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SUMMARY

Covalent histone modifications are highly conserved
and play multiple roles in eukaryotic transcription
regulation. Here, we mapped 26 histone modifica-
tions genome-wide in exponentially growing yeast
and during a dramatic transcriptional reprogram-
ming—the response to diamide stress. We extend
prior studies showing that steady-state histone
modification patterns reflect genomic processes,
especially transcription, and display limited combi-
natorial complexity. Interestingly, during the stress
response we document a modest increase in the
combinatorial complexity of histone modification
space, resulting from roughly 3% of all nucleosomes
transiently populating rare histone modification
states. Most of these rare histone states result from
differences in the kinetics of histone modification
that transiently uncouple highly correlated marks,
with slow histone methylation changes often lagging
behind the more rapid acetylation changes. Explicit
analysis of modification dynamics uncovers ordered
sequences of events in gene activation and repres-
sion. Together, our results provide a comprehensive
view of chromatin dynamics during a massive tran-
scriptional upheaval.

INTRODUCTION

All genomic transactions in eukaryotes take place in the context

of a chromatin template (Kornberg and Lorch, 1999). Chromatin

plays key regulatory roles in control of transcription and other

processes, and a great deal of highly conserved cellular machin-

ery is devoted to manipulation of nucleosome positioning

(Hughes and Rando, 2014; Jiang and Pugh, 2009), histone sub-

unit composition (Henikoff and Ahmad, 2005), and covalent

modification states (Suganuma and Workman, 2008). Histone
modifications play key roles in transcriptional control, cell state

inheritance, and many other processes. Genome-wide maps of

histone modifications exist for a variety of organisms, and have

been used for identifying regulatory and functional elements of

the genome (Ernst et al., 2011; Guttman et al., 2009; Hon et al.,

2009).

Two outstanding questions in histone modification biology are

raised by such genome-wide maps. First, histone modifications

often occur at thousands of genomic locations (e.g., at every

active transcription start site) yet typically have functional impor-

tance for transcription at a small subset of marked genes under

standard growth conditions (Lenstra et al., 2011; Weiner et al.,

2012). This raises the question of how a gene’s context—local

sequence context and/or other histone modifications—impacts

the functional readout of a given histone modification. The

second question is why such a plethora of histone modifications

are used by the cell—over 100 histone modifications have been

identified, yet histone modifications co-occur in large, tightly

correlated groups, and exhibit little combinatorial complexity

(Rando, 2012).

Both of these observations—that histone modifications often

occur at genes where they serve no apparent function, and

that histone modifications co-occur—are at least partially the

consequence of biological feedback. In other words, because

transcript levels are buffered by feedback mechanisms, many

of them are restored towild-type levels in deletionmutants. Simi-

larly, histone modifications often co-occur as a result of histone

modification ‘‘crosstalk,’’ in which the enzyme that deposits

mark B preferentially acts on A-marked nucleosomes (Suga-

numa and Workman, 2008). Histone modification networks

thus include many feedforward and feedback loops of varying

degrees of complexity. One way to uncover mechanisms of ho-

meostasis is to perturb a network and study the time evolution of

as many individual nodes in the network as possible—such ob-

servations can potentially distinguish direct effects from slower

indirect effects.

Functional genetic studies confirm the value of extending

steady-state studies to a dynamic context. Time course ana-

lyses of transcriptional response to perturbations have previ-

ously uncovered unanticipated effects of chromatin-related
Molecular Cell 58, 371–386, April 16, 2015 ª2015 The Authors 371
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mutants—a multitude of single gene studies (see, e.g., Korber

et al., 2006), as well as genome-scale studies (Weiner et al.,

2012), have shown that chromatin regulators are more important

during changes in transcription than they are for steady-state

transcription.

These considerations lead us to further explore the effects of

transcriptional reprogramming on histone modification dy-

namics. We used ChIP-seq to systematically map dynamic

changes of 26 histone modifications in response to a stress

signal in yeast (Figure 1A). Our data recover known aspects of

the steady-state histone modification landscape, and show

that relationships between histone modifications and transcrip-

tion are maintained during the stress response. Most interest-

ingly, during the stress response roughly 3% of all nucleosomes

occupy unusual regions of histone modification space that are

unoccupied in steady state. Inspection of these nucleosomes

identifies differences in the kinetics of different histone modifica-

tions, and reveals multiple stages of the chromatin response to

transcriptional changes.

RESULTS

Genome-wide Patterns of Covalent Histone
Modifications
We focus here on the yeast response to the sulfhydryl reducing

agent diamide, which involves rapid and massive transcriptional

reprograming of both the common stress response genes and

�200 genes involved in cell wall protection and redox homeosta-

sis (Gasch et al., 2000). Overall 19% of all mRNAs change

expression during this response.

Using MNase-ChIP-seq (Liu et al., 2005; Radman-Livaja et al.,

2011a) we mapped 26 histone modifications at mononucleo-

some resolution at varying times (t = 0, 4, 8, 15, 30, and

60 min) after diamide addition (Figure 1; see Table S1 available

online). Easily apparent in the resulting genomic tracks (Fig-

ure 1B) are many well-described features of yeast chromatin,

including (1) generally well-positioned nucleosomes, (2) nucleo-

some depletion at promoters, (3) H3K4me3 and acetylation

enrichment at 50 ends of genes, (4) H3K36me3 covering mid-

and 30 coding regions, and many more steady-state chromatin

hallmarks. Zooming in on the dynamics during diamide response

(Figure 1C) demonstrates typical behavior for the highly-induced

gene GLK1 with H3K4me3, H3K36me3, and other transcription-

correlated marks increasing over the gene body over time.

Conversely, H4K16ac decreases over GLK1, presumably as a

result of increased histone turnover during transcriptional

induction.

Steady-State Histone Modifications Follow
Stereotypical Patterns
We start by refining models of the chromatin landscape. Using

the nucleosome mapping data to call 66,360 nucleosomes
Figure 1. Epigenomic Landscape of a Yeast Stress Response

(A) Experimental outline. Yeast were subject to 1.5 mM diamide stress, and cultu

(B) Steady-state histone modification landscape for budding yeast. ChIP-Seq s

shows genomic annotations.

(C) Histone modification dynamics over GLK1, a typical stress-induced gene. Da
(Table S2), we calculated the occupancy of each nucleosome,

as well as the level of the 26 mapped modifications, normalized

to nucleosome occupancy (Table S3).

To explore the relationships between histone modifications,

we calculated the correlation between the levels of all modifica-

tions, at all time points, across all nucleosomes (Figures 2A–2D).

The 156 3 156 correlation matrix (Figure 2A) shows a strong

concordance between all six time points for each modifica-

tion—each 6 3 6 box on the diagonal is bright red—indicating

that the global genomic landscape of any given modification is

not drastically altered by diamide stress.

The 26 marks studied here show relatively few basic types of

genomic modification patterns. This is consistent with previous

observations in yeast (Liu et al., 2005), flies (Filion et al., 2010),

and mammals (Ernst et al., 2011) of low combinatorial

complexity among histone modifications. Themajority of histone

modifications are found in two large groups (Figure 2A). The first

group includes H3K4me3 and lysine acetylation marks that

occur at the 50 ends of coding regions and that scale with tran-

scription rate (Figures 2E and S1). The second (albeit less

coherent) group in Figure 2A is of modifications occurring over

middle and 30 ends of coding regions, such as H3K36me3 (Fig-

ure 2F). In addition, several modifications exhibit localization

patterns related to gene structure that are somewhat distinct

from the two main groups, including H4K16ac, the H2A variant

Htz1 (H2A.Z), and various mono- and dimethylation marks (see

below).

Finally, in addition tomarkswith localization patterns related to

gene structure, the two phosphorylations stood out as unusual

(Figures 2A and 2G). The localization pattern of H3S10ph is

dominated by an�20 kb pericentric domain (Figure S2A) depos-

ited every M phase (Crosio et al., 2002), a signal which over-

whelms the minor coding region signal of anticorrelation with

histone turnover (Weiner et al., 2012). The other unusual mark

in this data set is the DNAdamage-related H2AS129phmodifica-

tion (often referred to as g-H2AX), which occurs over subtelo-

meric regions and actively repressed genes (Szilard et al.,

2010) (Figures 1B, 2G, and S2A). Analysis of the chromatin pack-

aging state of rDNA genes (Figure S3) shows a similar correlation

structure to that observed over the Pol2-transcribed regions of

the genome.

Overall, our results recapitulate essentially all known aspects

of the steady-state landscape of histone modifications in yeast,

showing the quality of the data set.

Steady-State Histone Modifications Are Mostly Shaped
by Transcription and Turnover
What are the major processes that shape the steady-state chro-

matin landscape? The first, detailed above, is the passage of

RNA polymerase, which carries with it a large number of histone

modifying enzymes as it traverses the genome (Buratowski,

2009). Second, genomic replication is pervasive and results in
res were harvested for MNase-ChIP-seq mapping at the indicated time points.

ignal for 26 histone modifications and nucleosome mapping data. Top panel

ta are shown for six time points following diamide stress.
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Figure 2. Characterization of Histone Modification Patterns during Mid-Log Growth

(A) Correlation matrix for 26 histone modifications. For each modification, six time points are arranged from t = 0 to t = 60 from left to right.

(B–D) Scatterplots for strongly correlated (B), uncorrelated (C), and anticorrelated (D) pairs of modifications. Each scatterplot compares levels of the two

modifications, normalized to nucleosome occupancy, for 66,360 individual nucleosomes in the yeast genome at t = 0. Colors indicate density.

(E–G) Metagene profiles for exemplary histone modifications. For each modification, data were aligned by the transcription start site (TSS) of annotated genes,

grouped according to transcription rate (Churchman and Weissman, 2011).
a dramatic but temporary restructuring of the chromatin tem-

plate (Gruss et al., 1993). Finally, histone modifications are

altered by replication-independent histone turnover—newly syn-

thesized histones are incorporated into the genome and replace

old ones, thus removing oldmarks. New histones also carry a set

of covalent modifications, some of which are deposited by en-

zymes that act specifically on free, but not nucleosomal, his-

tones (Deal and Henikoff, 2010; Dion et al., 2007; Kaplan et al.,

2008; Rufiange et al., 2007). Beyond these pervasive processes,

locus-specific processes can target specific chromosome posi-
374 Molecular Cell 58, 371–386, April 16, 2015 ª2015 The Authors
tions, as, for example, observed at the pericentric domain of

H3S10ph.

To quantify the extent to which the chromatin landscape is ex-

plained by these processes, we built a regression model that

predicts the modification state of each nucleosome at mid-log,

based on the nucleosome position along the gene, its occu-

pancy levels, the RNA polymerase level (in sense and antisense

directions; Churchman and Weissman, 2011), the nucleosome’s

turnover rate (Dion et al., 2007), its position relative to the

centromere or telomeres, and its relative replication timing



(Raghuraman et al., 2001). This model explains 58% of the over-

all variation in the 26-dimensional histone modification data set,

although the success of the model varies for different histone

marks (Figure 3A). Some of the poorly explained modifications

have higher inherent levels of measurement noise (Figure S2B),

suggesting either a lower-quality antibody or a relatively even

genomic distribution of the histone mark in vivo. Note that the

reported percentages are based on a relatively simple linear

regression model, and represent a lower bound on predictive

power.

To quantify the contribution of each feature to these predic-

tions, we removed each feature in turn from the overall model,

re-estimated model parameters with remaining features, and

determined the loss in variance explained (Figure 3B). These dif-

ferences highlight the unique contribution of the removed feature

to explaining a given process. These unique contributions do not

necessarily sum to 100% of the signal, as many modifications

are partially explained by several features (such as transcription

and turnover, which are not purely uncorrelated with one

another). In this case, removal of a single contributing feature

will be partly compensated by other features in the relearned

model. Therefore, we describe the remaining fraction of 100%

as synergistic interactions between features.

The most informative feature in our model was nucleosome

position within the gene, consistent with the observation that

many histone modifying enzymes are recruited to genes

by either the initiation or the elongation form of RNA Pol2

(Buratowski, 2009). The second most informative feature was

transcription rate, which predicted both well-characterized tran-

scription-deposited marks and marks that are anticorrelated

with transcription (Figure 3C). Replication-independent turnover

strongly predicts H3K56ac, a knownmark of soluble histone pro-

teins (Tsubota et al., 2007), as well as other marks of new his-

tones such as H3K4ac and H3K9ac (Guillemette et al., 2011).

Turnover was also predictive for slowly accumulating marks

that are enriched in older nucleosomes—H3K79me3 and

H4K16ac (Figure 3C). Chromosomal position was the best pre-

dictor of the pericentric H3S10ph and telomeric H2AS129ph

marks (Figures 3C and S2A) but unexpectedly also contributed

to prediction of H3K79me levels. Replication timing explained lit-

tle overall variance—as expected given that every locus in the

genome is duplicated once per cell cycle—with its strongest

explanatory power for the subtelomeric H2AS129ph mark.

While our analysis recapitulates many known features of chro-

matin, many additional connections are also documented here.

Most surprisingly, comparisons of sense and antisense tran-

scription revealed a dichotomy among transcription-correlated

marks between 50-biased and gene body-enriched marks.

Gene body marks were correlated mostly with sense transcrip-

tion, while 50 marks appeared to read out total Pol2 transit in

both directions (Figures 3B and 3C). This likely reflects rapid

termination of inappropriate antisense transcripts (Xu et al.,

2009), whichwould prevent Pol2 from transitioning from initiation

to elongation modification states.

Analysis of this predictive model shows subtle differences be-

tween otherwise highly correlated marks. For example, both

H3K36me3 and H3K79me3 are transcription-correlated gene

body marks (Figures 2A and S1). However, their levels are ex-
plained to a different extent by transcription and turnover (Fig-

ure 3C), with H3K36 methylation mostly explained by genic

position and sense transcription levels, while H3K79me3 levels

are far more influenced by turnover rates. This likely reflects

the fact that there is no known H3K79 demethylase, and thus

this mark is presumably removed only by nucleosome eviction

(De Vos et al., 2011; Radman-Livaja et al., 2011b).

Histone Modifications Predict Genomic Processes
The fact that processes such as transcription and turnover are

predictive of histone modifications allows the reverse—predic-

tion of genomic transactions from chromatin data—to be used

as a powerful experimental tool (Ernst et al., 2011; Garber

et al., 2012; Guttman et al., 2009; Hon et al., 2009). We thus

asked whether the larger number of modifications mapped

here identify more precise predictors for genomic processes.

We applied sparse linear regression (Experimental Procedures)

to predict genomic features based on genome-wide modifica-

tion data.

The regression coefficients of this model confirm the expecta-

tion that themost predictive histonemodifications are usually the

ones that are most closely associated with the genomic process

(Figure 3D). Thus, for example, H3K18ac, H3K4me3, and

H3K36me3 are predictive of transcription, with positive regres-

sion weights, while H3K79me3 and H2AS129ph are also predic-

tive, with negative weights. The best predictor of turnover rates is

H3K79me3, which is negatively correlated with turnover, while

H3K18ac and H3K56ac provide positively correlated predictors

of turnover (Figures 3D–3F).

Histone modifications are also predictive of replication timing.

In particular, H3K56ac and H3K9ac—both marks associated

with new nucleosomes—have opposite weights in this predic-

tion. Higher H3K56ac levels are predictive of early replication

times, while higher H3K9ac is predictive of later replication

time. The connection between H3K56ac and early replication re-

flects both the length of time between a locus’ replication time

and M phase H3K56 deacetylation (Celic et al., 2006; Maas

et al., 2006), as well as the high turnover characteristic of early

origins (Kaplan et al., 2008). The connection between H3K9ac

and late replication is less clear—newly synthesized histone H3

is enriched for H3K9ac during S phase (Adkins et al., 2007),

but whether this mark is generated preferentially later during

replication or is otherwise targeted to late-replicating domains

is presently unknown.

Taken together, these analyses provide an expanded list of

marks to be used for annotation of genomic features and

processes.

Dynamics of Individual Histone Modifications during
Transcriptional Reprogramming
We next asked how individual histone modifications change dur-

ing genome-wide transcriptional reprogramming (Gasch et al.,

2000). We evaluated the nucleosome-specific change in each

modification in terms of both the change relative to the t = 0 level

and the extent to which the six time points show a consistent tra-

jectory (Experimental Procedures). At a 10% FDR, we find that

many nucleosomes change in at least one modification (�60%

of all nucleosomes), but substantially fewer show changes in
Molecular Cell 58, 371–386, April 16, 2015 ª2015 The Authors 375
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several modifications, with �7% changed in five or more marks

(Table S4; Figures S4A and S5). As expected, reprogrammed

genes are significantly enriched with changed nucleosomes.

Although these numbers reflect changes across a large fraction

of the genome, the gross chromatin landscape features changed

little during the stress response—see correlations for eachmodi-

fication across all six time points in Figure 2A.

Next, we asked whether the relationship between histone

modifications and transcription rate was altered by transcrip-

tional reprograming. Steady-state correlations observed be-

tween modifications and transcription might be universal to

Pol2 passage itself, or alternatively could be linked to the spe-

cifics of the mid-log transcriptional program. Supporting the

former model, we find that stress-induced transcriptional re-

programming generally maintains the mid-log relations between

histone modifications and transcription rate. For example, levels

of H3K18ac, a 50 mark correlated with transcription rate in mid-

log (Figure 2E), increase at the 50 ends of activated genes, and

decrease over repressed genes (Figures 4A and 4B). Most other

transcription-correlated marks have similar patterns. Similarly,

the anticorrelation between H2AS129ph and transcription rate

is also dynamic (Figures 4C and 4D), consistent with a previous

study showing H2AS129ph being gained at GAL genes upon

repression (Szilard et al., 2010). In both cases, the peak of his-

tone modification change coincided at t = 30 with the peak

change in mRNA and Pol2 levels (Gasch et al., 2000; Kim

et al., 2010), before levels of all three fall at t = 60 as yeast accli-

mate to the stressful environment (Figures 4E and 4F).

To visually compress the relationship between transcriptional

dynamics and chromatin dynamics, for each histone modifica-

tion and at each nucleosome position (+1, +2, etc.) we calculated

the correlation between stress-induced changes in modification

level and changes in transcription (Figures 4G, 4H, and S4C).

This analysis reveals the expected positive correlations between

H3 acetylation states and transcription, and anticorrelation be-

tween H2AS129ph and transcription. Globally, we find strong

concordance between the correlations of modifications with

transcription rate at steady state, and the correlation of the

changes in modification levels with the diamide transcriptional

response (Figures 4H–4J).

Notable exceptions to this general trend are two dimethylation

states (H3K4me2 and H3K36me2), the histone variant Htz1

(H2A.Z), and H4K16ac, all of which are mostly uncorrelated

with expression in steady-state measurements but exhibit anti-

correlation with transcriptional changes. These observations

highlight the power of our approach to identify transient chro-

matin states—dimethylation states occur transiently during the
Figure 3. Determinants of the Steady-State Modification Landscape

(A) Predicting modification data from genomic features. A model incorporating ge

2011), nucleosome turnover rate (Dion et al., 2007), distance from centromere

position) predicts genomic patterns of all 26 histone marks. Plot shows the perc

(B) Contribution of genomic processes to explanatory power of the model. Heatma

removed from the model. Synergistic refers to remaining explained variance not

(C) Pie charts showing the variance explained by different aspects of the model

(D) Predicting genomic features from modification data. For each entry, the heat

(E) Turnover model parameters from (D) are shown here in numeric form.

(F) Turnover model accurately captures turnover rates genome-wide. Model pre
accumulation of trimethylation as gene expression increases,

and thus exhibit changes during reprogramming but are not

captured at steady state. The transient changes in H4K16ac

and Htz1, both of which have well-established links to histone

turnover, likely reflect a transient phase of turnover during

gene induction/repression.

A Modest Increase in Combinatorial Complexity during
the Stress Response
A key goal of this study was to determine whether tracing the

time evolution of the histone modification network following a

perturbation could uncover regulatory mechanisms (Figure 5A).

We therefore sought to determine to what extent new combina-

torial histone modification patterns appear during the stress

response. We used Principal Component Analysis (PCA) to

represent our 26-dimensional t = 0 (steady-state) data set,

finding that three principal components could account for

76% of the variance in this data set (Figure 5B). Interestingly,

the variance in the data set explained by these components

decreased somewhat to �67% during the early (8–15 min)

response to diamide, before recovering nearly to baseline at

the final time point of this response (Figure 5B). This increase

in signal which is not explained by these three principal compo-

nents indicates a transient increase in combinatorial complexity.

Moreover, visualizing nucleosomes with the same two principal

components for each time point revealed that nucleosomes

transiently populate previously sparse regions of this two-

dimensional space early in the stress response (Figure 5C, black

arrows).

To better understand such chromatin state transitions and

how they are related to regulatory mechanisms, we further

analyze (1) the shape of histone modification space, (2) the tra-

jectories of nucleosomes throughmodification space (Figure 5D),

and (3) kinetic distinctions between different histone marks.

A Small Number of Unusual Histone Mark Pairwise
Combinations
To identify changes in histone modification space in response to

stress, we asked what histone modification combinations are

unique to, or at least enriched during, the early stages of the

stress response.We estimated the density of the 26-dimensional

space defined by nucleosome states at t = 0, then sought nucle-

osomes that relocalize during stress to regions of this space that

are sparsely populated at t = 0. Based on this 26-dimensional

space, we identified �2,000 (3%) nucleosomes that moved to

these low-density regions during the stress response (Experi-

mental Procedures).
nomic features (sense and antisense transcription (Churchman andWeissman,

and telomere, replication timing (Raghuraman et al., 2001), and nucleosome

ent of signal explained per histone modification (see Figure S2B).

p shows the percentage of explained signal that is lost when a given process is

lost upon removing any single feature.

for the indicated modifications.

map shows the sparse linear regression coefficient for the mark in question.

dictions (x axis) are scatterplotted against experimental turnover data (y axis).
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Figure 4. Dynamics of Histone Modifications during the Stress Response

(A and B) Metagenes showing levels of the transcription-correlated H3K18ac mark, averaged for upregulated (A) or downregulated (B) genes in response to

diamide stress.

(C and D) As in (A) and (B), for the repression-correlated H2AS129ph modification.

(legend continued on next page)
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What novel histone modifications occur during the stress

response? We considered two-dimensional ‘‘slices’’ of this his-

tone modification space for pairs of histone modifications

(Figure 5D). In such space, we can distinguish between nucleo-

somes that move about inside the high-density region (e.g., a

and b in Figure 5D) and ones that start inside the region and

move outside during the response (e.g., c and d in Figure 5D).

For example, 459 nucleosomes in theH3K4me3/H3K18ac space

leave the high-density region out of 14,926 nucleosomes that

change in this space (Figure 5E). Color coding of a nucleosome’s

location at t = 0 allows the rough trajectory of the unusual nucle-

osomes at t = 30 to be understood.

Analysis of all pairwise combinations (Table S5) identifies dra-

matic changes occurring for pairs of (1) H3K4me3 with various

acetylation marks such as H3K18ac or H3K14ac, (2) Htz1 with

acetylation marks and gene body trimethylation marks, and (3)

H3K56ac with a range of marks. Although an average of 47 nu-

cleosomes occupy rare regions of two-dimensional space for

each of the 325 pairwise modification combinations (Table S5),

the same nucleosomes are outliers inmany separate two-dimen-

sional comparisons. Clustering of all rare nucleosomes in 26-

dimensional space reveals a handful of behaviors that result in

unusual modification combinations (Figure S6), the most preva-

lent of which is the disconnect between H3K4me3 and histone

acetylation marks.

While H3K4me3 and H3K18ac are normally extremely well-

correlated (Figures 2A and 5E), during diamide stress we find

scores of nucleosomes carrying high levels of H3K4me3 but

lacking H3K18ac, as well as the converse situation with highly

acetylated nucleosomes lacking H3K4me3 (Figure 5E). These

nucleosomes are enriched at stress-repressed and -induced

genes, respectively.

A qualitatively distinct behavior from the H3K4me3/H3K18ac

disconnect is seen for Htz1 and H3K56ac (Figure 5F). Although

at t = 0 these modifications are correlated, during the stress

response we see two groups of nucleosomes that move into

either the H3K56ac-enriched/Htz1-depleted region (top left)

or the opposite region (bottom right). Both groups of nucleo-

somes start with mild enrichment of both marks, meaning

that during stress they gain one modification at the expense

of the other. This behavior may result from a delay between

H3/H4 replacement and Htz1 incorporation—Htz1 levels are

low at promoters with the highest H3/H4 turnover (Dion et al.,

2007; Guillemette et al., 2005)—as here an increase (for

example) in H3K56ac indicates increased H3/H4 turnover that

would also displace Htz1. In contrast, reduction in H3K56ac

could speed up Htz1 accumulation by decreasing the ability

of the SWR complex to carry out futile Htz1/H2A replacement
(E and F) Dynamics of H3K18ac (E) or H2AS129ph (F) changes over time are

�1, +1, +2, etc. nucleosomes—as indicated. For each nucleosome, time course

downregulated, relatively rapidly or slowly (Experimental Procedures).

(G) Schematic of approach to correlations between histone modification dynami

(H) Correlations calculated as shown in (G), with red dots showing mid-log correla

modification and change in transcription.

(I and J) The correspondence between modification changes during diamide str

(+1, +5) is indicated. (Top panel) Histogram of the maximal change in the listed

mRNA abundance for the genes carrying the nucleosomes in the bins above.
cycles (Watanabe et al., 2013). We thus speculate that the

transient disconnect between these marks results from a delay

between stress-induced turnover and SWR recruitment, or

vice versa.

These results reveal, first, that �97% of nucleosomes do not

explore novel areas of histone modification space (for the 26

modifications profiled here, at our time resolution) even in

response to a dramatic transcriptional perturbation in which

60% of all nucleosomes change levels of at least one modifica-

tion. The remaining 3% of nucleosomes do transiently gain novel

combinations of histone marks during the stress response, with

three to four possible ways of achieving this behavior. Below, we

explore the mechanistic basis for the generation of one such

noncanonical histone modification pattern.

Noncanonical Histone Modification Patterns Represent
Coherent Responses
Do nucleosomes that move to underrepresented regions of

modification space reflect a biologically coherent response, or

are these nucleosomes ‘‘aberrantly modified’’ based on acci-

dental genomic juxtapositions between overlapping gene con-

trol programs? More specifically, do unusual modification

patterns occur specifically in association with genes sharing a

common regulatory strategy? Searching a compendium of

gene set annotations (Table S6) against the set of nucleosomes

that explore noncanonical modification patterns revealed enrich-

ment in multiple gene sets. For example, both ribosomal biogen-

esis genes (RiBi) and ribosomal protein genes (RPGs) are highly

expressed during mid-log growth and strongly repressed by

diamide, and both are enriched with noncanonical modification

patterns during stress, although they exhibit distinct trajectories

(Figures 5G, 5H, S6D, and S6E). +1 nucleosomes of RiBi genes

begin with high levels of K4me3 and K18ac, and in response to

stress show rapid and dramatic loss of K18ac but much slower

changes in H3K4me3, leading a large number of them to the

normally rare K4me3 high/K18ac low state. In contrast, +1 nucle-

osomes of RPGs start in an extreme region of this two-dimen-

sional space as nucleosomes with the strongest signal for

H3K18ac. They then show a transient increase in H3K4me3, fol-

lowed bymild H3K18 deacetylation. This difference is consistent

with the fact that repression of these two groups of genes in-

volves different pathways (Weiner et al., 2012).

These and other examples (Figures 5G, 5H, and S6E; Table S7)

suggest that our approach identifies rare, but biologically mean-

ingful, cases where regulatory features of specific groups of

genes lead their chromatin transactions to differ from the stan-

dard pathways for gene induction/repression used by most

genes.
shown averaged for various nucleosome positions along a gene body—the

data for the modification in question are averaged for genes upregulated, or

cs and transcriptional dynamics.

tions, and gray bars showing correlations between diamide-induced change in

ess and transcription changes. In each case, a specific nucleosome location

modification in response to diamide. (Bottom panel) Violin plots of changes in
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Figure 5. Changes in Histone Modification Space during Stress

(A)Schematic showingonepotentialmechanism leading to increasedcombinatorial complexityduringa transient response.Briefly, if twohistonemarksarecorrelated

but exhibit different relative response kinetics, then early during a change in transcription the nucleosomes will carry the rapid mark but lack the lagging mark.

(B) Principal Component Analysis of all 26 histone modifications. Percent variance explained for different time points.

(C) Transient population of low-density modification space during stress. Density of nucleosomes across the first two Principal Components at the indicated

diamide time points. Arrows show regions that are more highly populated from t = 8 to 30 than during mid-log growth.

(D) Visualization of histone modification trajectories. Contour map shows the predominant locations of nucleosomes in the indicated two-dimensional modifi-

cation space at t = 0. Arrows indicate the paths of four specific nucleosomes during the diamide time course.

(E) Transient population of new regions of histone modification space. (Left panel) Two-dimensional contour map for nucleosomes at t = 0 for H3K4me3 and

H3K18ac. Nucleosomes that will fall significantly (Experimental Procedures) outside this contour during stress are color coded according to their location at t = 0.

(Right panel) The t = 30 locations of nucleosomes that move to rare regions, with the t = 0 contour.

(F) As in (E), but for Htz1 and H3K56ac.

(G and H) Coherent groups of nucleosomes account for the unusual nucleosomes during stress. Trajectories for specific sets of nucleosomes as indicated, with

the t = 0 domain marked by an empty oval, and the stress domain marked by points and a filled oval.
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Figure 6. Analysis of Histone Modification Dynamics

(A) Extraction of kinetic parameters from time course data. RNA abundance and the indicated modification levels for the GLK1 +1 nucleosome. For each time

course we extracted the maximal response (h) and the time to half-maximal response (t1/2).

(B) Comparison of measurements with extracted kinetic data, with rows showing individual genes. (Left panel) Time course data for H3K23ac levels at the +1

nucleosome sorted by t1/2; (middle panel) interpolated data; (right panel) mRNA abundance changes.

(C) Genome-wide kinetic offsets for up- and downregulated genes. For each modification, boxplot of the t1/2 is shown for up- or downregulated genes, as

indicated.
Dynamics of Chromatin Responses Reveal Subtle
Distinctions between Histone Marks
How do rare histone modification states become populated in

response to stress signals? In the case of H3K4me3/H3K18ac,

the transient uncoupling of H3K4me3 status and H3K18ac levels

appears to result from a difference in the kinetics of each modi-

fication’s response to transcriptional reprogramming—H3K18

deacetylation is rapid and occurs over genes subject to both

short and longer-term repression, while H3K4 demethylation
significantly lags deacetylation and is specific to longer-term

gene repression.

To interrogate the dynamic behavior of individual histonemod-

ifications, we modeled the time course of histone modification

changes at each nucleosome and extracted the time to half-

maximal response (t1/2) and the amplitude of maximal response

(h) (Figure 6A; Table S4). Our model interpolation enables contin-

uous assignment of t1/2 times across our time course (Figure 6B),

allowing us to compare differences in kinetic behavior between
Molecular Cell 58, 371–386, April 16, 2015 ª2015 The Authors 381
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Figure 7. Cascades of Chromatin Events Differ between Gene Sets

(A) Distribution of t1/2 values for the four indicated marks for all MSN2-induced genes.

(B) Gene-by-gene analysis for differences in modification onset times. The distribution of the difference in t1/2 is calculated for all individual genes in the MSN2-

dependent gene set for the indicated modification pair.

(C) Four ‘‘epochs’’ in the MSN2 induction cascade. Groups of histone modification changes: modifications in each group roughly co-occur, but differ significantly

in timing in pairwise comparisons from the other groups. For each box, the mean and 25th and 75th percentile values are shown for the distribution of differences

in t1/2 between modifications in adjacent boxes.

(legend continued on next page)
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similar modifications. We also estimated kinetic parameters for

mRNA abundance changes (Gasch et al., 2000) —similar results

are obtained with analyses based on Pol2 ChIP-chip data (Kim

et al., 2010).

Comparison of average timings of different modifications re-

vealed a range of behaviors (Figure S7A). For example, acetyla-

tion marks tend to change more rapidly than methylation, with

gene body marks H3K36me3 and H3K79me3 changing later

than the majority of other modifications. As the dynamics of

changes can depend on the location of the nucleosome on a

gene and the transcriptional response of the gene, we focused

on kinetics of those modifications whose change is correlated/

anticorrelated with transcription (Figure 4H), and analyzed modi-

fication dynamics associated with the relevant gene region (Fig-

ure 6C). Interestingly, modification dynamics differ significantly

between induced and repressed genes. For example, loss of

H3K4me3 at the 50 end of repressed genes is more rapid than

establishment of the same mark over induced genes, presum-

ably reflecting the time required for successive addition of up

to three methyl marks. In contrast, establishment of H3 tail acet-

ylations (with the exception of H3K27ac) at promoters of induced

genes is more rapid than corresponding deacetylation at

repressed genes. Modifications that are anticorrelated with tran-

scription tend to occur later than acetylation marks, with more

widely distributed t1/2 values. Among these, we notice a signifi-

cant difference between the timing of H2AS129ph increase at

repressed genes and its decrease at induced genes.

These results show clear differences in the timing of events

based on their location and function. Changes at the 50 end of

genes, which are associated with either promoting or inhibiting

initiation, tend to occur early in the response, while changes at

the gene body, which are associated with elongating transcrip-

tion, tend to appear later.

Modification Cascades in Transcriptional
Reprogramming
Finally, we turn to single gene analysis of dynamics to gain a

more biologically relevant picture of chromatin events in

transcriptional reprogramming. To systematically analyze the

ordering of 26 histone marks and transcription events, we calcu-

lated timing differences (Dt) between all pairs of marks for every

gene in the yeast genome, revealing behaviors not apparent in

individual plots of timing distributions. For example, analysis of

the 50 nucleosomes of Msn2-dependent induced genes revealed

a subtle difference in the timing of H3K14ac and H2AS129ph

across all genes as a group (Figure 7A). However, examining

the t1/2 difference between thesemarks on a gene-by-gene basis

revealed a striking and significantly consistent timing difference

(Figure 7B). In this example, H3K14 acetylation precedes a

change in H2AS129ph at the majority of Msn2 target genes

(74%). These timing differences may suggest ordered recruit-

ment of chromatin regulators in response to stress.
(D) Heatmap showing all pairwise comparisons for MSN2-dependent upregula

(50 end, or gene body) that changes coherently for MSN2-upregulated genes. He

(E and F) Summary diagrams, as in (C), for RiBi genes and RPGs, as indicated.

(G) Interpolated time course data for RiBi genes and RPGs for 30 min of stress res

the log2 ratio to genome-wide mean at t = 0.
Gene-by-gene analysis of repressed and induced genes (Fig-

ures S7B and S7C) recovers cascades of events occurring dur-

ing changes in transcription, which mainly recapitulates the

order of events we observed above (Figure 6C). The dominant

pattern in both analyses reflects 50 acetylation marks changing

prior to changes in mRNA abundance, with gene body methyl-

ation following. By assessing significant kinetic differences be-

tween pairs of events (Experimental Procedures), we can identify

at least four clearly distinct temporal stages in the chromatin

response to transcriptional activation (Figures 7C and 7D).

Beyond aggregating our gene-by-gene kinetic offsets into

gross gene sets consisting of all up- or downregulated genes,

these data can identify gene sets that have significantly coherent

temporal event cascades. For example, the analysis above (Fig-

ures 5E–5G) suggested that histone modifications might exhibit

distinct kinetic behaviors at the Ribosomal Biogenesis genes

and Ribosomal Protein genes. Indeed, although both groups

are repressed, they show rather different histone modification

cascades (Figures 7E–7G and S7D). Several substantial differ-

ences can be appreciated between these highly repressed

gene sets, including modifications that change over different

timescales (e.g., H3K9ac and other H3 acetylation marks), and

modifications exhibiting different magnitudes of change (e.g.,

H3S10ph and H2AK5ac). More interestingly, several modifica-

tions exhibit opposite behaviors: for example, H4 N-terminal

lysines are deacetylated at RiBi, but not RPG, 50 ends, and

conversely are strongly acetylated only over RPG gene bodies.

Finally, we confirm our previous finding (Weiner et al., 2012)

that H3K4me3 is transiently induced at the 50 ends of RPGs prior

to being lost later during RPG repression. Curiously, most of

these differences in modification profiles during stress reflect

initial differences between RiBi and RPGs at t = 0, as for most

modifications the two groups are more similar in the ‘‘off’’ state

(at t = 30) than in the ‘‘on’’ state (t = 0) (Figure 7G). This suggests

that some of the observed differences are due to different mech-

anisms involved in their mid-log transcription.

DISCUSSION

This study represents the deepest characterization to date of the

primary structure of the yeast chromatin landscape, with nucle-

osome positioning and 26 histone modifications mapped at

nucleosome resolution genome-wide under standard conditions

(growth in YPD), and during five time points of a well-character-

ized stress response. The data reproduce essentially all known

characteristics of yeast histone modification localization and

provide further insights into histone modification biology.

Steady-State Patterns of Histone Modifications
Analysis of histone modifications in actively growing ‘‘mid-log’’

yeast confirms and extends a great deal of prior knowledge. In

general, histone modification patterns exhibit little combinatorial
ted genes. Each row/column represents a modification and a genic location

avy lines show demarcation for the boxes summarized in (C).

ponse. The shownmodification levels are averages, for genes in each group, of
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complexity, as repeatedly observed in many organisms (Rando,

2012). Essentially, we identify three major features that explain

nucleosomal modification patterns. First, chromosome context

impacts histone phosphorylation states—H3S10phmarks broad

pericentric domains, while H2AS129ph marks subtelomeric do-

mains. Second, the process of transcription leaves a massive

footprint on chromatin, with enzymes carried by the initiation or

the elongation form of RNA Pol2 being responsible for the major-

ity of the variation in histone modifications across the genome.

Finally, replication-independent histone replacement—which is

modestly correlated with, and affected by, transcription—is

responsible for deposition of histones carrying marks such as

H3K56ac and lacking H3K79me3 and other marks. The roles of

these factors in chromatin structure are all conserved to varying

extents in other organisms, with many other organisms exhibit-

ing additional elaborations such as the H3K9 and H3K27methyl-

ation-dependent repressive mechanisms.

Rules of Chromatin Marks Are Broadly Maintained
during Transcriptional Reprogramming
Our analysis of a stress response reveals that the relationships

observed between modifications and transcription levels in

mid-log growth are generally maintained during transcriptional

reprograming—modifications that are correlated with transcrip-

tion rate in steady-state conditions also increase during gene

activation and decrease during gene repression. These observa-

tions imply that, broadly, themechanisms that maintain the chro-

matin modification landscape in mid-log growth are the same or

similar to the ones involved in changes during stress-induced

transcriptional reprogramming. Thus, we argue that while the

shift in cellular context from mid-log growth to stress response

changes the transcription program (e.g., from TFIID-dominated

to SAGA-dominated gene regulation), it does not change the

rules governing the deposition and/or maintenance of chromatin

marks. This suggests that the mechanisms that deposit

most transcription-related marks are generic to transcriptional

machinery rather than to the context in which it is activated or

repressed.

Combinatorial Complexity during Transcriptional
Reprogramming
The extensive crosstalk between transcription and histone mod-

ifications results in limited histone modification complexity.

Despite the potential for widespread network motifs such as

incoherent feedforward loops to generate transient combinato-

rial complexity in the histone modification network, we only

observed a modest increase in combinatorial complexity during

the peak of the stress response. Overall, we found that 3% of nu-

cleosomes move into normally sparse regions of the histone

modification space in response to diamide stress, despite

�60% of all nucleosomes moving within this space during the

stress response (Figure 5).

A number of mechanistically distinct processes could tran-

siently violate steady-state histone modification correlations,

including complex crosstalk loops, kinetic offsets between

correlated marks, or population heterogeneity in gene induction.

In the case of H3K4me3/H3K18ac, these traces reveal twomajor

behaviors of nucleosomes that are rapidly deacetylated at
384 Molecular Cell 58, 371–386, April 16, 2015 ª2015 The Authors
H3K18 but still H3K4 methylated: a subset recover to the original

modification status as yeast adapt to stress and reactivate tran-

siently repressed genes, while another group of these nucleo-

somes instead lose H3K4me3 due to ongoing repression of the

associated gene. In other words, transient uncoupling of

H3K4me3 status and H3K18ac levels results from a difference

in the kinetics of each modification’s response to transcriptional

reprogramming—H3K18 deacetylation is rapid and occurs over

genes subject to both short and longer-term repression, while

H3K4 demethylation significantly lags deacetylation and is spe-

cific to longer-term gene repression.

Ordered Waves of Histone Modifications during
Transcriptional Reprogramming
Although transcription-related modifications increase and

decrease in expected ways upon changes in transcription, we

see marked differences in the timing of these changes. In gen-

eral, acetylation changes at the 50 of genes appear early in the

transcriptional response, while gene body methylation occurs

more slowly. Similar timing differences were recently observed

during yeast exit from starvation state (Mews et al., 2014).

Here, the timing of changes depends on the transcriptional pro-

gram, as different coregulated gene sets exhibit distinct cas-

cades of modification changes. Understanding whether these

cascades reflect independent events with different temporal

delays or linear chains of dependent events will require further

experiments with denser temporal samples and genetic or

drug interventions. Our analysis provides an inventory of the rele-

vant timescales and the representative modifications to follow in

such detailed experiments.

Furthermore, although in general modification changes are

generic, there are subtle differences in the timing and intensity

of changes during repression/induction of differently regulated

gene sets. This observation suggests that regulatory mecha-

nisms do alter the footprints made on the chromatin modification

landscape. Most notably, ribosomal protein genes and ribo-

somal biogenesis genes, both of which are strongly growth-

related in expression, exhibit significant differences in chromatin

dynamics during repression.

Toward a Comprehensive View of Chromatin Dynamics
The data set and analysis presented here provide a detailed and

comprehensive view of chromatin state in yeast and how it re-

sponds to amassive transcriptional reprogramming event. Chro-

matin changes are intimately connected to transcriptional

changes, occurring with clearly defined ordering relative to tran-

scription. Although such observational data do not provide evi-

dence of causality, they provide a rich resource for evaluating

potential pathways and suggesting interventional experiments

to further resolve the myriad interactions between chromatin

marks and transcription.

EXPERIMENTAL PROCEDURES

Cell Culture and MNase-ChIP

Wild-type yeast (BY4741) cells were grown in six flasks of 400 ml YPD to mid-

log phase (OD600 = 0.55) shaking (220 rpm) at 30�C. Cells were treated with

diamide (1.5mM) and fixed at 0, 4, 8, 15, 30, and 60min with 1% formaldehyde



for 15 min. Cell pellets were harvested, washed by water, and subjected to

bead beating, MNase digestion, and chromatin immunoprecipitation (Liu

et al., 2005). For detailed protocol, antibodies and experimental batches see

Supplemental Experimental Procedures and Table S1.

Library Preparation and Sequencing

Multiplexed libraries were prepared using HT-ChIP (Blecher-Gonen et al.,

2013). Libraries were sequenced on an Illumina HiSeq-1500 (50 bp single-

end sequencing) to obtain �5–10 million aligned reads per sample. Reads

were mapped to the S. cerevisiae sacCer3 assembly using ‘‘bowtie2’’ with

default parameters, and only tags that uniquely mapped were used for further

analysis.

Data Processing and Normalization

Except for metagene views, all analyses were performed on nucleosome dis-

cretized (Table S2) and occupancy-normalized data. Using these values, we

estimated the log ratio of ChIP coverage compared to input in each sample.

Values within each time series (antibody 3 time points) were quantile normal-

ized using MATLAB (version R2013a) quantilenorm function (Supplemental

Experimental Procedures).

Regression and Sparse Regression

We used multiple linear regression analysis to reconstruct histone modifica-

tions levels from a collection of features: nucleosome position, mid-log occu-

pancy (input), NET-seq (Churchman and Weissman, 2011) coverage both in

sense and antisense directions, turnover rate (Dion et al., 2007), replication

time (Raghuraman et al., 2001), and log of distance to nearest telomere or

centromere. Since position is a discrete feature, we estimated a different

regression model for each nucleosome position.

To use histonemodifications to predict genomic features, we applied sparse

linear regression (MATLAB’s lasso procedure) with 5-fold crossvalidation to

estimate mean squared error (MSE). We fitted the lambda parameter value

(nonnegative regularization parameter) with the minimum MSE using the

default lambda scan method.

Detecting Nucleosomes at Low-Density Regions

To investigate the 26-dimensional modification space, we used kernel density

estimation, with bandwidth determined by crossvalidation (Supplemental

Experimental Procedures). To mark nucleosomes that arrive at low-density re-

gions, we take the 0.1% quantile of the density at mid-log as our threshold for

the definition of ‘‘low’’ density at all other time points. We used the same

approach to detect low-density regions in pairwise dimensional projections

of the data.

Fit and t1/2 Estimation

We use a nonparametric approach using multiple leave-one-out estimates to

interpolate modification changes at each nucleosome and evaluate the accu-

racy of the interpolation (Supplemental Experimental Procedures). Given the

estimate, the peak change, h, is defined as the point in time which has the

maximal absolute change, relative to t = 0. We define t1/2 as the time at

which the estimated response reaches half the peak change. For each nucle-

osome and each modification, we use a permutation test to evaluate whether

the observed time trajectory is nonrandom (Supplemental Experimental

Procedures).

Timing of Events in a Gene Set

To identify coherent events at the level of genes and gene sets, we partition

nucleosomes in each gene to 50 (�2, �1, +1, +2) and gene body (> = +3).

For each gene, we average only the timing statistics of coherent nucleosomal

changes (as defined above, 25%FDR) across these nucleosome sets to obtain

events per gene and position (50/gene body) for each modification, and for

occupancy, and RNA levels. Each of these events has its peak change and

t1/2. Next, for a given set of genes, each of the above events is considered

coherent in the gene set, if (1) at least 40%of genes show a coherent response,

(2) 75% of those responses changed in the same direction (‘‘up’’/’’down’’),

and (3) the distribution of changes was significantly non 0 centered (t test

with 5% FDR).
Ordering Events

We define the precedence of one event, A, over the other, B, with respect to a

gene set, G, as the fraction of genes in which event A is preceded by event B by

at least 1 min. For each such coherent event pair we performed one-sided

t tests (with 5% FDR). Pairs that pass the test are defined as significant prece-

dence relations. The set of these pairs define the Timing of Events (TOE) graph

with regard to the gene set G. We cluster events to ‘‘comparable’’ clusters

(Supplemental Experimental Procedures).
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Figure S1. Metagene profiles at steady-state, Related to Figure 2 

For each modification, data were aligned by the transcription start site (TSS) of annotated open 

reading frames, and grouped according to transcription rate as in Figures 2E-G. 
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Figure S2. Features contributing to steady-state histone modification patterns, Related to 

Figure 3 

(A) Genome browser views for chromosomes II and IV, showing H3S10ph enriched around 

centromeres, and H2AS129ph enriched at telomeres, as indicated. (B) Contribution of 

experimental noise to the total variance in different histone modifications. For each modification 

dataset, we used the difference between adjacent diamide time points to estimate noise in the 

measurement, assuming that histone marks are relatively stable between adjacent time points. 

This naturally overestimates the noise in the dataset as yeast are changing their transcriptome 

and modifying the chromatin template in response to diamide stress. Nonetheless, this provides 

a reasonable measure of noise given that the features with the lowest noise here are generally 

associated with transcription-related marks (H3K4me3, etc.) which would be expected based on 

diamide stress to exhibit the most changes between time points. The higher noise estimated for 

marks such as H3S10ph and others thus likely reflects true measurement noise, either resulting 

from relatively nonspecific antibodies, or resulting from widespread marks with lower peak to 

trough values and thus lower “signal to noise”. 

 

  





 

Figure S3. Chromatin landscape of rDNA repeats, Related to Figure 4 

The mapping of nucleosomes and 26 histone modifications in the 9.1kb rDNA repeat region. 

(top) Browser track showing transcripts from the repeat region. (bottom) Tracks showing 

enrichment of modifications along the repeat region. Line color saturation in each track ranges 

from dark (0’) to light (60’). 

 

  



Figure S4
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Figure S4. Stress-induced changes in histone modifications, Related to Figure 4 

(A) Venn diagram showing the overlap between nucleosomes on genes that changed 

expression or Pol2 levels (red and blue circle respectively) to nucleosomes that changed in at 

least 1, 2, …, 7 modifications (gray circles). Inset: histogram of the number of nucleosomes in 

each gray circle. (B) The number of nucleosomes that show significant movement in each of the 

modification. These numbers are broken according to location within induced, repressed genes, 

and other locations. (C) Correlation of change in expression to change of modification (as in 

Figure 4H) broken by nucleosome position.  

 

  





 

Figure S5. Patterns of stress-induced changes in histone modifications, Related to 

Figure 4 

Hierarchical clustering of histone modification patterns for 5948 nucleosomes with four or more 

changing marks (see Supplemental Figure S4A). Each row is a nucleosome, and columns as 

follows. (A) Time course values of input levels (relative to median levels), and histone marks 

relative to input. (B) Time course values of input and histone marks relative to their levels at t=0. 

(C) Annotation of the nucleosome as 5’ or gene body. (D) Maximum change in RNA for the 

associated gene during diamide response. Gray cell denote missing values. Although clustering 

was performed on the values of (A) and (B), they form coherent clusters in terms of nucleosome 

position and direction of RNA change. 

 

  





 

Figure S6. Nucleosomes traversing non-canonical combinations, , Related to Figure 5 

(A) Heatmap showing input levels and modification levels (relative to input) for 1915 

nucleosomes that leave the high-density region in the 26-dimensional space. Several prominent 

clusters are noted. (B-C). Movements of nucleosomes through 2D modification space. (B) The 

anticorrelation between H3K36me3 and Htz1 (and H2AK5ac) was violated by a number of 

nucleosomes at late timepoints. (C) Nucleosomes that transiently gain the repression-related 

H2AS129ph despite carrying high levels of H3K36me3 throughout the time course. (D) 

Movement of +1 nucleosomes of Ribosome Protein Genes in the H3K18ac/H3K4me3 space. 

Blue dots show nucleosomes at the relevant time point, gray dots show nucleosomes at t=0. (E) 

Trajectories for specific sets of nucleosomes are shown, with the t=0 domain being shown as an 

empty oval, and the stress domain shown as points and a filled oval (as in Figures 5G and H). 
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Figure S7. Timing of changes, Related to Figure 7 

(A) t1/2 global by mod Moreover, there are noticeable differences between specific acetylation 

marks, as H3K18ac, H3K23ac, H3K27ac, and H4K5ac change earlier in the response, while 

H3K56ac and H4K16ac are slower. Changes in H3S10ph and Htz1 also change as rapidly as 

the earliest acetylations, while H2AS129ph is relatively slow. (B) Repressed genes and (C) 

Induced genes. Right: matrix of relative timing as in Figure 7D. Left: box-plot of t1/2 for each 

modification relative to RNA t1/2. (D) Interpolated time course data for RiBi genes and RPGs for 

30 minutes of stress response (as in Figure 7G), shown in heat map representation. The left-

most and right-most cells denote level relative to genome wide mean at t=0, 30, respectively. 

The middle row shows changes relative to t=0.  

  



 

Supplemental Tables 

Table S1. Sample details, Related to Figure 1 

Contains information for each time series: antibody details (supplier, clone, lot #), experimental 

batch, sequencing batch, and number of sequenced reads.  

Table S2. Nucleosome atlas, Related to Figure 2 

Contains information for each nucleosome in the annotated atlas: genomic location of 

nucleosome center, coverage in the reference mid-log input, and annotation to a position in a 

gene (if one exists). 

Table S3. Normalized modification levels, Related to Figure 2 

Table of nucleosome (rows) vs. samples (columns). Each entry is the log2 modification level 

relative to input. Samples have been normalized as described below. 

Table S4. Modification change analysis, Related to Figure 4-5 

Table of nucleosomes (rows) vs samples (column). Fore each nucleosome X sample, listed are 

the t1/2, maximum change, interpolation error, and significance analysis for coherent change 

(see below). 

Table S5. Pairwise moving nucleosome analysis, , Related to Figure 5 

Number of moving/leaving nucs in each pairwise comparison. 

Table S6. Gene sets, Related to Figure 5 
List of genes within each gene set in our non-redundant set. 

Table S7. Gene set analysis, Related to Figure 5  

Gene sets (rows) vs enrichment p-value at different gene positions (see below). 

  



 

Supplemental Methods 

Stress response experiment  

All cultures shake in  

#  Innova44 shaking incubator 

#  30°C, 220RPM 

 

1. Culture 400 mL of yeast in 2L baffled flask x 6 (six time points: 0, 4, 8, 15, 30, and 

60 min) overnight to OD ~0.55. 

note 1.  Cell number is ~ 0.8 – 1 x 107 cells/mL  

note 2.  Adjust the total volume of culture based on your experiment design, but the 

basic principle is to keep the ratio of culture to bottle = 1:5 (400mL : 2000mL) 

note 3.  Use a baffled flask to keep constant oxygenation 

note 4.  Although the diamide treatment will slow yeast growth, they still grow ~1.2-

1.3x at 60-mins point in our system. In order to get constant condition between time 

points, please check the growth curve of your strain beforehand 

2. Add reagents as following table. Once you add diamide into ‘60mins-culture’, start 

the timer, and then add diamide into next bottle every 1 min after (ex. Add to 
30min-culture at 1min on timer, 15min-culture at 2min on timer, and so on). 

 

note 1.  Freshly prepare 1M diamide stock [MW = 172.19] in TE buffer. If not, store 

in -20 freezer, don’t freeze and thaw over 3 times. 

  1M Diamide 37% Formaldehyde 
30C for 15min 

2.5M Glycine 
RT for 5min à on 

ice 
    Final conc 1.5 mM 1% 125 mM 

Add 600 uL 10.7 mL 20.5 mL 
0 min x 6 21 
4 min 4 8 23 
8 min 3 11 26 

15 min 2 17 32 
30 min 1 31 46 

60 min Start → 0 
(min) 60 End → 75 (min) 



 

3. Spin for 5mins @ 4000rpm, 4°C 

4. Wash cell pellets by 50mL water 
5. Spin for 5mins @ 4000rpm, 4°C 

MNase-ChIP Protocol (beads-beating) 

Solution: 
§ 0.5mm diameter ZIRCONIA/SILICA beads Cat.11079105z, BioSpec 
§ 2mL Screw-cap tubes 
§ Cell breaking buffer(0.1M Tris, pH7.9, 20% glycerol), 4°C 
§ Sigma protease inhibitor cocktail for fungi (PIC), 100X  
§ NP Buffer:  0.5 mM spermidine, 1 mM β-ME, 0.075% NP-40, 50 mM NaCl, 10 mM Tris pH 

7.4, 5 mM MgCl2, 1 mM CaCl2.  Do NOT include Sorbitol! 
 Ex: 5 ml of NP Buffer: 
         10 ul 250 mM spermidine 
        3.5 ul of 1:10 (diluted in water) b-ME 
      37.5 ul 10% NP-40 
      Bring up to 5 ml with MNP buffer. 

§ Buffer L: 50 mM Hepes-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% 
sodium deoxycholate.   

§ Buffer W1: Buffer L with 500 mM NaCl 
§ Buffer W2: 10 mM Tris-HCl pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxycholate, 

1mM EDTA 
§ Buffer Z: 1 M sorbitol, 50 mM Tris pH 7.4 

Ex: 1 L of buffer Z: 
      500 ml 2 M sorbitol 
        50 ml 1 M Tris-HCl pH 7.4 
      450 ml ddH2O 

§ TE: 10 mM Tris-HCl pH 8.0, 1 mM EDTA 
§ “2X” Proteinase K solution: TE with 0.8 mg/ml glycogen, 2 mg/ml proteinase K 
§ Elution buffer: TE pH 8.0 with 1% SDS, 150 mM NaCl, and 5 mM DTT Do not add the DTT 

until just before use 
§ Zymolyase solution (10 mg/ml in Buffer Z; lasts up to 2 weeks at 4°C) 
§ Micrococcal Nuclease (Worthington Biochem):  resuspended from lyophilized powder at 20 

U/ul in Tris pH 7.4.  Aliquot into tubes upon first use and freeze at –80°C. 
 
 
Protocol: 

1. Pour ~1000uL of 0.5mm beads into screw-cap tubes and leave on ice. 
2. For each pellet collected from 400mL culture, resuspend with 1000uL of cell breaking 

buffer (+1X PIC), and then aliquot to 2mL screw-caps tube x2 from step 1. 
3. Put 12 tubes in pre-chilled (-20°C) magnetic bead-beating rack and bead-beating for 3 

mins twice by Biospec beads beater. 
4. Stab a hole at bottom of tube by a heating needle. Move stabbed tube into 5mL big tube 

and collect sample by spin for 1min @ 700g, 4°C. 
5. To collect nuclei, pipette sample to 1.5mL canonical tube and spin for 10mins @ Max 

speed, 4°C. 
6. Get rid of the supernatant. Resuspend the pellet with 2400uL NP buffer. 



 

7. Add appropriate volume of MNase (Note: Titrate it beforehand. Usually getting 90% 
monomer + 10% dimer + little trimer band would be ok). Briefly mix and incubate for 
20mins @ 37°C. 

8. Add 24uL of 0.5M EDTA and incubate for 10min @ 65°C to inactivate enzyme activity. 
9. Prepare Protein A beads. Pipette 1500ul slurry (250uL per sample) à Spin down for 

30sec @ 3000g, 4°C à Wash beads twice in Buffer L à Recover to original volume in 
Buffer L.  

10. Pool the digested material and add the following to the digestion products to simulate 
Buffer L conditions.  Add the salts before the detergents!  Amounts below are per a 
600 ul digestion aliquot; scale accordingly (here is 2400uL, so x4 for each one).  

Volume 

(ul) 

Component 

80 0.5 M HEPES-KOH pH 7.5 

22.4 5 M NaCl 

6.4 12.5% sodium deoxycholate 

80 10% Triton X-100 

8 Sigma protease inhibitors 

11. Set aside at least 200 ul (~5%) of pool as non-IP control; needed also for gel verification 
of the MNase digest.   

12. Pipette 250uL protein A to each sample and rotate at 4°C on tube rotisserie for one hour. 
13. Spin for 30 seconds @ 3000g, 4°C, and transfer 700-800uL of supernatant to each tube 

containing the appropriate amount of antibody  (total is 6 time points x 4 sets = 24 tubes). 
14. Incubate with rotation at 4°C for 4 hours to overnight (up to 16 hours). 
15. Add 100uL of protein A bead to each tube. 
16. Incubate with rotation at 4°C for 1 hour (longer is allowable but not necessary). 
17. Spin for 30 seconds at 3000g at 4°C and for subsequent pelleting steps in washes. 
18. Wash beads successively with 1 ml of the following buffers, for 5 minutes (on rotisserie 

at 4°C) each, in the following order:  Buffer L (twice), W1 (twice), W2 (twice), and TE pH 
8.0 (twice). 

19. Incubate and mix the beads in 125ul of elution buffer at 65°C for 10 minutes on thermal 
mixer.  Be sure to add the DTT in the elution buffer (to 5 mM final concentration) 
beforehand. 

20. Pellet the beads by centrifugation at 10000g for 2 minutes and keep the supernatant.   
21. Repeat Steps 19 and 20 and discard the protein A beads when done. 

 
22. Reverse cross-linking by Proteinase K 
23. Extract DNA with PCI 
24. Ethanol precipitation of DNA 
25. RNAase digestion 
26. CIP 
27. Clean-up by Minelute 



 

Data Quality and Antibody Quality Control 

Although the dataset analyzed here consists of single replicate data, numerous preliminary 

datasets were gathered for several modifications, including several ChIP-Seq datasets for 

H3K36me3 as well as several published (Weiner et al., 2012) and unpublished microarray 

analyses of over ten distinct histone marks during a diamide stress response. All such replicates 

were highly concordant with the data presented here. 

In selecting antibodies for this studies, we analyzed reports of antibody quality (Egelhofer et 

al., 2011) (http://compbio.med.harvard.edu/antibodies/), and did not consider antibody lots with 

previous reports of cross-reactivity. For six modifications, we performed ChIP-chip [as detailed 

in (Weiner et al., 2012)] in strains lacking the modified residue (Dai et al., 2008) and removed 

those that showed cross-reactivity – all antibodies to H4K91ac were eliminated based on this 

step, as they gave similar ChIP-chip profiles in wild-type and H4K91A mutants. Finally, we 

assessed the quality of antibodies which passed these filters by evaluating how different they 

are from the input distribution. Specifically, we estimated the percent of their variance explained 

by normalizing them to the input, and conditioning on position and expression information 

(Supplementary Tables S2 and S3). A visual inspection revealed that indeed the ten least 

explained antibodies are almost identical to the input, with the exception of H3S10ph, which is 

localized to the centromeres. To quantify the visual inspection, a genome wide correlation score 

to the input revealed a clear separation between these ten antibodies, which were discarded, 

and all other antibodies (Supplementary Table S1). 

Data Processing 

The normalization was done in few steps: 

1. We generated coverage plots from uniquely mapped reads. Since the data was from 

mono-nucleosomal fragements, each read was extended to 100bp before computing 

coverage. The coverage was normalized to 107 total number of reads in each sample 

and smoothed running window averages of 15bp width. 

2. To call nucleosome peaks, we first identified local maxima in coverage in each input 

experiments (all time points X all batches). We then applied a greedy procedure to select 

the ones with the highest coverage as the centers of nucleosomes, where each selected 



 

peak removes from consideration all other peaks whose center is within +/- 100bp. The 

selected peaks formed the nucleosome atlas of Supplementary Table S2. 

3. Coverage estimation.  For each nucleosome, we computed the coverage in each 

experiment as the maximum number of reads covering a single base within 100 bp of 

the nucleosome center. To prevent overflow in normalization to input, we add 25 

“pseudo reads” to all coverage values (in both input and ChIP samples). 

4. Each sample was then represented as log2 of the ratio to input. To take into account 

batch differences, this ratio was computed as the average of the input signal from the 

matching batch and the mean of all other inputs. 

5. We then applied QQ normalization to each time series (each antibody). This 

normalization assumes that the distribution of values in in each antibody through time 

remains the same. The normalization matches quantiles in each time-course to each 

other (using MATLAB’s quantilenorm, version R2013a). 

6. The normalized log ratios are reported in Supplemental Table S3 and used throughout 

the analysis. 

7. Final output of these steps was visually compared to raw genome browser tracks. 

TSS mapping and Expression Data 

Expression data during diamide stress response was taken from (Gasch et al., 2000). For a 

subset of analyses, Pol2 ChIP-chip from (Kim et al., 2010) was used instead  place of mRNA 

abundance, with all key conclusions being qualitatively identical using either dataset.  

 

We annotated nucleosome positions along the gene (-1,+1,+2,…,+N) based on TSS mapping 

data, generated as in (Ni et al., 2010). Briefly, Polyadenylated RNA was treated with bacterial 

alkaline phosphatase (TAKARA), then decapped using Tobacco Acic Pyrophosphatase 

(Epicentre). An oligo containing an MmeI site was ligated selectively to previously capped 5’ 

ends of RNA using RNA ligase. After reverse transcription and low cycle amplification using 

biotinylated primers, MmeI was used to digest 20bp downstream from where the 5’ cap had 

been. This DNA was then isolated with streptavidin beads and ligated to a modified Illumina 

adaptor. After elution from the beads, TSS sequences were amplified by PCR, cloned, and deep 

sequenced.  



 

Noise estimation 

To estimate the technical noise levels of each ChIP experiment we treated time-point 

measurements as biological replicate by selecting the time point with the smallest differences to 

time t=0 as the second replicate for noise estimation. 

 

Regression and sparse regression  

We used multiple linear regression analysis to reconstruct histone modifications levels from a 

collection of features. Feature of the regression are: 

(a) Nucleosome position relative to transcription start site (Supplemental Table S2). 

(b) Mid-log occupancy level taken from the merged MNase input signal (Supplemental 

Table S2). 

(c) RNA polymerase levels from published NET-seq data (Churchman and Weissman, 

2011). For each nucleosome we counted the number of sense and antisense (AS) NET-

seq reads up-to 100 bp from its dyad. Sense/AS were determined based on SGD genes 

annotations. 

(d) Turnover data was taken from (Dion et al., 2007), for each nucleosome we considered 

the average value from microarray probes with distance of 100 bp for its center. 34830 

nucleosomes had at least one probe, the rest were discarded from the analysis. 

(e) Positions relative to nearest centromere/telomere in base pairs (log). 

(f) Replication Timing was based on (Raghuraman et al., 2001), we assigned timing value 

in minutes for each nucleosome using linear interpolation of the reported data. 

 

In total, we assigned 6 features to each nucleosome plus it’s position along the genome. 

Finally, we learned the multiple regression coefficients for each genomic position separately. 

PCA  

PCA analysis was performed using MATLAB’s pca method where all 6 time-points were merged 

to one large matrix (66360 X 6): 398160 X 26.  



 

Detecting nucleosomes at low density regions 

To investigate the 26-dimensional modification space, we employed a semi-parametric 

technique of kernel density estimation. We define the density function at point 𝑥 ∈ 𝑅! to be: 

𝑑 𝑥,𝜎 =
1
2𝜋𝜎!

𝑒!
!!!!!"

!
!

!

!∈!!!

 

Where 𝜎 is the bandwidth of the kernel, 𝑁𝑁! are the 20 nearest neighbours to 𝑥, at t=0, 

omitting the single nearest neighbor (for stabilization considerations). 

To find the optimal bandwidth, we use a cross-validation approach; we randomly draw half 

of the nucleosomes to form a training set, and estimate the likelihood of the other, unseen, part 

of the data. The optimal bandwidth is the one that maximizes the likelihood: 

𝜎∗ = argmax
!!!

𝑑(𝑥! ,𝜎)
!∉!"#$%

 

Given the optimal bandwidth, σ∗, we can continue to estimate the density with respect to 

mid-log modification space at all time points.  

Compendium of gene sets 

We assembled a compendium (Supplemental Table S6) of gene sets of functional groups 

(Ashburner et al., 2000; Dutkowski et al., 2014; Segal et al., 2003), DNA binding data (Harbison 

et al., 2004; Rhee and Pugh, 2012; Venters et al., 2011), genetic perturbations (Chua et al., 

2006; Lenstra et al., 2011; Mnaimneh et al., 2004), and RNA binding data (Gerber et al., 2004). 

We removed redundant gene sets by selecting a smaller set of representative gene sets such 

that all gene sets have a Jaccard distance of 0.2 or lower to one of these representatives 

(keeping ~60% of ~13000 original gene sets). 

Gene-sets with rare modification states 

For each pairwise modification space, gene-set and nucleosome position we tested whether 

nucleosomes at the position in genes in this set is over-represented in the low-density region of 

the pairwise combination (hyper-geometric p-value).  We corrected for multiple testing with 5%-

FDR, removing non-significant results. We then average the log of these p-values over all the 

2D spaces to assign aggregated p-values for each gene-set (Supplemental Table S6). 



 

Fit and t1/2 estimation 

We have no specific prior on a functional form for the modification responses so we use a 

non-parametric approach for our estimation. We do assume that the responses are smooth, and 

that modification levels are at mid-log steady state when t=0. 

To estimate the response we introduce steady-state pseudo-measurements at -60 and 120 

minutes (values as in t=0) based on previous observations in the literature that the yeast return 

to baseline transcriptional state after 90min (Gasch et al., 2000; Kim et al., 2010). We then 

iterate over internal points (4,8,15,30 minutes), leave each one out, and calculate the cubic 

interpolation (MATLAB's interp1, version R2013a). The estimated response is the mean of all 

these leave-one-out (LOO) interpolated responses. 

Given the estimate, the peak change is defined as the point in time which has the maximal 

absolute change, relative to t=0. After evaluating the peak change, one can define t1/2, as the 

time at which the estimated response reaches half the peak change, and tr1/2, as the time at 

which the estimated response is at half the return to the value at t=0 (tr1/2 is not necessarily 

applicable). These time points re estimated using a cubic interpolation resolution of less than .6 

minutes, along with a linear interpolation between t1/2 flanking time-points. 

The error of the estimate is calculated as the mean difference between each of the LOO-

interpolated responses and the data point omitted, divided by the standard deviation of the data 

series. Formally: 

𝑒𝑟𝑟 𝑥! =   
1

𝑆𝑇𝐷(𝑥!)
𝑦!!! 𝑡 − 𝑥!"

!

!∈[!,!,!",!"]

 

  

Where 𝑦!!! 𝑡   is the interpolated response obtained when time point t is omitted, evaluated 

at time point t. 𝑥! is the measured log-fold change vector (from t=0) of a nucleosome indexed by 

i, at a certain modification.  

 

Coherent Movement determination 

For each modification, we use a permutation test to estimate which nucleosomes exhibit a 

coherent change in their response. The null hypothesis is that changes are random fluctuations 

in measured data, is obtained by permuting the nucleosomal measurements independently at 

each time point. This maintains the overall distribution of change values but eliminates any 



 

connection between these measurements through time. On this permuted dataset we employ 

the same procedure described above (LOO interpolation) to obtain error estimates, as 

described above. Finally, for each nucleosome, i, in each modification, m, we define the 

following statistic: 

𝑠!! =   𝑃𝐶(𝑥!! )−𝑎! log 𝑒𝑟𝑟(𝑥!! )  

Where 𝑃𝐶(𝑥!! ) is the (log) peak change of nucleosomes i in modification m, 𝑒𝑟𝑟(𝑥!! ) is the 

error of the LOO interpolation, and 𝑎! is a global modification constant weighing the relative 

weight of the two numbers: 

 

 
Now, for each modification, for a given FDR 𝛼, we set the threshold over this s statistic to 

be the maximal such that at most 𝛼% of nucleosomes above the threshold are not from the 

randomly permuted data set. For most analyses we use an FDR of 10%, a visual inspection 

reveals that this is generally a stringent cut-off. For the timing-of-events analysis we use a more 

lenient FDR of 25%, to allow for greater statistical power in downstream analysis, assuming that 

the selection of specific nucleosomes of specific genes is independent of false discoveries in 

this s-statistic. To set the 𝑎! per modification, we optimize over the number of nucleosomes 

passing a certain FDR (10%). While this might increase the actual FDR, the stability of this 

global constant across modifications and FDR thresholds, and a visual inspection of results, 

suggests that the optimal constants represent an actual tradeoff between these quantities, 

rather than an arbitrary number. 



 

Event Pair Statistics 

Given the collection of coherent events in a gene set of interest, we next ask "How do these 

events relate to each other?" We define the precedence of one event, A, over the other, B, with 

respect to a gene-set G: 

𝑃!(𝐴,𝐵) =   
1
|𝐺|

1 !! !
!! !!! !

!! !!
!∈!

 

Or in words – we simply count the fraction of genes in which event A is preceded by event 

B, plus some confidence interval   (𝜏 = 1 𝑚𝑖𝑛 ,   this means that any events with a timing 

difference of less than one minute is ambiguous and ignored). 

Also, for each such coherent event pair, a one sided t-test was performed to exclude the 

possibility of a random timing difference between these events. The t-test associated p-value 

was collected, and only those p-values that passed an FDR threshold of 5% were further 

considered. These p-values allow us to define the timing of events (TOE) graph w.r.t to a gene-

set G - 𝑉! ,𝐸! , as follows: 

𝑉! = 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡  𝑒𝑣𝑒𝑛𝑡𝑠  𝑖𝑛  𝐺 

𝐸! = 𝐴,𝐵   |  𝐴  𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠  𝐵  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑙𝑦  𝑖𝑛  𝐺  

 

Order of Events 

Note that the TOE graph is a directed acyclic graph (DAG) by definition (and the linearity of 

time), so it provides us with a partial order of events. Ideally, we would like to find the optimal 

order of events, 𝜋∗, which is consistent with the TOE graph, T, such that: 

𝜋∗ = argmax
!∈!|!|⊆!

𝑃(𝜋! ,𝜋!)
!!!!

 

Where 𝑆|!| is the permutation set over the vertices of the graph, i.e. over events, and the 

notation 𝑆|!| ⊆ 𝑇 means that they are consistent with the order dictated by the edges of T. In 

other words, we are looking for the order of events that maximizes the "overall precedence" of 

the data, while conforming to precedence significance in the data. Unfortunately, this problem 

(optimal order w.r.t. an edge weight function, even without constraints) has been shown to be 

NP-complete problem usually called the LINEAR-ORDER-PROBLEM (or LOP). 

As a heuristic we perform a topological sort of the data (which guarantees that the graph 

constraints are satisfied), and in the cases where two events are incomparable in the partial 



 

order, we use the overall precedence of these events (w.r.t to all other events) to obtain a total 

linear order. 

Event Grouping 

Given the TOE graph, a natural follow-up question is whether there are groups of events 

that succeed certain events, precede other events, but show no specific relations amongst 

themselves, i.e. – are there groups of events that are indistinguishable by their timing?  

To address this question, and given the total order described in the previous section, we 

wish to partition the events to groups and optimize the total weight of edges between 

subsequent groups. Visually, if the edge matrix is the following binary matrix (this is easily 

extended to non-binary matrices, or weighted edges): 

 

 
 

We are looking for a partition of the events (collection of blue lines) that maximizes the sum 

of the highlighted rectangles: 



 

 
This problem can be solved using a simple dynamic programing. By iteratively answering 

the question: "which is the optimal partition up to index i", and selecting the i for which the 

maximal-valued partition is obtained. Note however, that the conjoining of two sub-solutions 

also requires us to know the size of the last set in the optimal sub partition. Since every partition 

must have a final set, and the order is fixed, this strategy searches the partition-space 

exhaustively for the optimal solution in 𝑂(𝑛!) time, which is reasonable for our problem size 

(𝑛 ≤ 200). 
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