

@P3

@t
¼ DcytDP3 � b3P3 in the cytosol; ð11Þ
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and boundary conditions for the cytosolic species P3:

� DcytrP3 �~n ¼ a3P2 � gP3 on the membrane; ð12Þ

� DcytrP3 �~n ¼ � �P3 at the nucleus: ð13Þ

There are several estimates of phosphatase activity and diffusion coefficients for MAPK sig-

naling components. The diffusion coefficient, Dcyt, of globular cytosolic proteins has been

shown to be in the range 1 - 10 μm2s−1, while the diffusion coefficient of membrane-bound

components, Dmem, is much lower with a value in the range of 10−3 - 0.1 μm2s−1 [29–31]. The

phosphatase rates βn range over three orders of magnitude 0.1 - 100 s−1 [32, 33]. In the case of

Fus3, which is the MAPK in the mating pathway of the yeast S. cerevisiae, the diffusion coeffi-

cient and cytosolic dephosphorylation rate were estimated to be 4.2 μm2s−1 and 1 s−1, respec-

tively [14]. See Table 1 for an overview on parameter values and units.

We begin with a steady state analysis of this system in the parameter regimes of interest and

assume that the signal P0 is constant over time. Here and in the following we indicate the

steady distribution with a bar, meaning that �Pn denotes the steady state of Pn. The steady state

of the first two elements is given by �P1 ¼
a1

b1
�P0 and �P2 ¼

a1a2

b1b2

�P0. For the steady state of P3, the

solution is given by

�P3ðrÞ ¼ Ai0 r

ffiffiffiffiffiffiffi
b3

Dcyt

s !

þ Bk0 r

ffiffiffiffiffiffiffi
b3

Dcyt

s !

; ð14Þ

where i0 and k0 are modified spherical Bessel functions of the first and second kind, respec-

tively [37]. Note that i0 is increasing with r (distance from the cell center), while k0 is a decreas-

ing function of r. The coefficients A and B are derived in S1 Appendix. If we neglect the

nucleus or there is no nucleus in the cytosol, meaning Rnuc = 0, the coefficient B becomes zero.

The steady state solution for different cell sizes is shown in Fig 2.

The concentration is maximal at the cell membrane and decays towards the nucleus. An

estimate of the decay length Lgradient of the intracellular gradient (with highest concentration at

the membrane) is given by Lgradient ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dcyt=b3

q
[32]. This decay length can be compared with

the actual cell size. Their ratio is called the Thiele modulus, a dimensionless measure defined

as F ¼ Rcell=Lgradient ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3R2

cell=Dcyt

q
[33]. For F� 1 strong intracellular gradients and concen-

tration heterogeneities of signaling molecules are to be expected, while for F� 1 the concen-

tration is almost homogeneous. Since the Thiele modulus relates the diffusion coefficient and

degradation rate to cell size, it is an important parameter to investigate gradient formation

[33] and signal propagation for several cascade levels [38]. However, in a three-dimensional

space Lgradient can not be interpreted as the actual gradient anymore, since its derivation is

Table 1. An overview on values and parameters. For all parameters given in the table, the units apply to the numerical values in figures and text of the paper.

entity value unit reference description

Dmem 10−3 - 0.1 μm2s−1 [29–31] diffusion coefficient for the membrane-bound species

Dcyt 1.0 - 10.0 μm2s−1 [14, 34, 35] diffusion coefficient for the cytosolic species

αi 1.0 - 10.0 s−1 [9, 36] phosphorylation rate

βi 0.1 - 100.0 s−1 [14, 32, 33, 36] phosphatase activity

γ 0.1 - 100.0 μm s−1 [32, 33] reaction rate at the membrane- cytosolic interface at the cell membrane

Rcell 2.0 - 50.0 μm [8] radius of the cell

https://doi.org/10.1371/journal.pcbi.1006075.t001
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based on the assumption of a one-dimensional geometry. In addition, if an excluding volume

such as the nucleus is assumed, the one-dimensional Lgradient overestimates the concentration

gradient. For example, if we assume Dcyt = 4.0 μm2/s and β = 1.0 s−1, we obtain Lgradient = 2.0

μm. In the case of the classical one-dimensional simplification a decay proportional to

/ exp(−x/Lgradient) is assumed, which suggests a concentration decrease in a distance of x = 2

μm by a factor of exp(−x/Lgradient)� 0.37. However, in a spherical cell with radius Rcell = 3 μm
with excluding volume Rnuc = 1 μm, the concentration decreases only by a factor of 0.77 in a

distance of 2 μm from the cell membrane. The effect of cell size on intracellular concentration

gradients is shown in Fig 2.

The cell size dependence in cell signaling systems does not only arise by the characteristic

length scale for intracellular gradient formation, but by the change of average intracellular con-

centration levels with cell size. We start with the simplifying assumption that there is no

nucleus or excluding volume in the cytosol, meaning Rnuc = 0. In this case the steady state solu-

tion reads

�P3ðrÞ ¼
a3

�P2ffiffiffiffiffiffiffiffiffiffiffiffi
Dcytb3

q
i1 ðFÞ þ gi0 ðFÞ

i0 r

ffiffiffiffiffiffiffi
b3

Dcyt

s !

: ð15Þ

The modified spherical Bessel functions i0 and i1 are monotonically increasing functions with

lim
F!0

i0ðFÞ ¼ 1 and lim
F!0

i1ðFÞ ¼ 0. We obtain �P3ðRcellÞ � a3
�P3=g for cells with small F and,

therefore, the phosphorylation reaction at the membrane is at saturation in this case. For large

F, we obtain from lim
F!1

i1ðFÞ=i0ðFÞ ¼ 1 the lower bound �P3ðRcellÞ � a3
�P3=ð

ffiffiffiffiffiffiffiffiffiffiffiffi
Dcytb3

q
þ gÞ.

These estimates also hold in the case of an excluding volume which is the nucleus and we

obtain the estimate for the concentration �P3ðRcellÞ at the cell membrane:

a3
�P2ffiffiffiffiffiffiffiffiffiffiffiffi

Dcytb3

q
þ g
� �P3ðRcellÞ �

a3
�P2

g
: ð16Þ

The dependence of absolute concentration levels on the membrane-cytosolic interface is

shown in Figs 2 and 3 for a set of different parameters. For a large inactivation rate at the mem-

brane-cytosolic interface g >
ffiffiffiffiffiffiffiffiffiffiffiffi
Dcytb3

q
, the cell size dependence decreases. Therefore, cell size

dependence is mainly determined by γ and
ffiffiffiffiffiffiffiffiffiffiffiffi
Dcytb3

q
but is independent of the phosphorylation

rate α.

We can further investigate the evolution of the average concentration levels, which depends

on the concentration at the cell membrane and the strength of the intracellular gradient. In

case of arbitrary cell shapes with cell volume Vcell and cell membrane area Mcell, the average

concentration is obtained from

Pavg
m ¼

1

jMcellj

Z

Mcell

PmdA for 1 � m � M; ðmembrane � bound componentsÞ;

Pavg
n ¼

1

jVcellj

Z

Vcell

PndV for M þ 1 � n � N; ðcytosolic componentsÞ: ð17Þ

In [33], analytical solutions for the average concentration in a spherical cell and a slab have

been derived as functions of the Thiele modulus. However, since the derivations are restricted

to cell geometries, where an explicit analytical solution of the reaction diffusion equation is
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Fig 2. Intracellular concentration profiles for two different signal transduction motifs. (A) Concentration of the third

cascade element P3 was plotted along a slice through three-dimensional cells of varying size. Numbers above the cells

indicate their radius. Intracellular gradients are steeper for the MMC cascade [upper row] than for the PC cascade [lower

row]. The parameters used were α1 = α2 = α3 = 1.5 s−1, β1 = β2 = β3 = 1.0 s−1, Dmem = 0.03 μm2s−1,Dcyt = 3.0 μm2s−1, γ =

10.0 μm s−1, P0� 100 nM μm. (B) Size dependence of the MMC cascade with two membrane-bound and one cytosolic

species. (C) Size dependence of the PC cascade. The nuclear membrane is indicated by a dashed line.

https://doi.org/10.1371/journal.pcbi.1006075.g002
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Fig 3. Dependence of concentration levels on cell size and shape. The average concentration of the third cascade element on the

cell-membrane [first row], in the cytosol [second row], at the nucleus [third row] as well as the normalized variance [fourth row] was

plotted against the cell diameter dx. With variation of of dx, cell shapes were scaled proportionally in y and z direction. The

parameters used were α1 = α2 = α3 = 1.5 s−1 and β1 = β2 = β3 = 1.5 s−1, Dmem = 0.03 μm2s−1,Dcyt = 3.0 μm2s−1 and P0� 100 nM μm.
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available, we introduce an alternative approach to estimate average concentration levels

depending on the cytosolic volume and cell membrane area. Since the signal propagates from

the cell membrane to the cytosol, the cell membrane can be regarded as a source, while the

cytosolic volume, where phosphorylated signaling molecules are dephosphorylated, can be

regarded as a sink. This idea can be derived mathematically by integration of Eq (2) and appli-

cation of Green’s theorem, which results in

aMþ1jMcellj
�Pavg
M � g

Z

Mcell

�PMþ1dA ¼ bMþ1jVcellj
�Pavg
Mþ1: ð18Þ

Here, the production on the left hand side of the equation depends on the cell membrane area,

which is balanced by the degradation in the cytosol on the right hand side of the equation. On

the basis of the equation of mass conservation (see S1 Appendix) in reaction diffusion systems,

we introduce the following measure:

LMþ1 ¼
aMþ1jMcellj

�Pavg
M

gjMcellj þ bMþ1jVcellj
: ð19Þ

This measure has the property LMþ1 ¼
�Pavg
Mþ1 for γ = 0 or β = 0, which holds for arbitrary cell

shapes. Furthermore, for a spherical cell the estimate �Pavg
Mþ1 � LMþ1 �

�Pmax
Mþ1

holds for β> 0

and γ> 0 (see S1 Appendix and Fig 3). Therefore, we use ΛM+1 as a proxy for the average con-

centration for arbitrary cell shapes, which can be easily calculated.

A comparison of the estimate Λ3 to the average concentration is shown in Fig 3 for different

cell shapes, which are a spherical cell, a rod shaped cell, a cell with one protrusion and a cell

with two protrusions. These cell shapes occur for example in S. cerevisiae, S. pombe and haploid

S. cerevisiae stimulated with mating pheromone [39, 40]. The MMC cascade was simulated for

these shapes with varying cell size. The measure Λ3 is an exact predictor for the average con-

centration in the case γ = 0 for all cell shapes and slightly overestimates the average concentra-

tion for γ = 1 μm s−1.

Furthermore, we investigated the concentration differences of �P3 between cell membrane

and nucleus and compared them to the average concentration in the cytosol. For the spherical

cell the average concentration levels of �P3 in the cytosol as well as on the membrane were the

lowest, which is expected since the surface to volume ratio is the lowest among all shapes. The

concentration differences between membrane and nucleus were the highest for the spherical

cell and the cell with two protrusions and the average concentration at the nucleus decreased

almost to zero for large cells. For the rod shape cell the concentration differences were the

smallest, since the distance along the short axis is small and the concentration does not drop as

sharply as for the other cell shapes.

We furthermore established a correspondence to the evolution of the average concentration

levels in time. In the case γ = 0 and for arbitrary cell shapes, the average concentration levels

Simulations of the MMC cascade [dots] and the [crosses] were performed for γ = 0 [blue and red] as well as γ = 1.0 μm s−1 [orange

and green]. The average concentration in the cytosol are exactly the same for both cascades [second column]. For all shapes the

average concentration is exactly approximated by Λ3 (MMC) or
a2a3

b2b3
L1 (PC), while for γ = 1.0 μm s−1 the approximation slightly

overestimates the average concentration [dashed line].

https://doi.org/10.1371/journal.pcbi.1006075.g003
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follow the system of ordinary differential equations

dPavg
1 ðtÞ
dt

¼ a1P
avg
0 ðtÞ � b1P

avg
1 ðtÞ; ð20Þ

dPavg
2 ðtÞ
dt

¼ a2P
avg
1 ðtÞ � b2P

avg
2 ðtÞ; ð21Þ

dPavg
3 ðtÞ
dt

¼
jMcellj

jVcellj
a3P

avg
2 ðtÞ � b3P

avg
3 ðtÞ; ð22Þ

where Pavg
1 and Pavg

2 are the average concentration levels in molecules per cell membrane area.

This system of ordinary equations can be obtained by integrating Eqs (9)–(13) over their

respective spatial domains. See S1 Appendix for details of the derivation. The steady state for

the average concentration of �P3 is given by

�Pavg
3 ¼

jMcellj

jVcellj

a1a2a3

b1b2b3

�Pavg
0 : ð23Þ

Therefore, the average concentration level scales with the ratio of membrane area to cytosolic

volume which is given by
jMcell j

jVcellj
. The effective global phosphorylation rate for the average con-

centration of active signaling molecules in the cytosol is therefore determined by ~a3 ¼
jMcell j

jVcell j
a3.

These relations give us a correspondence between widespread used ordinary differential equa-

tions and the bulk-surface partial differential equations employed in this paper. In summary,

we have strong cell size dependence, with decreasing concentrations for larger cells.

Efficient cytosolic transport via cytosolic cascades

In the following we consider a pure cytosolic (PC) cascade with three elements, in which all

elements diffuse freely through the cytosol. The reaction-diffusion system is given by

@P1

@t
¼ DcytDP1 � b1P1 in the cytosol; ð24Þ

@P2

@t
¼ DcytDP2 þ a2P1 � b2P2 in the cytosol; ð25Þ

@P2

@t
¼ DcytDP3 þ a3P2 � b3P3 in the cytosol ð26Þ

with boundary conditions on the membrane

� DcytrP1 �~n ¼ a1P0 � gP1; ð27Þ

� DcytrP2 �~n ¼ � DcytrP3 �~n ¼ 0; ð28Þ

and at the nucleus

� DcytrP1 �~n ¼ � DcytrP2 �~n ¼ 0; ð29Þ

� DcytrP3 �~n ¼ � �P3: ð30Þ

Note that the membrane-cytosolic interface occurs at the first cascade level, meaning that only
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P1 is activated at the membrane with rate α1 P0 − γP1. In the special case of β1 = β2 = β3 = β ana-

lytical approximations to cytosolic cascades in a one-dimensional system have been derived in

[41, 42]. While a one-dimensional cellular geometry can be used to study gradient formation

qualitatively, spatial effects such as the cell surface to volume ratio are neglected. Therefore, we

derived exact analytical solutions to the linear system in three dimensions. The steady state

solutions for �PnðrÞ are expanded as follows

�PnðrÞ ¼
Xn

k¼1

An;kr
k� 2 exp ð

ffiffiffiffiffiffiffi
b

Dcyt

s

rÞ þ
Xn

k¼1

Bn;kr
k� 2 exp ð�

ffiffiffiffiffiffiffi
b

Dcyt

s

rÞ: ð31Þ

The algebraic expressions of the coefficients An, k and Bn, k and their derivation are given in the

S1 Appendix. In comparison to the MMC cascade, which was discussed in the previous sec-

tion, the third cascade element P3 is more evenly distributed in the cell and concentration gra-

dients are much more shallow (see Fig 2).

In order to quantify the concentration differences in a cell of arbitrary shape, we measure

the concentration variance in the cell. Therefore, we introduce the variance as

S2

n ¼
Z

Vcell

ð�Pn � �Pavg
n Þ

2dV ðVarianceÞ: ð32Þ

This measure has a close correspondence to the variance in image analysis [43, 44]. In contrast

to image analysis, where the square of the deviation of the fluorescence intensity from the aver-

age fluorescence intensity of a marker is integrated pixel-wise, the integration here is continu-

ous. As for the analog in image analysis, the normalized variance is calculated as a measure for

the deviation from the average [44, 45]. While this measure is frequently used in auto-focus

algorithms in image analysis, we suggest the normalized variance as a measure for the degree

of localization of signaling molecules within a cell. An estimate the propagation of the normal-

ized variance in the cytosolic cascade is given by

S2

n
�Pavg
n jVcellj

� Cn
S2

n� 1

�Pavg
n� 1jVcellj

; with Cn ¼
anbn

ð
Dcyt
C2
s d2 þ bnÞ

2
: ð33Þ

Here, Cs is a constant depending on cell shape and d is the cell diameter. Note that C = Csd is

the Poincaré constant from the well known Poincaré inequality [46]. For convex cell shapes

the estimate holds for Cs ¼ 1

p
. In the case of a convex cell shape of a small cell as yeast (without

protrusion), we therefore have the estimate Cn� 0.3� 1 for Dcyt = 3 μm2/s, αn = βn = 1 s−1 and

a cell diameter of d = 6 μm. For this parameter set, the normalized variance decreases at least

by 70% at the second cytosolic cascade level and by 90% at the third cytosolic cascade level

(compared to the first cascade element). In general, for Cn< 1, the normalized variance of the

intracellular concentrations decreases with increasing cascade level and concentration differ-

ences in the cell are balanced out (see Fig 3).

Similar to the previous section, we derived an estimate for the average concentration. In

this case, we employed the estimate Λ1 to �Pavg
1 , since P1 is the cascade element that is activated

at the membrane-cytosolic interface for the PC cascade. The average concentration �Pavg
3 is

related to �Pavg
1 by �Pavg

3 ¼
a2a3

b2b3

�Pavg
1 and, therefore, we used the approximation

a2a3

b2b3
L1 for �Pavg

3 . As

in the case of the MMC, this approximation is exact for γ = 0 and overestimates the average

concentration sligthly for γ = 1 μm s−1 (see Fig 3).
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Exact expressions for the steady states of the average concentration of signaling compo-

nents in the case γ = 0 and for arbitrary cell shapes are given by

�Pavg
1 ¼

jMcellj

jVcellj

a1

b1

�Pavg
0 ; �Pavg

2 ¼
jMcellj

jVcellj

a1a2

b1b2

�Pavg
0 ; �Pavg

3 ¼
jMcellj

jVcellj

a1a2a3

b1b2b3

�Pavg
0 : ð34Þ

Therefore, the average concentration of the third cascade element �Pavg
3 takes the same values

in the MMC and PC cascade. The major distinction of both spatial motifs is given by the fact

that the concentration differences obtained at the cell membrane and nucleus are larger in the

MMC cascade than in the PC cascade. Similarly as in the previous section, we can formulate a

system of ordinary differential equations for the time evolution of average concentrations

dPavg
1 ðtÞ
dt

¼
jMcellj

jVcellj
a1P

avg
0 ðtÞ � b1P

avg
1 ðtÞ; ð35Þ

dPavg
2 ðtÞ
dt

¼ a2P
avg
1 ðtÞ � b2P

avg
2 ðtÞ; ð36Þ

dPavg
3 ðtÞ
dt

¼ a3P
avg
2 ðtÞ � b3P

avg
3 ðtÞ: ð37Þ

The dependence of absolute concentration levels on the membrane-cytosolic interface is

shown in Fig 2 and figure in S1 Appendix for a set of different parameters.

The timing of spatial signaling

Time-resolved image-based analysis has shown that MAPK signaling pathways respond with

a measurable signal in the nucleus in time scales of seconds to a few minutes. The Hog1 path-

way response (phosphorylated MAPK) in budding yeast is at about 80% of its maximal activity

within a minute [26]. Another example is the Src activation/deactivation cycle, where oscilla-

tions and pulses take place in the regime of seconds [47]. The timing of signal transduction in

linear signaling cascades for well-stirred homogeneous systems has been analyzed in [9]. They

concluded for weakly activated signaling cascades that phosphatases have a more pronounced

effect than kinases on the rate and duration of signaling, whereas signal amplitude is controlled

primarily by kinases. A thorough analysis of linear models assuming a homogeneous distribu-

tion of signaling molecules for different kinds of external stimuli has been recently worked out

in [12]. We extended and compared these findings to spatial signal transduction omitting the

simplification of homogeneous concentrations. How long does it take to establish an intracel-

lular concentration gradient? How does diffusion change the timing of signal transmission

from the cell membrane to nucleus? Which concentration differences are expected until a

steady state is established? The time-scale analysis for spatial models is more difficult than for

models based on a will-mixed assumptions due to high computational costs. Therefore, we

used the recently introduced measure of accumulation times [25, 48]. The approach of Pn(r, t)
to its steady state �PnðrÞ at radial distance r from the cell center and time t can be characterized

using the local relaxation function

rnðr; tÞ ¼ ð�PnðrÞ � Pnðr; tÞÞ=�PnðrÞ: ð38Þ

The difference ρn(r, t1) − ρn(r, t2) can be interpreted as the fraction of the steady state level

�PnðrÞ that accumulated in the time interval [t1, t2]. In an infinitesimal time interval [t, t + dt]
the fraction of accumulated activated signaling molecules at steady state is given by �

@rnðr;tÞ
@t dt.
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The local accumulation time is defined as [25]

tnðrÞ ¼ �
Z1

0

t
@rnðr; tÞ
@t

dt:

The accumulation time can be derived from the steady state solution even if no closed form of

the time-dependent solution is known [25].

The timing of the average concentrations given in the system of ordinary differential equa-

tions for the MMC cascade (20)–(22) and the PC cascade (35)–(37) are the same and can be

analytically expressed as

t3 ¼
1

b1

þ
1

b2

þ
1

b3

: ð39Þ

This expression also coincides with signaling times calculated by Heinrich et al. [9]. However,

for the spatial model the local accumulation times at the membrane and nucleus differ. The

accumulation is generally faster at the membrane and slower at the nucleus, where the degree

of the difference increases with cell size (see Fig 4). Furthermore, the two spatial motifs show

significant differences. For the MMC cascade the accumulation time for the second element P2

is exactly 1

b1
þ 1

b2
on the membrane, while it is shorter for the cytosolic species (compare Fig 4).

The accumulation time of P3 at the nucleus is, as expected, much longer. For small cells the

intracellular concentration is spatially homogeneous and the approximation 1

b1
þ 1

b2
þ 1

b3
holds,

while the time for signal propagation to the nucleus increases with cell size. An analytical solu-

tion of the accumulation times for P3 for the MMC cascade and the special case of Rnuc = 0 can

be derived [49], which is given in the S1 Appendix. However, for larger cells, the time for signal

propagation to the nucleus increases with cell size. For the PC cascade, the increase in accumu-

lation time at the nucleus with cell size is less pronounced than for the mixed-membrane cyto-

solic cascade.

While a constant stimulus was applied to calculate the accumulation times, we also tested a

decaying signal P0ðtÞ ¼ Pmax
0

exp ð� ltÞ, with Pmax
0
¼ 100 nMmm and solved the time-depen-

dent system numerically. A comparison of the MMC and PC is shown in Fig 4. Interestingly,

the concentration level at the membrane for the PC cascade decreases from the first cascade

species P1 to the second cascade species P2 and than increases again from the second cascade

species P2 to the third cascade species P3, while there is an increase from the preceding cascade

species to the next cascade species at the nucleus. This phenomenon is caused by the concen-

tration differences from cell membrane to nucleus, which is larger for P1 than for P2 in the PC

cascade. Note that the parameters were chosen to be
an
bn
¼ 2, which means a twofold increase

for the average concentration levels from one signaling cascade element to the next. Therefore,

the spatial system can behave entirely different than the homogeneous system. The accumula-

tion time at the membrane was much faster for γ = 1 μm/s than for γ = 0 and changed only

slightly with cell size. However, for larger cells the accumulation time of the signal at the

nucleus was almost independent of γ. Therefore, the difference of accumulation times at the

membrane and nucleus increased with γ (also compare figure in S1 Appendix). In case of the

MMC cascade the accumulation time at the nucleus for a cell with Rcell = 12 μm almost dou-

bled compared to a small cell with Rcell = 2 μm, while for the PC cascade the increase of accu-

mulation time with cell size was less pronounced.

For calculation of higher moments of the time scaling and the special case of a cell without

nucleus we refer to [49]. An analysis for time scaling of a linear cascade in one spatial dimen-

sion with four elements including higher moments has been carried out in [50].
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Quantifying the pathway sensitivity with respect to spatially heterogeneous

signals

In the following we analyze signal transduction of heterogeneous external signals. For example,

in cultures of mixed haploid yeast cell populations [40] as well as in microfluidic devices [51],

Fig 4. Timing of spatial signaling. The signaling time for the mixed membrane-cytosolic (MMC) cascade [left] and pure cytosolic (PC) cascade

[right] at the membrane and at the nucleus was simulated. (A) Time course for the concentrations of P1, P2 and P3 after stimulation with a time-

dependent signal P0ð~x; tÞ ¼ Pmax
0

expð� ltÞ and Pmax
0
¼ 100 nMmmwas plotted. The cascade levels are indicated by the numbers. Note that in

case of the MMC, the concentrations for P1 and P2 are given in nMμm, while the concentration of P3 is given in nM. For the PC cascade all

concentrations P1, P2 and P3 are given in nM. The parameters used were Rcell = 6 μm, Rnuc = 2 μm, λ = 1 s−1, α1, α2, α3 = 1.0 s−1, β1, β2, β3 = 0.5

s−1,Dmem = 0.03 μm2s−1 andDcyt = 3.0 μm2s−1. This setup was simulated for γ = 0 and γ = 1 μm/s. (B) Accumulation times for the mixed

membrane-cytosolic cascade. In this scenario, a constant signal P0ð~x; tÞ ¼ 100 nMmmwas applied and the cell size was varied. The ratio of

cellular to nuclear radius was kept at Rcell/Rnuc = 3. Otherwise the same parameters as in (A) were used.

https://doi.org/10.1371/journal.pcbi.1006075.g004
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the external pheromone signal, which triggers a MAPK cascade, is not homogeneously distrib-

uted but forms gradients in the extracellular medium. The activated signaling cascade is spa-

tially localized and triggers subsequent directed growth in S. cerevisiae [14] as well as S. pombe
[15]. Furthermore, properties of protein-protein interactions and morphological changes can

be tightly connected [52].

Therefore, we investigate the signal transduction in response to an external heterogeneous

signal for same cell shapes as in Fig 3, which were a spherical cell, a rod shaped cell, a cell with

one protrusion and a cell with two protrusions. These cell shapes occur for example in S. cere-
visiae, S. pombe and during their response to stimulation with mating pheromone [53].

We tested the linear signaling cascade with a graded stimulus of the form

P0ð~xÞ ¼ Psig
0 ½1þ P

slope
0 ðx1 � xmid

1
Þ�; ~x ¼ ðx1; x2; x3Þ; ð40Þ

where Psig
0 and Pslope

0 are constants describing the basal signal strength and the slope of the sig-

nal, respectively. Here, we chose the origin of coordinates to be in the center of the cell and,

therefore,~xmid ¼ ð0; 0; 0Þ. In this way, we obtain an input signal gradient which increases line-

arly in x1-direction for Pslope
0 > 0 and decreases linearly for Pslope

0 < 0. The concentration at xmid
1

is given by Psig
0 .

We tested the influence of asymmetries in cell shape in response to the graded stimulus Eq

(40) and investigated the spatial distribution of the last signaling component of the MMC and

PC cascade, which is P3. In Fig 5(A) and 5(C), the concentration profile of �P3 on the cell mem-

brane as well along a slice through the cell in response to a homogeneous signal is shown as

control. Since the spherical cell is radially symmetric, no gradient was induced on the mem-

brane. For the rod shaped cell, we observed a shallow gradient on the cell surface with higher

concentration at the poles, the intracellular concentration profile exhibited two areas of low

concentration, which were separated by the nucleus. This effect was more pronounced for the

MMC cascade. For the PC cascade, the concentration was almost homogeneously distributed.

For the asymmetric cell shapes with one and two protrusions, a gradient from the distal end

(front) to the spherical part (back) was established in response to a homogeneous input signal.

The protrusion, therefore, can be compared to a pocket in which higher concentrations of

cytosolic signaling molecules are established. Mathematically this effect can be explained by

the geometry dependence of the eigenfunctions of the Laplace operator [54], which can be

employed to characterize the solution of the reaction-diffusion equations for a certain cell

geometry. Therefore, these asymmetric cell shapes can already induce a gradient of signaling

molecules from front to back.

In Fig 5(B) and 5(D), the responses to a signal with Pslope
0 ¼ 0:03 mm� 1, which is increasing

in x1-direction, and a signal with Pslope
0 ¼ � 0:03 mm� 1, which is decreasing in x1-direction,

were simulated and opposed to the response to a spatially homogeneous signal with

Pslope
0 ¼ 0. To measure the response, we define the gradient of the n-th cascade element natu-

rally as the difference of concentrations at two points over the euclidean distance of these

two points. In the case of the kinase concentrations, the gradient was computed from

ðPnð~x frontÞ � Pnð~xbackÞÞ=j~x front � ~xbackj. Here,~x front and~xback are the extreme points in x1-direc-

tion on the cell membrane or nucleus. Both motifs, the MMC and PC cascade, behave differ-

ently in the transduction of signal gradients. The gradient of the third cascade level P3 along

the cell membrane and the nucleus decreased for the MMC cascade with cell size for all

shapes. For the PC, the gradient increased with cell size to a maximum value and then

decreased for larger cell sizes, which suggests an optimal cell size for gradient detection and

transmission. This effect was expected, since for small cells the concentration was almost
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Fig 5. Response of the two cascade systems, MMC and PC, for different cell shapes to a variation of the signal

gradient. (A) Spatial concentration profile of �P3 on the cell membrane as well as along a slice through the cell in

response to a homogeneous input signal P0� 100 nMμm. The spherical cell has a size of Rcell = 2.5 μm with a

nucleus of radius Rnuc = 1 μm. All cell shapes have the same cell volume and contain a spherical nucleus of the

same size. (B) Simulations for varying cell size measured as diameter dx in x-direction and three different

signal slopes Pslope
0 ¼ � 0:03 mm� 1 (green), 0 (orange), 0.03 μm−1 (red) were performed. The gradient grad

�P3 ≔ ð�P3ð~x frontÞ �
�P3ð~xbackÞÞ=j~x front � ~xbackj was plotted. Here,~x front and~xback are the extreme points x-direction on the

cell membrane or nucleus. In (C) and (D), the PC cascades was simulated for the same setup as in (A),(B). The

parameters used were α1 = α2 = α3 = 1 s−1, β1 = β2 = β3 = 1 s−1, γ = 0.5 μm s−1, Dmem = 0.03 μm2s−1 andDcyt = 3.0

μm2s−1.

https://doi.org/10.1371/journal.pcbi.1006075.g005
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homogeneous in the cytosol and concentration differences were balanced by diffusion. How-

ever, with increasing cell size the average concentration level decreased in the cell and at the

nucleus. As a consequence, also the absolute gradient decreased.

The rod shaped cell showed a stronger response than the spherical cell shape, since concen-

trations were higher at the poles and the cell was aligned along the gradient. Furthermore, the

compartmentalization induced by the nucleus in the thin rod shaped cell had a pronounced

effect on the P3 gradient, since diffusion in the cytosol from front to back was hindered. For

the cells with one and two protrusions the gradient of P3 was strongly biased with an increase

in the direction of the protrusions. Note that both motifs behave differently for the transmis-

sion of the gradient to the nucleus. While for the MMC cascade, the shape dependence was

more pronounced and the gradient in the cell interior was almost decoupled from the gradient

on the membrane for the asymmetric cell shapes, the PC cascade transmitted the gradient

more reliably into the cell interior and the nucleus.

In summary, we observed a strong influence of cell size on localization and establishment

of gradients by signaling cascade elements. For the cell with a protrusion the concentration of

P3 was higher in the protrusion than in the opposite distal end, which is the spherical part of

the cell. This effect emerged due to a higher local surface to volume ratio in the protrusion

region. Therefore, a larger portion of cytosolic signaling molecules, which diffuse freely in the

cytosol, is phosphorylated in the protrusion part leading to a gradient from the protrusion tip

to the opposite distal end of the cell. The influence of cellular asymmetries has also been inves-

tigated in [23] for gradients of the small Rho-GTPase Cdc42 during cell polarization. However,

this system reacts in the opposite way, since the flux of molecules during the establishment of a

polarity site is directed from the cytosol onto the membrane and, therefore, a gradient from

the distal end to the protrusion is established.

These effects occur due to the different architectures of both systems. In the PC and MMC

signaling cascades, we have signal transduction from the membrane to the nucleus and, there-

fore, a diffusive flux of activated signaling molecules from the membrane into the cytosol,

while in the polarization system the flux of signaling molecules during the establishment of a

polarity site is directed from the cytosol onto the membrane, which is the opposite direction.

Therefore, both system respond differently to cellular asymmetries with respect to gradient

formation. This interplay of both systems is especially interesting, since in many organisms a

polarization system is interacting with a MAPK cascade [55, 56] and might, therefore, precisely

control cell shape and size.

For spherical cell shapes we furthermore investigated more complex external signal gradi-

ents, meaning heterogeneities with multiple maxima and minima (see S1 Appendix). As in

[18, 57], a heterogeneous signal on a sphere can be decomposed using spherical harmonics

P0ðy; �; tÞ ¼
X1

l¼0

Xl

m¼� l

Am
0;lðtÞY

m
l ðy; �Þ; ð41Þ

Am
0;lðtÞ ¼

Z2p

0

Zp

0

P0ðy; �; tÞY
m�
l ðy; �Þ sin ðyÞ dyd�: ð42Þ

In this decomposition the amplitudes of higher order, where the order is denoted by l, are gen-

erally more strongly damped than gradients or spatial heterogeneities of lower order. In this

manner, the results shown here can be extended to complex spatial signals on the cell surface.

We provide full analytical solutions for the MMC and PC for a sphere with excluding nucleus

(see S1 Appendix).
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Systems with feedback

In this section, we analyze the influence of cell size on signal transduction for an oscillating

cascade consisting of two membrane-bound and one cytosolic member (MMC) and a cascade

of three cytosolic elements (PC), meaning forM = 2 and M = 0, respectively. The case of a neg-

ative feedback and a constant homogeneous signal is investigated in the following.

Negative feedbacks are a frequent regulation element in signaling cascades and can be

induced by the dephosphorylation of upstream components by the MAPK or phosphatases

[39, 58–61]. Examples are given by Tyr phosphatases, which can induce a negative feedback

[47] and dual specificity phosphatases (DUSPs) [59]. Some negative feedbacks, as for instance

induced in the Src-Tyr cycle, lead to oscillations on the time scale of seconds [47], while others

act on much longer time scales. For instance, during the yeast pheromone response the MAPK

Fus3 undergoes sustained oscillations in the range of 2-3 hours, which control the periodic for-

mation of mating projections. In this process Sst2 acts as a negative regulator of the G-Protein

signaling at the membrane, while deactivation in the cytosol is mediated by the MAPK phos-

phatase Msg5 [39]. A classical and most simple example of an oscillator with negative feedback

and non-linear reaction terms is the Goodwin oscillatory system [62, 63].

We adapt the mentioned, modified system and formulate the problem using partial differ-

ential equations by adding a diffusion term and formulating the boundary conditions accord-

ingly to the models mentioned before. The phosphorylation and dephosphorylation rates for

both models read as

va
1
¼

P0

1þ ðP3=KmÞ
p ; vd

1
¼ b1P1; ð43Þ

va
2
¼ b2P1; vd

2
¼ b2P2; ð44Þ

va
3
¼ b3P2; vd

3
¼ b3P3; ð45Þ

according to Eqs (1)–(5), respectively. The activation rate va
1

contains the negative feedback,

since a high concentration of P3 leads to a lower activation of P1. We assume a constant exter-

nal signal P0ð~x; tÞ ¼ 100 nMmm.

For the first model (MMC), the deactivation with rate vd
3

takes place in the cytosol, whereas

the activation occurs on the membrane and is therefore modeled as a boundary condition with

vi = 0 according to Eqs (2) and (3), as P3 is a solely cytosolic species. We assume zero-flux con-

ditions for P3 on the nucleus, meaning that we set the nuclear-import reaction rate � = 0 (com-

pare Eq (8)).

For the second model (PC), all species are solely cytosolic, hence the activation rate va
1

for

P1 is a boundary condition describing the activation of P1 on the membrane. We assume a

zero-flux condition for P3 on the nucleus (� = 0) and for P1 and P2 on both nucleus and mem-

brane, meaning the whole boundary.

Both models contain non-linear kinetics as well as negative feedbacks, resulting in oscilla-

tions. Furthermore, in both models the activation rate for P1 depends on a parameter p> 0. It

is shown, e.g. in [64], that for p> 8 the ODE system consisting of three species destabilizes,

and that for longer cascades, i.e. for larger N, the system becomes instable for even lower values

of p> 1.

Since an analytical solution is unknown for both models, numerical methods have to be

employed to solve the systems. For simplicity reasons and due to the high computational over-

head we solved the systems in two dimensions, using a disc to model the cell. We used a fixed-

point scheme to solve the non-linear equations.
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We chose the parameters β1 = β2 = β3 = 0.125 s−1, Dcyt = 1 μm2s−1, Dmem = 0.01 μm2s−1,

Rnuc = 1 μm and Rcell = 2 μm. The initial conditions were P1 = P2 = 10 nMμm and P3 = 10 nM

for the MMC cascade and P1 = P2 = P3 = 10 nM for the PC cascade. For Km = 100 nM and the

feedback strength p = 10, both models oscillated as expected, Fig 6A.

Therefore, in the case of a relatively small cell size of Rcell = 2 μm, both spatial models

behave similarly to the original model, which was formulated as a system of ordinary differen-

tial equations. An analysis of the oscillation frequencies and the mean concentration can be

seen in Fig 6B. Based on previous experiments and plots, the frequency analysis was conducted

after t = 200 s, when the frequency and corresponding amplitudes of the mean concentrations

for both models can be assumed to be constant. Both models show a very similar behavior,

Fig 6. Size-dependent oscillations in a system with negative feedback. (A) Mean concentration of the P1, P2 and

respectively P3 over time. After an initial peak both systems oscillate. Note that in case of the MMC, P1, P2

concentration levels are given in nMμm, while P3 concentration is given in nM. For the PC cascade all concentrations

P1, P2 and P3 are given in nM. (B) Frequency analysis of the mean concentration of both models for the last species, P3.

(C) Frequency and amplitude of the mean concentration of P3 for the two models in dependence of the cell size.

https://doi.org/10.1371/journal.pcbi.1006075.g006
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whereas the frequency and mean concentration are higher for the pure cytosolic model, as can

be explained by the fact that the reactions do not only occur at the membrane, but everywhere

in the cytosol.

In a next step we varied the cell size 1.5 μm� Rcell� 4.0 μm and again conducted an analy-

sis of the frequencies and corresponding amplitudes for both models. The results of the analy-

sis for the third component of both models are plotted in Fig 6C. As pointed out before, the

frequency for both models is very similar, but the amplitude of the signal is higher for the cyto-

solic model.

Oscillations in the first, mixed cascade model only occur for a cell size up to Rcell� 2.5 μm,

and in the second, pure cytosolic model for a cell size up to Rcell� 3.0 μm. The inital oscilla-

tions die down fast and both models converge against a steady state if the cell size is chosen

bigger.

Discussion

Stimulated by the progress in cell imaging and the increasing need to understand intracellular

dynamics, we investigated and discussed a general approach of modeling cellular signal trans-

duction in time and space. Signaling cascades of covalent protein modifications, such as mito-

gen-activated protein-kinase (MAPK) cascades and small GTPase cascades, occur in a plethora

of variations [1, 13, 65]. The first signal component can be activated at the cell membrane by a

membrane-bound enzyme such as a kinase or a guanine nucleotide exchange factor in GTPase

signaling, while deactivation can occur at the membrane or in the cytosol, for instance, medi-

ated by a phosphatase or GTPase activating protein [66]. Therefore, activation and deactivation

can be spatially separated, which creates a number of different spatial arrangements and com-

binations in signal transduction.

We investigated signaling cascades with different spatial arrangements of signaling compo-

nents. We showed that modeling of the membrane-cytosolic interface is crucial as well as the

ratio of membrane area and cytosolic volume, which are both spatial properties. The results

imply strong cell size and shape dependence of signal transduction within cells, which are

likely to contribute to single cell variation in response to extracellular stimuli. We suggest that

cells measure the cell membrane to cell volume ratio to coordinate growth and differentiation.

For asymmetric cell shapes also local changes in cell volume to cell membrane ratio becomes

important for intracellular signaling. Widely used time-dependent models of ordinary differ-

ential equations can naturally be extended into space by using bulk-surface differential equa-

tions. Applying this extension to a class of linear signal transduction models, we compared

the assumption of a well mixed cell with two different spatial signal transduction motifs. We

derived and discussed criteria that can be used to test the well-mixed assumption and showed

that kinetics that connect membrane-bound species with cytosolic species naturally cause

size dependence. The results are, therefore, of general importance for kinetic models of signal

transduction.

Our findings have relevant biological implications. Since the signals transduced by linear

signaling cascades from the cell membrane to the nucleus decrease exponentially on a length

scale of a few microns, our theoretical findings suggest a strong cell size dependence in

response to extracellular stimuli. Furthermore, the global cell volume to cell membrane area

is important for average concentration levels. Mating projections as they occur in yeast act as

pockets for signaling molecules, which can support biochemical feedbacks. Adaptations as

lamellipodia in keratocytes or invaginations such as T-tubuli in myocytes can locally increase

the accumulation of signaling molecules. These cellular structures are able to directly provide a

feedback on signaling.
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We suggest the normalized variance as a measure to quantify concentration differences and

localization of signaling molecules, which can be obtained from spatially resolved microscopy

data additionally to mean intensity levels of a fluorescence marker. For example, it would be

enlightening to measure average concentration and normalized variance together with cell size

and morphology. Interesting studies of the response in cell populations often lack the response

behavior attributed to cell size and morphology. Examples range from the switch-like behavior

in populations of oocytes [67] to the pheromone response in yeast cells [68, 69]. Therefore, sin-

gle cell data where the cell size is assigned to these measurements is needed for a faithful quan-

titative investigation of the pathway, to disentangle biochemical properties of protein-protein

interactions and morphological properties such as size and shape of whole cells. Targeting sig-

naling proteins by lipidation modifications such as palmitoylation, prenylation or myristoyla-

tion [2, 3, 5] could change the sequestration of a signaling cascade from a pure cytosolic (PC)

cascade to a mixed-membrane bound (MMC) cascade. In the case of the mixed-membrane

MMC the geometry and size dependence is more pronounced, since the first signaling ele-

ments are tethered to the membrane. In contrast, for the investigated PC cascade, localization

and strong intracellular gradients are reduced, but depending on the kinetic parameters, the

geometric information can also be better transmitted through the whole cell.

In non-linear signaling systems, the differences that we observed in the linear signaling cas-

cade models are likely to be amplified. Non-linear kinetics can amplify gradient formation,

which leads to even stronger intracellular concentration differences [70]. This also holds for

absolute concentration levels that can behave in a switch-like manner depending on the kinet-

ics [67, 71]. Furthermore, higher order kinetics can amplify the accumulation time differences

in different cellular locations [72], which can lead to spatial oscillations and phosphoprotein

waves.

The analysis of the signaling cascade model can be extended to more complex spatial

heterogeneities for example by using the Laplace series as suggested in [18, 57]. With this

approach localized signals arising from membrane structures like lipid rafts, septins or co-

localization due to protein-protein interactions can be represented. Since these are often pre-

cursors for cell shape and organelle structures, the interplay with cell shape and morphology

needs to be addressed by future research. The intrinsic geometry dependence of signaling sys-

tems has recently been shown for ellipsoidal cell shapes in the MinE-MinD system [24, 73, 74],

but also in the yeast system [23, 75–77]. Recent developments of mathematical methods such

as the finite element method for bulk-surface equations [19, 20] as well as stability analysis

techniques of these systems [23, 78–82] are expected to provide further insight in the behavior

of cellular signal transduction.

Methods

We used the finite-element software FEniCS [83, 84] to solve the arising partial differential

equations in the Python programming language. The meshes were generated using the compu-

tational geometry algorithms library (CGAL) [85]. The non-linear equations were solved using

a fixed-point scheme.

Supporting information

S1 Appendix. The appendix contains all derivations of the analytical solutions for the

steady state of the MMC and PC cascades as well as a general cascade with an arbitrary

number of elements. The correspondence of the homogeneous ordinary differential equation

system to the spatial MMC and PC system is established. Furthermore, an analytical
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expression for accumulation time of the MMC cascade is derived.
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