
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

In this manuscript, the authors describe their new pipeline for open reading frame (ORF) quantification 

for alternative splicing, ORQAS. It is able to quantify the translation of individual transcript isoforms 

using Ribosome profiling data. They address the challenge that detection of protein variation derived 

from differential microexon using unbiased proteomics is nowadays not possible, whereas their pipeline 

is able to detect conserved microexons between human and mouse. The highlight of their pipeline is 

how they determine the potential of ORF translation, by calculating the uniformity and the periodicity 

along the ORF. This paper lacks comparison with other computational methods (e.g RiboMap and 

SaTAnn), testing of the uniformity and periodicity parameters, and additional validations such as 

quantification between cytoplasmic and nuclear extracts) to be considered as a novel method for 

alternative splicing quantification. Furthermore, the description of many of the figures makes 

interpretation of the results difficult to evaluate and the methods section requires more extensive 

description. 

Algorithm outline 

1) Quantifies the abundance of ORFs in from RNAseq (TPMs). 

2) Assigns ribosome sequencing (Ribo-seq) to the same ORFs by RiboMap. 

3) Calculates for each ORF two parameters for determining their potential translation: 

Uniformity (proportion of the maximum entropy of the read distribution) and the 3nt signal periodicity 

along the ORF. 

Major concerns 

1) The authors ORQAS algorithm relies primarily on a published pipeline from the Kingsford group 

(Wang et al. 2016, Bioinfomatics). The innovation they’ve applied is to integrate in uniformity and 

periodicity cutoffs. However, they provide no evidence that these measures are an improvement over 

the approach used by Ribomap. Since the authors are releasing their own package, ORQAS, they should 

demonstrate the unique strength and advantage of their approach. 

2) In addition, the authors need to show that their cutoffs for uniformity and periodicity improve their 

ability to reliably detect active translation and that they are not removing data unnecessarily. 

3) Previous work both published (Weatheritt et al. 2016, Sterne-Weiler et al. 2014, Floor and Doudna. 

2016) and in prepublication servers (Calviello et al. 

https://www.biorxiv.org/content/10.1101/608794v1) have identified alternative splicing variants 

engaged with polysomes or ribosomes. Furthermore, both Weatheritt et al. and Calviello et al. have 

analyzed ribosome profiling data and have provided estimates for the number of splice variants engaged 

by the ribosome. The authors explain the advantages of their approach but do not contrast their results, 

especially in light of controversy of splice variant identification in mass spec data. 



4) We undertook a brief comparison to SaTAnn, the authors should expand on this. SaTAnn versus 

ORQAS. Both approaches used HEK293 data (https://www.nature.com/articles/nmeth.3688 and 

GSM1306496) 

ORFs with quantified translation Number of genes Number of genes with only one ORF translated 

Number of genes with translation of multiple ORFs 

SaTAnn ~24,000 ~15,000 9,138 (60.92%) >5,800 

ORQAs ~20,709 Not explicitly mentioned 5,237- 4,766 

(Fig 1c -1d ) 52.3-54.9% 

(Fig 1c and 1d) 

5) In the section: Ribosome profiling discriminates translation abundance at isoform level. The authors’ 

validate their approach by comparing translated isoforms predicted by ORQAs with RNAseq of 

polysomal fractions and found that their predictions are enriched in the polysomal fraction but not in 

monosomes (Fig 2c). This validation is not sufficient to support the translation prediction power of 

ORQA as active translation can also take place in monosomes (See Heyer and Moore, 2016). We propose 

they should compare between cytoplasmic and nuclear extracts. 

6) The authors need to provide a more detailed methods section. For example, we advise that the 

authors elaborate further on how they use SUPPA to convert isoform abundances to event inclusion 

values together with rationales that validate such a conversion strategy. 

7) The microexon section is interesting, especially the identification of microexons in glia samples. 

However, the majority of previous studies have used a cutoff of <30 nt for microexons (Irimia et al, 

2014; Torres- Méndez et al, 2019). Does the enrichment still exist with this cutoff? 

Minor concerns 

● TPM value of 0.1 is very low. We suggest an alterna�ve cutoff of at least 1 for robust interpreta�on.

● Fig 1b. Legend says: single ORF housekeeping genes are in blue but in the figure it suggests otherwise. 

● In the sec�on: Ribosome profiling discriminates transla�on abundance at isoform level

1) The authors mention they have 15,824 human-mouse 1-1 gene orthologs, and identify 18,574 human-

mouse protein isoform pairs representing functional orthologs. They then state to find 7,112 (64%) of 

the 1-1 gene orthologs had more than one orthologous isoform pair. We suggest the authors elaborate 

on how they reached this figure, as well as provide more information about the relevant plot. 

2) In the text, the p-value is as “< 2.2 e-16”, whereas in the figure legend they show the exact p-values. 

● Figures 3b and Supp. Fig 4a show the density of reads per nucleo�de compared with other isoforms 

and suggest that “both region types in translated isoforms showed a higher density of reads per 

nucleotide compared with other isoforms” 



○ We believe these figures do not necessarily agree with the aforemen�oned statement from the main 

text and require further elaboration in the Figure legends such as: 

■ Clarification of whether the specific sequence sets are independent. 

■ Present results of statistical test (eg. Wilcoxon rank sum test) for significant difference. 

○ We also suggest the authors present the data with Ecdf plot to contrast the distribu�ons between 

datasets. 

● It is unclear how Figure 3e and 3f support statements from the main text. In par�cular, the statement 

of “63-65% in mouse with an RNA expression > 0.1 TPM” is difficult to relate to the data presented in 

Figure 3 without further elaboration. In addition, the authors should provide further information Figure 

3f supporting the statement that “~ 10% of annotated AS in both human and mouse had evidence of 

translation and these represented 60% of all translated isoforms”, as unclear how these numbers were 

reached. 

● Fig. 4a) in the sec�on of RA calcula�on, the figure says “RA = OPM1 + OPM2”. We believe that the 

authors' initial intention being to calculate RA=OPM1 + OPM3. If so, please correct this typo. 

● Fig 4e and 4f are not sufficient to support a direct connection of microexons included in RNAseq to 

Ribo-seq. Inclusion of a plot supporting a strong correlation between RNAseq and Riboseq for 

microexons (as Figure 4c) is strongly adviced. 

● Fig 5b The authors men�on:”high propor�on of them changed in the same direction between glia and 

glioma (66% in RNA-seq and 78% in Ribo-seq)”. The authors need to provide more information, as this 

result cannot be clearly inferred from Fig. 

● Similar to the previous comment, the authors men�on that microexons were enriched in both species 

with a general trend towards less inclusion in glioma, the figure (Fig. 5c) does not explicitly show that 

glioma has less inclusion of microexons. Clarification of the x-axis and how dPSIs are calculated in this 

specific plot are required to address this discrepancy. 

Reviewer #2 (Remarks to the Author): 

Summary 

Reixachs-Sole et al have developed a new pipeline to better understand translation of mRNAs at the 

level if mRNA isoform rather than gene. They have gone to validate the results of using this in both 

human and mouse, with a variety of different data sets and approaches. By comparing differences in 

mRNA isoform abundances and translation they show that several micro-exon containing isoforms are 

regulated between glia and glioma. 

The aim to understand translation is the mRNA isoform level is admirable and represents an important 

step forward in linking mRNA processing and translation. Overall, I think this is a good study but many 



aspects could benefit from improved explanations and examples to illustrate, especially for a general 

interest journal such at Nature Communications. The focus ends up being on differential expression of 

microexons, between glia and glioma, rather than differences in isoform abundance and translation, 

which seems the logical requirement for this new pipeline the authors developed here. This work is 

novel and is certainly interesting the gene expression field. 

Specific points; 

a) Authors mention that exon boundaries are frequently bound by RNA-binding proteins. However, the 

majority of these exon boundaries are at exon-intron boundaries in the nuclear. There is limited 

evidence to suggest that in spliced transcripts that make it out to the cytoplasm are more bound by 

RBPs than other parts of spliced transcripts. 

b) The manuscript would benefit greatly from a more detailed explanation of the novel ORQAS method 

that the authors have developed. For example, it seems like the designation of Ribo-seq reads to 

isoforms is based on relative abundance of mRNA isoforms from RNA-Seq-is this true? Then these 

transcripts would be filtered based on whether corresponding ORFs make it through cut-offs for 

uniformity of ribosome profiling reads across the ORF and periodicity. My concern is that transcripts 

may fail to pass these two thresholds for reasons other than alternative ORF translation. Similar metrics 

have been used previously to define translation events, so it is not obviously why they pipeline 

presented here is able to deconvolute translation of ORFs from alternatively spliced isoforms. 

c) Uniformity of periodicity could be used as a cut-off since changes on frame could indicate 

inconsistency caused but translation of ORF from alternative transcript. 

d) In the section “Ribosome profiling discriminates translation abundance at isoform level” it is not clear 

what “combination of protein features” means in Fig 2b. It seems unsurprising that isoforms called 

translated have evidence of their protein expressed. It would be informative to generate a false 

discovery rate, for those isoforms that have no evidence of translation. It is not clear how mass spec, 

immunohistochemistry and uniprot data was treated to ensure that signal could be confidently assigned 

to a specific ORF isoform over another? 

e) In the text, polysome association is described, whereas in Fig 2c, high polysomes are mentioned. 

What specific complexes were defined as high polysomes? How many transcripts were included in this 

monosome vs high polysome distribution? From RNA-Seq data it is not clear how we can be sure that 

this is transcript specific. If RT-qPCR with primers designed specifically for detection of specific isoforms 

match this same pattern? 

f) The validation performed in Fig3a is excellent. But these sections would benefit greatly from examples 

illustrating these types of events. 



g) There is very little explanation of many of the panels. For example, 3c): what was the aim of this over 

how mass spec data had be used to support ORF isoform translation? 

h) It is not clear how S4 is different to Fig3? Is it same but just including human samples too? 

i) Use of SUPPA in Fig4 to probe differential translation linked to differential splicing is really the most 

interesting part of the manuscript. Since one of the big questions in the field is whether certain spliced 

isoforms are preferentially translated. This analysis starts to address this. Fig 4c suggests this is generally 

not the case. The majority of analysis focuses on whether the translation of spliced microexons and their 

differential splicing. This is an important question and result. However, it is not clear whether this 

analysis was dependant on the original pipeline ORQAS, developed here. 

j) The focus of results seemed to be on changes correlating between RNA-Seq and Ribo-Seq, especially in 

Fig 5, that are differential between different cell types. But given the manuscript aims to understand 

isoform translation it would be more appropriate to analyse more deeply events whose RNA-Seq and 

Ribo-Seq don’t correlate. These are the situations, one would argue, that require understanding of 

isoforms at bot splicing and translation level. 

k) In discussion “These estimates are far from” should be reworded to give indication of direction of 

change. 

Reviewer #3 (Remarks to the Author): 

The authors have developed a new method, ORQAS (ORF quantification pipeline for alternative splicing) 

to quantify isoform-specific translation abundance, and have applied their method to a number of 

different datasets including glia/glioma and ES cells/neurons. 

One of the limitations of ribosome profiling is that it does not directly measure protein peptide 

abundance and assumes that engaged ribosomes are direct arbiters of protein levels. As the authors 

point out, this is not strictly true, and builds upon previous studies to attempt to examine open reading 

frames that are more likely to be translated. Their polysome data is convincing. 

While I have some concerns about the novelty given that other studies examining alternative splicing 

and ribosome profiling have previously been published, I do think that the authors have significantly 

improved upon these studies and this study deserves to be published in Nature Communications. 

I have a few queries: 

1. In Figure 4C, the correlation between the ribo-seq and RNA-seq data is remarkably high, close to 1 - 

almost too good to be true. What happens to the datasets that are not significant, i.e.. what is the 



correlation between non-significant alternative splicing events for which there is ribo-seq data and vice-

versa? Presumably, the correlation would not be as significant and is important to show, as it 

demonstrates the power of their approach. 

2. I would suggest that the authors improve their description of their method in the first results section, 

including on expanding on the descriptions of uniformity and periodicity and why the integration of 

which is a significant advance over ribosome profiling alone. 



Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
In this manuscript, the authors describe their new pipeline for open reading frame (ORF) quantification for 
alternative splicing, ORQAS. It is able to quantify the translation of individual transcript isoforms using 
Ribosome profiling data. They address the challenge that detection of protein variation derived from 
differential microexon using unbiased proteomics is nowadays not possible, whereas their pipeline is able 
to detect conserved microexons between human and mouse. The highlight of their pipeline is how they 
determine the potential of ORF translation, by calculating the uniformity and the periodicity along the 
ORF. This paper lacks comparison with other computational methods (e.g RiboMap and SaTAnn), 
testing of the uniformity and periodicity parameters, and additional validations such as 
quantification between cytoplasmic and nuclear extracts) to be considered as a novel method for 
alternative splicing quantification. Furthermore, the description of many of the figures 
makes interpretation of the results difficult to evaluate and the methods section requires more 
extensive description. 
 
Algorithm outline 
 
1) Quantifies the abundance of ORFs in from RNAseq (TPMs). 
2) Assigns ribosome sequencing (Ribo-seq) to the same ORFs by RiboMap. 
3) Calculates for each ORF two parameters for determining their potential translation: 
Uniformity (proportion of the maximum entropy of the read distribution) and the 3nt signal periodicity 
along the ORF. 
 
 
Major concerns 
 
1) The authors ORQAS algorithm relies primarily on a published pipeline from the Kingsford group (Wang 
et al. 2016, Bioinfomatics). The innovation they’ve applied is to integrate in uniformity and periodicity cut-
offs. However, they provide no evidence that these measures are an improvement over the approach 
used by Ribomap. Since the authors are releasing their own package, ORQAS, they should demonstrate 
the unique strength and advantage of their approach. 
  
To show that our approach provides an advantage over the approach used by Ribomap, we performed 
the following comparison. We selected genes with one single ORF annotated, so there is no ambiguous 
mappings of Ribo-seq reads. These are 1005 genes with one single ORF annotated, and non-overlapping 
with the single-ORF genes used as positive controls. For these genes we calculated the proportion of 
cases that have evidence of protein expression from immunohistochemistry (IHC) experiments from the 
human protein atlas (THPA):  
 



 
 
 
The cases labelled “Not evaluated“ are those that do not show enough RNA expression to be evaluated 
by ORQAS. The cases labelled “Not translated” are the predictions from Ribomap without any filters for 
periodicity or uniformity. In both cases there was an enrichment of cases without evidence of translation 
from THPA. In contrast, after imposing the thresholds (the cases labelled “Translated”), we observed an 
enrichment of cases with protein evidence at different levels. This is now shown in Figure 1c.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Additionally, to show the unique strength and advantage of our approach, we calculated the proportion of 
translated isoforms according to the minimum RNA expression cut-off, which is another one of our filters. 
We observed that the proportion of translated isoforms increases as a function of the expression cut-off: 
 

 
We have added this plot as supplementary Figure. 
 
 
 
 
 
 
 
 
 
 
 
To further show the robustness of ORQAS, we also generated plots with the proportion of translated 
isoforms validated by peptides as a function of the RNA isoform expression cut-off. They all increase with 



higher expression cut-offs. Thus, using a higher expression cut-off translation can be validated with 
greater confidence: 
 
 

 
We have also included this plot as supplementary Figure 13.  
 
2) In addition, the authors need to show that their cutoffs for uniformity and periodicity improve their ability 
to reliably detect active translation and that they are not removing data unnecessarily. 
 
As shown above, the cutoffs of uniformity and periodicity improve the ability to detect cases with evidence 
of translation. We have added these plots to the article and have included an explicit mention to this in the 
text (highlighted in blue).  
 
3) Previous work both published (Weatheritt et al. 2016, Sterne-Weiler et al. 2014, Floor and Doudna. 
2016) and in prepublication servers (Calviello et al. https://www.biorxiv.org/content/10.1101/608794v1) 
have identified alternative splicing variants engaged with polysomes or ribosomes. Furthermore, both 
Weatheritt et al. and Calviello et al. have analyzed ribosome profiling data and have provided estimates 
for the number of splice variants engaged by the ribosome. The authors explain the advantages of their 
approach but do not contrast their results, especially in light of controversy of splice variant identification 
in mass spec data. 
  
In the original submission we cited (Weatheritt et al. 2016), (Sterne-Weiler et al. 2014), and (Floor and 
Doudna. 2016). The preprint Calviello et al. appeared after our preprint 
https://www.biorxiv.org/content/10.1101/582031v2 and also after we submitted our work for peer review.  
 
In the original submission we used data from (Blair et al. 2017) for human ESCs and differentiated 
neuronal cells to validate some of our findings for microexons. We also used the mapping of RNA 
sequencing reads from polysomal fractions, which is the approach of (Sterne-Weiler et al. 2014), as 
independent validation of our findings.  
 
In the revised version we now include an exhaustive comparison with the data from Weatheritt et al. 2016 
and with the method SaTAnn (see below).  
  
In our manuscript we described the differences of our method with previous approaches (Weatheritt et 
al.): ORQAS estimates the engagement of ribosomes in transcript variants, measuring for each transcript 



isoform independently their periodicity and uniformity. In contrast Weatheritt et al. mapped Riboseq reads 
directly to exon-exon junctions without considering whether their validity in terms of the transcript-isoform 
level expression, and Ribo-seq uniformity or periodicity. We argue that, since ribosomes scan transcript 
molecules, ORQAS provides a description that is easier to interpret in terms of translation of an mRNA 
isoform and also one that is closer to what is actually happening in the cell. SaTAnn considers directly the 
P-sites from Ribo-seq reads per exon, and combines exons into transcripts, without considering the RNA 
expression. In the revised manuscript we show that the translation quantification provided by ORQAS and 
SaTAnn is similar for isoforms predicted by both methods, but SaTAnn predicts translation also in 
isoforms that show no RNA expression (see below for more details of this comparison).  
  
Another novelty of ORQAS with respect to previous studies is that we compare with mouse and find that 
the direction in which alternative splicing potentially impact translation is conserved in specific events, 
thereby establishing the potential functionality of these changes.  
 
   
4) We undertook a brief comparison to SaTAnn, the authors should expand on this. SaTAnn versus 
ORQAS. Both approaches used HEK293 data (https://www.nature.com/articles/nmeth.3688 and 
GSM1306496) 
 
ORFs with quantified translation Number of genes Number of genes with only one ORF translated 
Number of genes with translation of multiple ORFs 
SaTAnn ~24,000 ~15,000 9,138 (60.92%) >5,800 
ORQAs ~20,709 Not explicitly mentioned 5,237- 4,766  
(Fig 1c -1d ) 52.3-54.9%  
(Fig 1c and 1d) 
 
SaTAnn operates differently from ORQAS. SaTAnn works directly with P-sites, without taking into account 
RNA-seq abundances, it analyses first exons, which are then combined together. We have performed an 
exhaustive comparison with SaTAnn. To this end, we run SaTAnn with the same samples we analyzed in 
our manuscript. We have added these analysis to the manuscript. 
 
We first compared the number of genes predicted to have at least 1 translated ORF (left panel below) and 
the total number of translated ORFs predicted (right panel below). We do not observed any systematic 
trend in these results. In some samples, ORQAS predict more translated genes and a more translated 
ORFs, and in other samples the trend is the opposite:  



 
 
Interestingly, although both methods predict a similar number of genes in human glioma (hsa glioma), 
ORQAS predicts a larger number of ORFs. Also, although SaTAnn predicts more genes with translated 
ORFs in mouse glia (mmu glia), ORQAS predicts more ORFs overall. This suggests a difference in the 
number of translated ORFs per gene. To investigate this further, we calculated the number of genes with 
1, 2, 3,.... translated isoforms. We observed that ORQAS detects more genes with multiple ORFs:  
 

 



 
This is now shown in Fig. 1f and in Supp. Fig. 6. We further calculated the agreement between both 
methods in terms of the genes translated and the total ORFs using a Jaccard Index = 
Intersection(ORQAS, SaTAnn) / Union(ORQAS, SaTAnn). We observed a high level of agreement at 
gene level (60-80%) (left panel below), but slightly lower level of agreement at isoform-ORF level (right 
panel below) (now shown in Supp. Fig. 7): 

 
We also compared the quantification provided by both methods. SaTAn provides a quantification based 
on the normalized number of P-sites per nucleotide (y axis below), whereas ORQAS provides a 
quantification in ORFs per million (OPM) (x axis below), akin to the TPM units. We observed that for the 
ORFs predicted as translated by both methods, the quantification values correlate (R=0.8076) (all plots 
now shown in Fig. 1g and Supp. Fig. 8): 

 
 
However, there were a number of cases (in green in the figure above) that ORQAS did not predict 
because they had not sufficient reads or no reads at all, but are translated and with high abundance value 



according to SaTAnn. Looking further at these differences, we observed that the ORFs predicted by 
SaTAnn that were not detected by ORQAS had low or no RNA-seq expression (plots now shown in Fig. 
1h and Supp. Fig. 8):  
 

 
Thus SaTAnn predicted ORFs as translated even if they had no evidence of RNA expression. 
Considering how short Ribo-seq reads are, it is possible that these cases originate from incorrect 
mapping and are thus false positives. Cases with too low or no RNA expression evidence are discarded 
by ORQAS, so these potential false positives are avoided.  
 
We additionally tested the capacity of ORQAS and SaTAnn to detect short unique regions, i.e. regions 
that are specific to the isoform ORF. We observed that ORQAS is able to detect more ORFs with short 
unique regions (Now shown in Supp. Fig. 15):  

 
The plot above shows the number of translated ORF predicted (y axis) as a function of the length of their 
unique regions (x axis). Thus ORQAS provides an advantage to predict translation in ORFs with short 
unique regions.  
 
We also analysed the capacity of ORQAS and SaTAnn to detect microexon-containing isoforms, defining 
microexons as exons of length 51nt or shorter (more on this below). ORQAS recovered a larger number 
of microexon-containing isoforms across the different samples tested (now shown in Fig. 4f): 



 
 
We also performed a comparison with the data from Weatheritt et al. 2016. To perform this comparison, 
we run ORQAS with the same Hek293 sample used in Weatheritt et al. 2016 and took all the events that 
were potentially measurable by both methods. From these events, we plot below those that were 
detected (PSI>0 in Ribosome space) by both methods, or by each method independently (now shown in 
Fig. 4g):  
 

 
We also calculated the expression in Ribosome space (OPM units) and in RNA space (TPM units) of the 
genes where SE events were detected. Weatheritt et al. also finds events for which we cannot find 
expression: 
 



 
 
This highlights once again the potential artefacts that may appear by mapping Ribo-seq reads directly to 
the alternative splicing events, and the advantage of ORQAS approach to avoid these potential false 
positives.  
 
5) In the section: Ribosome profiling discriminates translation abundance at isoform level. The authors’ 
validate their approach by comparing translated isoforms predicted by ORQAs with RNAseq of polysomal 
fractions and found that their predictions are enriched in the polysomal fraction but not in monosomes 
(Fig 2c). This validation is not sufficient to support the translation prediction power of ORQA as active 
translation can also take place in monosomes (See Heyer and Moore, 2016). We propose they should 
compare between cytoplasmic and nuclear extracts. 
  
Similar to translation on monosomes, there is also evidence of translation in the nucleus: 
http://jcb.rupress.org/content/197/1/45, so it is not entirely clear whether a comparison between genes 
expressed in the nucleus and cytoplasm will be necessarily conclusive.  
 
Although translation can indeed occur in monosomes, we expect that mRNAs translating in monosomes 
should be generally short, as they would only hold 1 individual ribosome. First, we did not see any 
significant difference in the distribution of transcript lengths between monosome and high-polysome 
fractions in general (left plot below). We then separated between the cases that we defined as translated 
and not-translated. We observed that translating mRNAs are significantly shorter in monosomes (right 
plot below). This difference is not as large when considering not translated ORFs. 
 

 
 



This comparison is now shown in Supp. Fig. 10. We thus separated previous Figure 2c according to three 
length ranges and observed that there was the same trends as before for translated transcripts in each of 
the length ranges (Now shown Fig. 2a): 
 

 
 
 
 
 
As an additional test to show the robustness of ORQAS in defining translation at isoform level, we 
considered tissue specific genes as proxy for negative controls in a different tissue. We took genes 
annotated in THPA to have tissue specific expression in brain, heart, intestine, liver, spleen or testis, and 
calculated whether they were predicted as translated or not in our glia samples (now shown Supp. Fig. 3): 



 
 
ORQAS on glia data predicts a higher proportion of translated genes in the subset of brain-specific genes 
compared with the subsets of genes specific in the other tissues.  
 
6) The authors need to provide a more detailed methods section. For example, we advise that the authors 
elaborate further on how they use SUPPA to convert isoform abundances to event inclusion values 
together with rationales that validate such a conversion strategy. 
  
We have tried to explain this better in the text. This conversion is supported by previous validations with 
RNA (see Alamancos et al. 2015, Trincado et al. 2018). With RNA, the abundance values from transcript 
isoforms summarized per event as a relative abundance (PSI) agrees with the measurements from RT-
PCR using probes to capture the relative abundances for that event. For Ribo-seq we reasoned that, if 
Ribo-seq can be used to estimate the translation abundance of an isoform, we can also summarize these 
values per event and calculate a relative translation abundance. This represents the relative contribution 
of that particular exon to the translation abundance from a set of isoforms. That is, the relative 
contribution from an alternative exon to the translation of a gene. 
 
7) The microexon section is interesting, especially the identification of microexons in glia samples. 
However, the majority of previous studies have used a cutoff of <30 nt for microexons (Irimia et al, 2014; 
Torres- Méndez et al, 2019). Does the enrichment still exist with this cutoff?  
 
We confirmed our observations with exons of length <28nt by testing their enrichment in the set of 
alternative exons changing inclusion in RNA or Ribosome space between glia and glioma, and between 
neural and embryonic sample (now included in the text): 

Comparison Sequencing Species Fisher test p-value 



Glia vs glioma RNA-seq human 5.435e-13 

Glia vs glioma Ribo-seq human 1.17e-09 

Glia vs glioma RNA-seq mouse 7.47e-14 

Glia vs glioma Ribo-seq mouse 3.194e-06 

hESC vs neural  RNA-seq human 2.725e-08 

hESC vs neural Ribo-seq human 6.768e-06 

 
  
Irimia et al. 2014 justified the definition of microexon as <28nt from their observation that below this length 
there was an increased inclusion in neuronal samples with respect to non-neuronal samples. However, 
other length cut-offs have been used to define microexons (see e.g. Li et al. 2015, Ustianenko et al. 
2017). To justify our choice of the <52nt cut-off, we looked at the distribution of inclusion levels (in PSI 
units) for exon-cassette events in RNA and Ribosome space, separated by exon-length ranges in glia and 
in glioma (now shown in Supp. Fig. 14e): 

 
 
This plot shows that at length range [1,27] the differences of inclusion between glia and glioma is the largest, 
as expected for the definition of microexon from (Irimia et al. 2014). However, in the range (27,51] there is also 
a difference in inclusion between glia and glioma, which would support the inclusion of these exons into the 
definition of short exons with a brain cell specific inclusion pattern, or microexons. 
 
Minor concerns 
 
● TPM value of 0.1 is very low. We suggest an alternative cutoff of at least 1 for robust interpretation. 
  
Using bins for different range of expression cut-off values, we observed that the higher the minimum 
expression considered, the larger the proportion of cases that are predicted as translated (now shown in 
Supp. Fig. 2):  
 



 
However, the proportion of transcripts predicted as translated does not change much after removing 
cases below 1 TPM. 
 
● Fig 1b. Legend says: single ORF housekeeping genes are in blue but in the figure it suggests 
otherwise. 
  
We have fixed the figure legend.  
 
● In the section: Ribosome profiling discriminates translation abundance at isoform level 
1) The authors mention they have 15,824 human-mouse 1-1 gene orthologs, and identify 18,574 human-
mouse protein isoform pairs representing functional orthologs. They then state to find 7,112 (64%) of the 
1-1 gene orthologs had more than one orthologous isoform pair. We suggest the authors elaborate on 
how they reached this figure, as well as provide more information about the relevant plot.  
  
We have provided more information in the manuscript about this calculation and about the figures shown. 
Orthology is only annotated in databases at the gene level. However, we needed to obtain the pairs of 
potential ORF orthologs to establish conservation. We thus selected first the set of 15,824 1-1 gene 
orthologs between human and mouse, i.e. best reciprocal orthology assignments between human and 
mouse, hence no ambiguous mappings. We then needed to establish the orthology at protein isoform 



level, i.e. the proteins in each pair of genes that can be considered protein orthologs. For that we 
considered all pairwise global alignments between human and mouse proteins, and selected the best 
possible pairs above a minimum score of 0.8 (defined as the fraction of amino acid matches over the total 
length of the global alignment), using a symmetric version of the stable marriage algorithm, as described 
before (Eyras et al. 2004). In this algorithm, pair assignments are established given an ordering of 
“preference” for each element, which is provided by the score calculated from the alignment. The 
algorithm produces optimal or “stable” pairs, in the sense that it provides the best available matches 
rather than the best reciprocal matches. That is, given a stable pair, there are no other pairs possible 
where both elements would prefer each other more than their current pair. This algorithm produces 
18,574 human-mouse protein isoform pairs. We calculated then how these are distributed in genes 
orthologs: 36% of gene orthologs had one single protein isoform pair, and 64% had 2 or more protein 
isoform pairs.  
 
2) In the text, the p-value is as “< 2.2 e-16”, whereas in the figure legend they show the exact p-values. 
 
This was to avoid writing all p-values in the text and to indicate that all tests were significant and with p-
values smaller than 2.2e-16. The text says “... were significantly enriched in translated isoforms in both 
species (p-value < 2.2e-16 in all datasets)”. The figure legend shows the actual p-values.  
 
● Figures 3b and Supp. Fig 4a show the density of reads per nucleotide compared with other isoforms 
and suggest that “both region types in translated isoforms showed a higher density of reads per 
nucleotide compared with other isoforms”   
○ We believe these figures do not necessarily agree with the aforementioned statement from the main 
text and require further elaboration in the Figure legends such as: 
■ Clarification of whether the specific sequence sets are independent. 
■ Present results of statistical test (eg. Wilcoxon rank sum test) for significant difference. 
○ We also suggest the authors present the data with Ecdf plot to contrast the distributions between 
datasets. 
 
We considered isoform-specific regions, since evidence mapped to these regions can then be 
unequivocally assigned to the isoform. We defined two types of isoform-specific regions. One type was 
defined in terms isoform-specific nucleotide sequences, i.e. continuous nucleotide stretches that are only 
included in an isoform. To validate our predictions with peptides from MS experiments and P-sites, we 
additionally considered isoform-specific ORF regions. These were defined as sequences that may or may 
not be shared between isoforms but had a specific frame in each isoform, so that peptides from MS 
experiments can be unequivocally mapped on these regions. These regions included the isoforms 
calculated before with the ORFs from the isoform-specific sequence.  
 
Isoform-specific sequences are thus also isoform-specific ORFs, e.g. an alternative exon specific to an 
isoform defines an isoform-specific ORF region. Thus the two sets of isoforms are not independent. 
However, the datasets used in each case are independent. Isoform-specific ORFs were validated with P-
sites and with mass-spec peptides, whereas isoform-specific sequences were validated with Ribo-seq 
reads, regardless of the position and identification of the P-site. We have tried to clarify this in the text, 
and added new plots. Significance is now shown in new plots in Figure 3 and in Supp. Fig. 13. Below we 
show the case for the densities of Ribo-seq reads in isoform-specific sequences: 
 



 
 
We have modified the cartoon in Figure 3a to clarify the possible configurations of the isoform-specific 
regions. For improved clarity, we have also separated into independent panels the validation of isoform-
specific sequences with Ribo-seq reads (now in Figs. 3b and 3c) and the validation of isoform-specific 
ORFs with P-sites or mass-spec peptides (now in Figs. 3d and 3e). 
 
● It is unclear how Figure 3e and 3f support statements from the main text. In particular, the statement of 
“63-65% in mouse with an RNA expression > 0.1 TPM” is difficult to relate to the data presented in Figure 
3 without further elaboration. In addition, the authors should provide further information Figure 3f 
supporting the statement that “~ 10% of annotated AS in both human and mouse had evidence of 
translation and these represented 60% of all translated isoforms”, as unclear how these numbers were 
reached. 
 
Figure 3e is now shown in Fig. 3f, and Fig. 3f has been moved to Supp. Fig. 13e for clarity. Fig. 3f 
(previous Fig. 3e) shows the proportion of all expressed isoforms that are predicted to be translated and 
additionally have independent validation of translation. This validation is considered to be one or more of 
different sources of evidence: conservation, uniquely mapped Ribo-seq reads in isoform-specific 
sequences, and counts per base or peptides in isoform-specific ORFs. Supp. Fig. 13e (Previous Fig. 3f) 
shows the same information but splitting isoforms according to whether they are the main isoform or and 
alternative isoform, where “main” was defined as the isoform with the highest expression, and 
“alternative” are the rest of isoforms from the gene showing expression (TPM>0.1). The proportions 
shown were calculated by putting together all the results of the validation analyses and are available in 
Supp. Tables 3 and 4. 
 
● Fig. 4a) in the section of RA calculation, the figure says “RA = OPM1 + OPM2”. We believe that the 
authors' initial intention being to calculate RA=OPM1 + OPM3. If so, please correct this typo. 
  
That’s right. We have corrected this error. 
 
● Fig 4e and 4f are not sufficient to support a direct connection of microexons included in RNAseq to 
Ribo-seq. Inclusion of a plot supporting a strong correlation between RNAseq and Riboseq for 
microexons (as Figure 4c) is strongly adviced. 
 
We have included now in Figure 4b (and the Supplementary Figure for 14c mouse) also the cases that 
are not significant in RNA-seq or Ribo-seq or both in the comparison between glia and glioma, also 
highlighting (as empty circles) microexons: 
 



 
 

 
 
The figure shows in red the cases that are significant in both Ribo-seq and RNA-seq space, in black or dark 
gray, the cases that are only significant in one case, and in light gray, the cases that are significant in neither of 
them. The density bands in the plot shows the distribution of cases along the axes. Empty circles indicate the 
microexons (red if significant, black/gray otherwise). In the inset in blue we give the correlation of the red points 
(including microexons), in gray we give the correlation of all other exons (black/dark-gray/gray, including 
microexons).  
 
● Fig 5b The authors mention:”high proportion of them changed in the same direction between glia and 
glioma (66% in RNA-seq and 78% in Ribo-seq)”. The authors need to provide more information, as this 
result cannot be clearly inferred from Fig. 
  
We have provided more information in the text to clarify this result. Additionally, for clarity we have put together 
Figures 5b and 5c (now Fig. 5b) and have improved the figure caption to make it more clear. In these barplots 
we show the events changing significantly in human and/or mouse in each direction: less inclusion (blue), more 
inclusion (red). We have also added a new plot (now Figure 5c) comparing the difference of inclusion values in 
human and mouse in Ribo-seq space, which shows that microexons have a conserved pattern of decreased 
inclusion in glioma. More details on this below. 
 
● Similar to the previous comment, the authors mention that microexons were enriched in both species 
with a general trend towards less inclusion in glioma, the figure (Fig. 5c) does not explicitly show that 
glioma has less inclusion of microexons. Clarification of the x-axis and how dPSIs are calculated in this 
specific plot are required to address this discrepancy.  
 
This data is now shown in Figure 5b. The y axis indicates the count of events with or without significant 
changes in human and/or mouse. We separated those counts according to the different combinations of 
change or lack thereof: blue for dPSI<-0.1, red for dPSI> 0.1, and gray for no change. dPSI values are 
calculated as the difference of PSI values in the two conditions. The plot shows that when the events are 
significantly changing in both species, the events tend to go in the same direction in both species, i.e. the 
first two bars are larger than the rest.  
 



Additionally, the plot shows that in the particular case of microexons, the first bar (blue in both, i.e. less 
inclusion in glia) is much larger than the second bar (red in both, i.e. more inclusion in glia) or than any 
other possible combination. To further clarify this result, we have added a Figure (new Figure 5c) to make 
more explicit the direction of change of the microexons in human and mouse. This figure depicts the 
changes in translation of the conserved microexons and shows more explicitly the pattern of conservation 
described. 
 

 
 
Reviewer #2 (Remarks to the Author): 
 
Summary 
Reixachs-Sole et al have developed a new pipeline to better understand translation of mRNAs at the level 
if mRNA isoform rather than gene. They have gone to validate the results of using this in both human and 
mouse, with a variety of different data sets and approaches. By comparing differences in mRNA isoform 
abundances and translation they show that several micro-exon containing isoforms are regulated 
between glia and glioma. 
 
The aim to understand translation is the mRNA isoform level is admirable and represents an important 
step forward in linking mRNA processing and translation. Overall, I think this is a good study but many 
aspects could benefit from improved explanations and examples to illustrate, especially for a general 
interest journal such at Nature Communications. The focus ends up being on differential expression 
of microexons, between glia and glioma, rather than differences in isoform abundance and 
translation, which seems the logical requirement for this new pipeline the authors developed 
here.This work is novel and is certainly interesting the gene expression field. 
 
Specific points; 
 
a) Authors mention that exon boundaries are frequently bound by RNA-binding proteins. However, the 
majority of these exon boundaries are at exon-intron boundaries in the nuclear. There is limited evidence 
to suggest that in spliced transcripts that make it out to the cytoplasm are more bound by RBPs than 
other parts of spliced transcripts.  
  



We did not mean to say that there are more RBPs bound in the cytoplasm. We have eliminated this 
statement as it was not clear enough.  
 
b) The manuscript would benefit greatly from a more detailed explanation of the novel ORQAS method 
that the authors have developed. For example, it seems like the designation of Ribo-seq reads to 
isoforms is based on relative abundance of mRNA isoforms from RNA-Seq-is this true? Then these 
transcripts would be filtered based on whether corresponding ORFs make it through cut-offs for uniformity 
of ribosome profiling reads across the ORF and periodicity. My concern is that transcripts may fail to pass 
these two thresholds for reasons other than alternative ORF translation. Similar metrics have been used 
previously to define translation events, so it is not obviously why they pipeline presented here is able to 
deconvolute translation of ORFs from alternatively spliced isoforms. 
  
We have tried to improve the explanation of the pipeline in the text to clarify all these points and have 
included an extended description of the advantages with the corresponding tests. The assignment of 
Ribo-seq reads de novo, without any prior information does not work well because Ribo-seq produces not 
as many reads as RNA-seq. Additionally, these are shorted and not as uniformly distributed. As a 
consequence, direct isoform quantification methods like Kallisto or Salmon with Ribo-seq reads does not 
work well. Ribomap uses the RNA-seq abundance as priors for the optimization algorithm to distribute 
Ribo-seq reads among the different isoforms.  
 
Multiple previous analyses have shown that uniformity and periodicity are essential to establish the 
Ribosome activity on an ORF. We thus applied the same principle in each isoform ORF, with the crucial 
difference that the reads used for that calculation are only those assigned to the isoform. To support this 
principle, we calculated the validation by immunohistochemistry (IHC) of the translation prediction on 
single-ORF genes. These are 1005 genes with one single ORF annotated, and non-overlapping with the 
single-ORF genes used as positive controls (used in Fig. 1b). For these genes we calculated the 
proportion of cases that have evidence of protein expression from immunohistochemistry (IHC) 
experiments from the human protein atlas (THPA):  

 
 

 



Single-isoform genes do not have any ambiguity in the assignment of reads to ORFs. In the plot, “Not 
evaluated” are ORFs that do not have sufficient RNA expression to be considered for quantification, 
whereas “Not translated” are ORFs that despite having enough RNA and Ribo-seq reads, they do not 
pass the periodicity and uniformity cut-offs. Ribomap would predict the latter as translated. However, as 
shown, they have very little evidence of translation from THPA. 
 
In the manuscript we further validated the predictions made with ORQAS in various ways: 

1) Enrichment of mass-spec peptides in regions that are unique in isoforms  
2) Enrichment of conservation of translated isoforms between human and mouse 
3) Enrichment in high polysomal fractions of the translated isoforms vs the ones not-translated.  

We also considered that the conservation between human and mouse of the differential inclusion in ORF 
abundance of microexons constitutes further evidence supporting that ORQAS can determine translation 
at isoform level.  
 
 
c) Uniformity of periodicity could be used as a cut-off since changes on frame could indicate 
inconsistency caused but translation of ORF from alternative transcript. I guess the question is whether 
periodicity is stable across the transcript. How is periodicity calculated? It could be that the value of 
periodicity is an average across the ORF, so it is already reflecting whether it is constant enough.  
  
Periodicity is calculated as the proportion of all reads mapping to the ORF that correspond to a given 
frame. We calculated the periodicity in 3 different windows of ~100 nucleotides at the beginning (START), 
in the middle (MIDDLE) and at the end of each ORF, separating ORFs according to different lengths. We 
can observe that the periodicity is uniform in these three windows and comparable to the total periodicity 
(now shown in Supp. Fig. 5): 
 

 
 
We also analysed the distribution of differences of periodicity for each of these 3 windows in each ORF 
with the total periodicity of the same ORF and the majority of them do not show changes higher than 0.1 
(dashed line) (now shown in Supp. Fig. 5):  
 



 
 
d) In the section “Ribosome profiling discriminates translation abundance at isoform level” it is not clear 
what “combination of protein features” means in Fig 2b. It seems unsurprising that isoforms called 
translated have evidence of their protein expressed. It would be informative to generate a false discovery 
rate, for those isoforms that have no evidence of translation. It is not clear how mass spec, 
immunohistochemistry and uniprot data was treated to ensure that signal could be confidently assigned to 
a specific ORF isoform over another? 
 
Previous fig. 2b (now moved to Supp. Fig. 3) represents a validation at the gene level using the protein 
expression annotation from THPA, which is based on Mass Spectrometry, Immunohistochemistry, and 
Uniprot (associated known protein). The intention of this plot was to provide a first coarse-grained 
validation of predictions. For every gene with one or more translated ORFs predicted, we calculated 
whether there was evidence of translation for that gene. The plot shows that most of the genes for which 
we predict one more translated isoform has  indeed some protein expression evidence (7992 out of 
7992+365).  
 
 
e) In the text, polysome association is described, whereas in Fig 2c, high polysomes are mentioned. What 
specific complexes were defined as high polysomes? How many transcripts were included in this 
monosome vs high polysome distribution? From RNA-Seq data it is not clear how we can be sure that 
this is transcript specific. If RT-qPCR with primers designed specifically for detection of specific isoforms 
match this same pattern? 
 
Polysome fractions used in our analysis were defined in (Blair et al. Cell Reports 2017), which was based 
on the procedures described in (Floor & Doudna Elife 2016). Their definition was as follows: Monosomes 
= 1 ribosome, Low polysomes = 2-4 ribosomes, High polysomes = 5 or more ribosomes. In the table 
below we show the number of expressed transcripts in the analysed data: 
 

Condition Fraction Expressed transcripts 

hESC High Polysome  57562 

hESC Monosome  48967 



Neu High Polysome 49342 

Neu Monosome 43023 

 
We used Salmon to assign reads from each polysomal fractions to the transcript isoforms. Salmon 
performs an unambiguous assignment of reads to transcripts based on the similarities of the read to other 
reads mapping to the same transcript using an optimization. Abundances can be estimated to each 
transcript in each subpopulation of RNAs from the corresponding RNA-seq. The abundances were 
normalized as in (Maslon et al. Elife 2014) by dividing the abundance in a given fraction over the total 
abundance in all fractions being compared. In general, these normalized values are never 0 (does not 
appear in fraction) or 1 (unique to the fraction), but the values vary enough to determine the enrichment in 
specific fractions, as shown before in (Maslon et al. Elife 2014). 
 
f) The validation performed in Fig3a is excellent. But these sections would benefit greatly from examples 
illustrating these types of events.  
  
We have generated plots for isoform-specific regions with uniquely-mapped reads for a couple of 
examples:  ENSG00000196867 and ENSG00000213995, which are now shown in Supp. Fig. 11 and Supp. 
Fig. 12.  In these plots we show the uniquely-mapped Ribo-seq reads (green), Ribo-seq reads that map to 2 
different places (red), and Ribo-seq reads that map to 3 different places (blue).  
 
g) There is very little explanation of many of the panels. For example, 3c): what was the aim of this over 
how mass spec data had be used to support ORF isoform translation? 
 
We have tried to improve the description in the legend and in the text of the various figures. In previous 
Fig. 3c, Mass-spec peptides from mouse hippocampus and glia were used to validate unique regions. 
These are two types of regions: those sequences that are specific to a single isoform (unique sequence) 
and those ORFs that are specific to an isoform (the sequence might be shared with other isoforms, but 
the ORF is unique and specific to the isoform). We have modified the cartoon in Figure 3a to clarify the 
possible configurations of these regions. For improved clarity, we have also separated into independent 
panels the validation of isoform-specific sequences with Ribo-seq reads (now in Figs. 3b and 3c) and the 
validation of isoform-specific ORFs with P-sites or mass-spec peptides (now in Figs. 3d and 3e).  
 
h) It is not clear how S4 is different to Fig3? Is it same but just including human samples too? 
 
Supp Figure 4 (now Supp. Fig. 13) represents the same type of analyses as Fig. 3 (now in Figs. 3b, 3c, 
3d and 3e) but for other samples. These figures represent the density of Ribo-seq reads in isoform-
specific sequences (Fig. 3b), isoform-specific sequences with 10 or more Ribo-seq reads (Fig. 3c), the 
density of P-sites in isoform-specific ORFs (Fig. 3d) and the number of isoform-specific ORFs with one or 
more peptides from Mass-Spec. Supp. Fig. 13 contains the same plots for the samples not included in 
Fig. 3.  
 
i) Use of SUPPA in Fig4 to probe differential translation linked to differential splicing is really the most 
interesting part of the manuscript. Since one of the big questions in the field is whether certain spliced 
isoforms are preferentially translated. This analysis starts to address this. Fig 4c suggests this is generally 
not the case. The majority of analysis focuses on whether the translation of spliced microexons and their 
differential splicing. This is an important question and result. However, it is not clear whether this analysis 
was dependant on the original pipeline ORQAS, developed here. 



  
Yes, we used ORQAS to quantify ORFs in ribosome space, and then used SUPPA to transfer that 
information at event level. We have tried to explain this better in the manuscript. 
 
j) The focus of results seemed to be on changes correlating between RNA-Seq and Ribo-Seq, especially 
in Fig 5, that are differential between different cell types. But given the manuscript aims to understand 
isoform translation it would be more appropriate to analyse more deeply events whose RNA-Seq and 
Ribo-Seq don’t correlate. These are the situations, one would argue, that require understanding of 
isoforms at bot splicing and translation level.  
 
Our main objective is to estimate the impact of differential splicing on translation. We argue that to be 
able to address that one needs to evaluate isoform translation, since differential expression and splicing 
is simply a result of what happens to the isoforms. Those isoforms whose RNA-seq abundance and Ribo-
seq abundance do not correlate are probably related to translation efficiency (TE), which is out of the 
scope of this manuscript.  
 
We considered those events that changed significantly in opposite directions in RNA and Ribosome space. We 
expect those that increase significantly PSI in RNA but decrease in Ribosome would be related to a decrease in TE, 
and those events that decrease significantly in PSI in RNA but increase in Ribosome would be related to an increase 
in TE. We calculated the TE in these cases: 
 

 
Except for a few cases, the TE is similar in glia and glioma for all isoforms. This suggests that TE does not change 
globally and explains a very limited number of significant changes in splicing and translation. 
 
k) In discussion “These estimates are far from” should be reworded to give indication of direction of 
change. 
 
We have changed it to  “considerably lower than” 
 
Reviewer #3 (Remarks to the Author): 
 



The authors have developed a new method, ORQAS (ORF quantification pipeline for alternative splicing) 
to quantify isoform-specific translation abundance, and have applied their method to a number of different 
datasets including glia/glioma and ES cells/neurons. 
 
One of the limitations of ribosome profiling is that it does not directly measure protein peptide abundance 
and assumes that engaged ribosomes are direct arbiters of protein levels. As the authors point out, this is 
not strictly true, and builds upon previous studies to attempt to examine open reading frames that are 
more likely to be translated. Their polysome data is convincing. 
 
While I have some concerns about the novelty given that other studies examining alternative splicing and 
ribosome profiling have previously been published, I do think that the authors have significantly improved 
upon these studies and this study deserves to be published in Nature Communications. 
 
I have a few queries: 
 
1. In Figure 4C, the correlation between the ribo-seq and RNA-seq data is remarkably high, close to 1 - 
almost too good to be true. What happens to the datasets that are not significant, i.e.. what is the 
correlation between non-significant alternative splicing events for which there is ribo-seq data and vice-
versa? 
 
We have plotted now all the events in this comparison (now shown in Fig. 4b for human and in Supp. Fig. 
14c for mouse):  
 

 
 
In these figures we show in red the cases that are significant in both Ribo-seq and RNA-seq space. In black or 
dark gray, we show the cases that are only significant in one case, and in light gray, the cases that are 
significant in neither of them. The density bands in the plot shows the distribution of cases along the axes. 
Empty circles indicate the microexons (red if significant, black/dark-gray/gray otherwise). In the inset in blue we 
give the correlation of the red points (including microexons), in gray we give the correlation of all other exons 
(black/dark-gray/gray, including microexons). There is overall a considerably high correlation of the non-
significant cases (dark/dark-gray/gray points), but the correlation of the significant cases is higher. 
 



2. I would suggest that the authors improve their description of their method in the first results section, 
including on expanding on the descriptions of uniformity and periodicity and why the integration of which 
is a significant advance over ribosome profiling alone. 
 
We have added more details about the method in the first section. We have also added new analyses to 
justify the different steps in the method and we show a new analysis to show that the periodicity does not 
across ORFs. Among the tests to better explain the advantages of the ORQAS we selected genes with 
one single ORF annotated (different gene set from the one used as positive control in Fig. 1b) and 
calculated the proportion of cases that have evidence of protein expression from immunohistochemistry 
(IHC) experiments from the human protein atlas (THPA):  
 

 
The cases labelled “Not evaluated“ are those that do not show enough RNA expression to be evaluated 
by ORQAS. The cases labelled “Not translated” are the predictions that Ribomap would give without any 
filters for periodicity or uniformity. In both cases there was an enrichment of cases without evidence of 
translation from THPA. In contrast, after imposing the thresholds (the cases labelled “Translated”), we 
observed a higher proportion of cases with protein evidence at different levels. We show this now in 
Figure 1c. To further show that ORQAS is superior to other methods, we have included an exhaustive 
comparison with SaTAnn and with the results from (Weatheritt et al. 2016). These comparisons show that 
ORQAS can detect more translated alternative isoforms per gene, less potential false positives, and more 
microexons. 



REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

In our first review, our major concerns were that the paper lacked a comparison with other methods 

(e.g RiboMap and SaTAnn), testing of the uniformity and periodicity parameters, and additional 

validations such as quantification between cytoplasmic and nuclear extracts. 

The authors adequately answered our concerns by: 

● Tes�ng if one single ORF genes (1005) had protein expression evidence (according to 

immunohistochemestry experiments from the human protein atlas), as well as being better detected by 

ORQAS than with RiboMap 

● Comparing a Weatheri� et al 2016 dataset with ORQAS and running SaTAnn with the same samples.

● Comparing the capacity of ORQAS and SaTAnn in detec�ng short unique regions and microexon-

containing isoforms. 

● Comparing the ORF length in high-polysomal and monosomal fractions. 

● Tes�ng the robustness of ORQAS by comparing the expression of �ssue-specific genes (according to 

THPA) and calculating translation in their glial samples. 

We would have preferred if the authors had made a simulated dataset of Ribo-seq and used it to 

compare ORQAS, RiboMap and SaTAnn. Nevertheless, the authors nicely show that ORQAS is able to 

quantify transcript isoforms using Ribosome profiling reducing the number of false-positive results in 

comparison with previous methods. 

Minor concerns: 

We also asked that they should show the exact p-values in the figures and text, we request this should 

be done for easier interpretation. As well, we request that all figures and text should have the same 

consistency throughout the document showing the exact p-values and statistical tests used. 

We found that some minor corrections in the new data such as: 

● Fig. 3f and Supp Fig. 13a the names of the x-axis are missing. We cannot tell which data is of human or 

mouse samples. 

● In the response to referees, regarding the sec�on discussing transla�on in monosomes and 

polysomes, the authors mention that they did not see any significant difference in the distribution of 

transcript lengths between monosomes and high-polysomes and show the distribution of ORF length of 

monosomes and high-polysomes. We ask the authors to test the homoscedasticity of these 

distributions, as it seems they are bimodal. 

● In the methods, they should explain the specific parameters used in SaTAnn. 

● All legends need to state the number of data points used in the figure. 

● The authors should also ar�culate the limita�ons of their method, for example, the use of periodicity 

means that events in the 5’ UTR are not evaluated. 



Reviewer #3 (Remarks to the Author): 

The authors have done a thorough job addressing the reviewers concerns and the manuscript is much 

improved as a result. I am happy to recommend publication of this manuscript and congratulate the 

authors on a great study. 



Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
In this manuscript, the authors describe their new pipeline for open reading frame (ORF) 
quantification for alternative splicing, ORQAS. It is able to quantify the translation of individual 
transcript isoforms using Ribosome profiling data. They address the challenge that detection of 
protein variation derived from differential microexon using unbiased proteomics is nowadays not 
possible, whereas their pipeline is able to detect conserved microexons between human and mouse. 
The highlight of their pipeline is how they determine the potential of ORF translation, by calculating 
the uniformity and the periodicity along the ORF. This paper lacks comparison with other 
computational methods (e.g RiboMap and SaTAnn), testing of the uniformity and periodicity 
parameters, and additional validations such as quantification between cytoplasmic and 
nuclear extracts) to be considered as a novel method for alternative splicing quantification. 
Furthermore, the description of many of the figures 
makes interpretation of the results difficult to evaluate and the methods section requires more 
extensive description. 
 
Algorithm outline 
 
1) Quantifies the abundance of ORFs in from RNAseq (TPMs). 
2) Assigns ribosome sequencing (Ribo-seq) to the same ORFs by RiboMap. 
3) Calculates for each ORF two parameters for determining their potential translation: 
Uniformity (proportion of the maximum entropy of the read distribution) and the 3nt signal periodicity 
along the ORF. 
 
 
Major concerns 
 
1) The authors ORQAS algorithm relies primarily on a published pipeline from the Kingsford group 
(Wang et al. 2016, Bioinfomatics). The innovation they’ve applied is to integrate in uniformity and 
periodicity cut-offs. However, they provide no evidence that these measures are an improvement over 
the approach used by Ribomap. Since the authors are releasing their own package, ORQAS, they 
should demonstrate the unique strength and advantage of their approach. 
  
To show that our approach provides an advantage over the approach used by Ribomap, we 
performed the following comparison. We selected genes with one single ORF annotated, so there is 
no ambiguous mappings of Ribo-seq reads. These are 1005 genes with one single ORF annotated, 
and non-overlapping with the single-ORF genes used as positive controls. For these genes we 
calculated the proportion of cases that have evidence of protein expression from 
immunohistochemistry (IHC) experiments from the human protein atlas (THPA):  
 



 
 
 
The cases labelled “Not evaluated“ are those that do not show enough RNA expression to be 
evaluated by ORQAS. The cases labelled “Not translated” are the predictions from Ribomap without 
any filters for periodicity or uniformity. In both cases there was an enrichment of cases without 
evidence of translation from THPA. In contrast, after imposing the thresholds (the cases labelled 
“Translated”), we observed an enrichment of cases with protein evidence at different levels. This is 
now shown in Figure 1c.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additionally, to show the unique strength and advantage of our approach, we calculated the 
proportion of translated isoforms according to the minimum RNA expression cut-off, which is another 
one of our filters. We observed that the proportion of translated isoforms increases as a function of 
the expression cut-off: 
 



 
We have added this plot as supplementary Figure. 
 
 
 
 
 
 
 
 
 
 
 
To further show the robustness of ORQAS, we also generated plots with the proportion of translated 
isoforms validated by peptides as a function of the RNA isoform expression cut-off. They all increase 
with higher expression cut-offs. Thus, using a higher expression cut-off translation can be validated 
with greater confidence: 
 
 



 
We have also included this plot as supplementary Figure 13.  
 
2) In addition, the authors need to show that their cutoffs for uniformity and periodicity improve their 
ability to reliably detect active translation and that they are not removing data unnecessarily. 
 
As shown above, the cutoffs of uniformity and periodicity improve the ability to detect cases with 
evidence of translation. We have added these plots to the article and have included an explicit 
mention to this in the text (highlighted in blue).  
 
3) Previous work both published (Weatheritt et al. 2016, Sterne-Weiler et al. 2014, Floor and Doudna. 
2016) and in prepublication servers (Calviello et al. 
https://www.biorxiv.org/content/10.1101/608794v1) have identified alternative splicing variants 
engaged with polysomes or ribosomes. Furthermore, both Weatheritt et al. and Calviello et al. have 
analyzed ribosome profiling data and have provided estimates for the number of splice variants 
engaged by the ribosome. The authors explain the advantages of their approach but do not contrast 
their results, especially in light of controversy of splice variant identification in mass spec data. 
  
In the original submission we cited (Weatheritt et al. 2016), (Sterne-Weiler et al. 2014), and (Floor and 
Doudna. 2016). The preprint Calviello et al. appeared after our preprint 
https://www.biorxiv.org/content/10.1101/582031v2 and also after we submitted our work for peer 
review.  
 
In the original submission we used data from (Blair et al. 2017) for human ESCs and differentiated 
neuronal cells to validate some of our findings for microexons. We also used the mapping of RNA 
sequencing reads from polysomal fractions, which is the approach of (Sterne-Weiler et al. 2014), as 
independent validation of our findings.  
 
In the revised version we now include an exhaustive comparison with the data from Weatheritt et al. 
2016 and with the method SaTAnn (see below).  
  
In our manuscript we described the differences of our method with previous approaches (Weatheritt et 
al.): ORQAS estimates the engagement of ribosomes in transcript variants, measuring for each 
transcript isoform independently their periodicity and uniformity. In contrast Weatheritt et al. mapped 
Riboseq reads directly to exon-exon junctions without considering whether their validity in terms of the 
transcript-isoform level expression, and Ribo-seq uniformity or periodicity. We argue that, since 
ribosomes scan transcript molecules, ORQAS provides a description that is easier to interpret in 
terms of translation of an mRNA isoform and also one that is closer to what is actually happening in 
the cell. SaTAnn considers directly the P-sites from Ribo-seq reads per exon, and combines exons 
into transcripts, without considering the RNA expression. In the revised manuscript we show that the 



translation quantification provided by ORQAS and SaTAnn is similar for isoforms predicted by both 
methods, but SaTAnn predicts translation also in isoforms that show no RNA expression (see below 
for more details of this comparison).  
  
Another novelty of ORQAS with respect to previous studies is that we compare with mouse and find 
that the direction in which alternative splicing potentially impact translation is conserved in specific 
events, thereby establishing the potential functionality of these changes.  
 
   
4) We undertook a brief comparison to SaTAnn, the authors should expand on this. SaTAnn versus 
ORQAS. Both approaches used HEK293 data (https://www.nature.com/articles/nmeth.3688 and 
GSM1306496) 
 
ORFs with quantified translation Number of genes Number of genes with only one ORF translated 
Number of genes with translation of multiple ORFs 
SaTAnn ~24,000 ~15,000 9,138 (60.92%) >5,800 
ORQAs ~20,709 Not explicitly mentioned 5,237- 4,766  
(Fig 1c -1d ) 52.3-54.9%  
(Fig 1c and 1d) 
 
SaTAnn operates differently from ORQAS. SaTAnn works directly with P-sites, without taking into 
account RNA-seq abundances, it analyses first exons, which are then combined together. We have 
performed an exhaustive comparison with SaTAnn. To this end, we run SaTAnn with the same 
samples we analyzed in our manuscript. We have added these analysis to the manuscript. 
 
We first compared the number of genes predicted to have at least 1 translated ORF (left panel below) 
and the total number of translated ORFs predicted (right panel below). We do not observed any 
systematic trend in these results. In some samples, ORQAS predict more translated genes and a 
more translated ORFs, and in other samples the trend is the opposite:  

 
 
Interestingly, although both methods predict a similar number of genes in human glioma (hsa glioma), 
ORQAS predicts a larger number of ORFs. Also, although SaTAnn predicts more genes with 
translated ORFs in mouse glia (mmu glia), ORQAS predicts more ORFs overall. This suggests a 
difference in the number of translated ORFs per gene. To investigate this further, we calculated the 



number of genes with 1, 2, 3,.... translated isoforms. We observed that ORQAS detects more genes 
with multiple ORFs:  
 

 
 
This is now shown in Fig. 1f and in Supp. Fig. 6. We further calculated the agreement between both 
methods in terms of the genes translated and the total ORFs using a Jaccard Index = 
Intersection(ORQAS, SaTAnn) / Union(ORQAS, SaTAnn). We observed a high level of agreement at 
gene level (60-80%) (left panel below), but slightly lower level of agreement at isoform-ORF level 
(right panel below) (now shown in Supp. Fig. 7): 

 
We also compared the quantification provided by both methods. SaTAn provides a quantification 
based on the normalized number of P-sites per nucleotide (y axis below), whereas ORQAS provides 
a quantification in ORFs per million (OPM) (x axis below), akin to the TPM units. We observed that for 



the ORFs predicted as translated by both methods, the quantification values correlate (R=0.8076) (all 
plots now shown in Fig. 1g and Supp. Fig. 8): 

 
 
However, there were a number of cases (in green in the figure above) that ORQAS did not predict 
because they had not sufficient reads or no reads at all, but are translated and with high abundance 
value according to SaTAnn. Looking further at these differences, we observed that the ORFs 
predicted by SaTAnn that were not detected by ORQAS had low or no RNA-seq expression (plots 
now shown in Fig. 1h and Supp. Fig. 8):  
 

 
Thus SaTAnn predicted ORFs as translated even if they had no evidence of RNA expression. 
Considering how short Ribo-seq reads are, it is possible that these cases originate from incorrect 
mapping and are thus false positives. Cases with too low or no RNA expression evidence are 
discarded by ORQAS, so these potential false positives are avoided.  
 



We additionally tested the capacity of ORQAS and SaTAnn to detect short unique regions, i.e. 
regions that are specific to the isoform ORF. We observed that ORQAS is able to detect more ORFs 
with short unique regions (Now shown in Supp. Fig. 15):  

 
The plot above shows the number of translated ORF predicted (y axis) as a function of the length of 
their unique regions (x axis). Thus ORQAS provides an advantage to predict translation in ORFs with 
short unique regions.  
 
We also analysed the capacity of ORQAS and SaTAnn to detect microexon-containing isoforms, 
defining microexons as exons of length 51nt or shorter (more on this below). ORQAS recovered a 
larger number of microexon-containing isoforms across the different samples tested (now shown in 
Fig. 4f): 

 
 
We also performed a comparison with the data from Weatheritt et al. 2016. To perform this 
comparison, we run ORQAS with the same Hek293 sample used in Weatheritt et al. 2016 and took all 
the events that were potentially measurable by both methods. From these events, we plot below 
those that were detected (PSI>0 in Ribosome space) by both methods, or by each method 
independently (now shown in Fig. 4g):  
 



 
We also calculated the expression in Ribosome space (OPM units) and in RNA space (TPM units) of 
the genes where SE events were detected. Weatheritt et al. also finds events for which we cannot find 
expression: 
 

 
 
This highlights once again the potential artefacts that may appear by mapping Ribo-seq reads directly 
to the alternative splicing events, and the advantage of ORQAS approach to avoid these potential 
false positives.  
 
5) In the section: Ribosome profiling discriminates translation abundance at isoform level. The 
authors’ validate their approach by comparing translated isoforms predicted by ORQAs with RNAseq 
of polysomal fractions and found that their predictions are enriched in the polysomal fraction but not in 
monosomes (Fig 2c). This validation is not sufficient to support the translation prediction power of 
ORQA as active translation can also take place in monosomes (See Heyer and Moore, 2016). We 
propose they should compare between cytoplasmic and nuclear extracts. 
  
Similar to translation on monosomes, there is also evidence of translation in the nucleus: 
http://jcb.rupress.org/content/197/1/45, so it is not entirely clear whether a comparison between genes 
expressed in the nucleus and cytoplasm will be necessarily conclusive.  
 
Although translation can indeed occur in monosomes, we expect that mRNAs translating in 
monosomes should be generally short, as they would only hold 1 individual ribosome. First, we did 
not see any significant difference in the distribution of transcript lengths between monosome and 
high-polysome fractions in general (left plot below). We then separated between the cases that we 
defined as translated and not-translated. We observed that translating mRNAs are significantly 
shorter in monosomes (right plot below). This difference is not as large when considering not 
translated ORFs. 



 

 
 
This comparison is now shown in Supp. Fig. 10. We thus separated previous Figure 2c according to 
three length ranges and observed that there was the same trends as before for translated transcripts 
in each of the length ranges (Now shown Fig. 2a): 
 

 
 
 



 
 
As an additional test to show the robustness of ORQAS in defining translation at isoform level, we 
considered tissue specific genes as proxy for negative controls in a different tissue. We took genes 
annotated in THPA to have tissue specific expression in brain, heart, intestine, liver, spleen or testis, 
and calculated whether they were predicted as translated or not in our glia samples (now shown 
Supp. Fig. 3): 

 
 
ORQAS on glia data predicts a higher proportion of translated genes in the subset of brain-specific 
genes compared with the subsets of genes specific in the other tissues.  
 
6) The authors need to provide a more detailed methods section. For example, we advise that the 
authors elaborate further on how they use SUPPA to convert isoform abundances to event inclusion 
values together with rationales that validate such a conversion strategy. 
  
We have tried to explain this better in the text. This conversion is supported by previous validations 
with RNA (see Alamancos et al. 2015, Trincado et al. 2018). With RNA, the abundance values from 
transcript isoforms summarized per event as a relative abundance (PSI) agrees with the 
measurements from RT-PCR using probes to capture the relative abundances for that event. For 
Ribo-seq we reasoned that, if Ribo-seq can be used to estimate the translation abundance of an 
isoform, we can also summarize these values per event and calculate a relative translation 
abundance. This represents the relative contribution of that particular exon to the translation 
abundance from a set of isoforms. That is, the relative contribution from an alternative exon to the 
translation of a gene. 
 
7) The microexon section is interesting, especially the identification of microexons in glia samples. 
However, the majority of previous studies have used a cutoff of <30 nt for microexons (Irimia et al, 
2014; Torres- Méndez et al, 2019). Does the enrichment still exist with this cutoff?  
 



We confirmed our observations with exons of length <28nt by testing their enrichment in the set of 
alternative exons changing inclusion in RNA or Ribosome space between glia and glioma, and 
between neural and embryonic sample (now included in the text): 

Comparison Sequencing Species Fisher test p-value 

Glia vs glioma RNA-seq human 5.435e-13 

Glia vs glioma Ribo-seq human 1.17e-09 

Glia vs glioma RNA-seq mouse 7.47e-14 

Glia vs glioma Ribo-seq mouse 3.194e-06 

hESC vs neural  RNA-seq human 2.725e-08 

hESC vs neural Ribo-seq human 6.768e-06 

 
  
Irimia et al. 2014 justified the definition of microexon as <28nt from their observation that below this 
length there was an increased inclusion in neuronal samples with respect to non-neuronal samples. 
However, other length cut-offs have been used to define microexons (see e.g. Li et al. 2015, 
Ustianenko et al. 2017). To justify our choice of the <52nt cut-off, we looked at the distribution of 
inclusion levels (in PSI units) for exon-cassette events in RNA and Ribosome space, separated by 
exon-length ranges in glia and in glioma (now shown in Supp. Fig. 14e): 

 
 
This plot shows that at length range [1,27] the differences of inclusion between glia and glioma is the 
largest, as expected for the definition of microexon from (Irimia et al. 2014). However, in the range (27,51] 
there is also a difference in inclusion between glia and glioma, which would support the inclusion of these 
exons into the definition of short exons with a brain cell specific inclusion pattern, or microexons. 
 
Minor concerns 
 
● TPM value of 0.1 is very low. We suggest an alternative cutoff of at least 1 for robust interpretation. 
  
Using bins for different range of expression cut-off values, we observed that the higher the minimum 
expression considered, the larger the proportion of cases that are predicted as translated (now shown 
in Supp. Fig. 2):  
 



 
However, the proportion of transcripts predicted as translated does not change much after removing 
cases below 1 TPM. 
 
● Fig 1b. Legend says: single ORF housekeeping genes are in blue but in the figure it suggests 
otherwise. 
  
We have fixed the figure legend.  
 
● In the section: Ribosome profiling discriminates translation abundance at isoform level 
1) The authors mention they have 15,824 human-mouse 1-1 gene orthologs, and identify 18,574 
human-mouse protein isoform pairs representing functional orthologs. They then state to find 7,112 
(64%) of the 1-1 gene orthologs had more than one orthologous isoform pair. We suggest the authors 
elaborate on how they reached this figure, as well as provide more information about the relevant plot.  
  
We have provided more information in the manuscript about this calculation and about the figures 
shown. Orthology is only annotated in databases at the gene level. However, we needed to obtain the 
pairs of potential ORF orthologs to establish conservation. We thus selected first the set of 15,824 1-1 
gene orthologs between human and mouse, i.e. best reciprocal orthology assignments between 
human and mouse, hence no ambiguous mappings. We then needed to establish the orthology at 
protein isoform level, i.e. the proteins in each pair of genes that can be considered protein orthologs. 
For that we considered all pairwise global alignments between human and mouse proteins, and 
selected the best possible pairs above a minimum score of 0.8 (defined as the fraction of amino acid 
matches over the total length of the global alignment), using a symmetric version of the stable 



marriage algorithm, as described before (Eyras et al. 2004). In this algorithm, pair assignments are 
established given an ordering of “preference” for each element, which is provided by the score 
calculated from the alignment. The algorithm produces optimal or “stable” pairs, in the sense that it 
provides the best available matches rather than the best reciprocal matches. That is, given a stable 
pair, there are no other pairs possible where both elements would prefer each other more than their 
current pair. This algorithm produces 18,574 human-mouse protein isoform pairs. We calculated then 
how these are distributed in genes orthologs: 36% of gene orthologs had one single protein isoform 
pair, and 64% had 2 or more protein isoform pairs.  
 
2) In the text, the p-value is as “< 2.2 e-16”, whereas in the figure legend they show the exact p-
values. 
 
This was to avoid writing all p-values in the text and to indicate that all tests were significant and with 
p-values smaller than 2.2e-16. The text says “... were significantly enriched in translated isoforms in 
both species (p-value < 2.2e-16 in all datasets)”. The figure legend shows the actual p-values.  
 
● Figures 3b and Supp. Fig 4a show the density of reads per nucleotide compared with other isoforms 
and suggest that “both region types in translated isoforms showed a higher density of reads per 
nucleotide compared with other isoforms”   
○ We believe these figures do not necessarily agree with the aforementioned statement from the main 
text and require further elaboration in the Figure legends such as: 
■ Clarification of whether the specific sequence sets are independent. 
■ Present results of statistical test (eg. Wilcoxon rank sum test) for significant difference. 
○ We also suggest the authors present the data with Ecdf plot to contrast the distributions between 
datasets. 
 
We considered isoform-specific regions, since evidence mapped to these regions can then be 
unequivocally assigned to the isoform. We defined two types of isoform-specific regions. One type 
was defined in terms isoform-specific nucleotide sequences, i.e. continuous nucleotide stretches that 
are only included in an isoform. To validate our predictions with peptides from MS experiments and P-
sites, we additionally considered isoform-specific ORF regions. These were defined as sequences 
that may or may not be shared between isoforms but had a specific frame in each isoform, so that 
peptides from MS experiments can be unequivocally mapped on these regions. These regions 
included the isoforms calculated before with the ORFs from the isoform-specific sequence.  
 
Isoform-specific sequences are thus also isoform-specific ORFs, e.g. an alternative exon specific to 
an isoform defines an isoform-specific ORF region. Thus the two sets of isoforms are not 
independent. However, the datasets used in each case are independent. Isoform-specific ORFs were 
validated with P-sites and with mass-spec peptides, whereas isoform-specific sequences were 
validated with Ribo-seq reads, regardless of the position and identification of the P-site. We have tried 
to clarify this in the text, and added new plots. Significance is now shown in new plots in Figure 3 and 
in Supp. Fig. 13. Below we show the case for the densities of Ribo-seq reads in isoform-specific 
sequences: 
 



 
 
We have modified the cartoon in Figure 3a to clarify the possible configurations of the isoform-specific 
regions. For improved clarity, we have also separated into independent panels the validation of 
isoform-specific sequences with Ribo-seq reads (now in Figs. 3b and 3c) and the validation of 
isoform-specific ORFs with P-sites or mass-spec peptides (now in Figs. 3d and 3e). 
 
● It is unclear how Figure 3e and 3f support statements from the main text. In particular, the 
statement of “63-65% in mouse with an RNA expression > 0.1 TPM” is difficult to relate to the data 
presented in Figure 3 without further elaboration. In addition, the authors should provide further 
information Figure 3f supporting the statement that “~ 10% of annotated AS in both human and 
mouse had evidence of translation and these represented 60% of all translated isoforms”, as unclear 
how these numbers were reached. 
 
Figure 3e is now shown in Fig. 3f, and Fig. 3f has been moved to Supp. Fig. 13e for clarity. Fig. 3f 
(previous Fig. 3e) shows the proportion of all expressed isoforms that are predicted to be translated 
and additionally have independent validation of translation. This validation is considered to be one or 
more of different sources of evidence: conservation, uniquely mapped Ribo-seq reads in isoform-
specific sequences, and counts per base or peptides in isoform-specific ORFs. Supp. Fig. 13e 
(Previous Fig. 3f) shows the same information but splitting isoforms according to whether they are the 
main isoform or and alternative isoform, where “main” was defined as the isoform with the highest 
expression, and “alternative” are the rest of isoforms from the gene showing expression (TPM>0.1). 
The proportions shown were calculated by putting together all the results of the validation analyses 
and are available in Supp. Tables 3 and 4. 
 
● Fig. 4a) in the section of RA calculation, the figure says “RA = OPM1 + OPM2”. We believe that the 
authors' initial intention being to calculate RA=OPM1 + OPM3. If so, please correct this typo. 
  
That’s right. We have corrected this error. 
 
● Fig 4e and 4f are not sufficient to support a direct connection of microexons included in RNAseq to 
Ribo-seq. Inclusion of a plot supporting a strong correlation between RNAseq and Riboseq for 
microexons (as Figure 4c) is strongly adviced. 
 
We have included now in Figure 4b (and the Supplementary Figure for 14c mouse) also the cases 
that are not significant in RNA-seq or Ribo-seq or both in the comparison between glia and glioma, 
also highlighting (as empty circles) microexons: 
 
 
 



 
 
The figure shows in red the cases that are significant in both Ribo-seq and RNA-seq space, in black or dark 
gray, the cases that are only significant in one case, and in light gray, the cases that are significant in 
neither of them. The density bands in the plot shows the distribution of cases along the axes. Empty circles 
indicate the microexons (red if significant, black/gray otherwise). In the inset in blue we give the correlation 
of the red points (including microexons), in gray we give the correlation of all other exons (black/dark-
gray/gray, including microexons).  
 
● Fig 5b The authors mention:”high proportion of them changed in the same direction between glia 
and glioma (66% in RNA-seq and 78% in Ribo-seq)”. The authors need to provide more information, 
as this result cannot be clearly inferred from Fig. 
  
We have provided more information in the text to clarify this result. Additionally, for clarity we have put 
together Figures 5b and 5c (now Fig. 5b) and have improved the figure caption to make it more clear. In 
these barplots we show the events changing significantly in human and/or mouse in each direction: less 
inclusion (blue), more inclusion (red). We have also added a new plot (now Figure 5c) comparing the 
difference of inclusion values in human and mouse in Ribo-seq space, which shows that microexons have 
a conserved pattern of decreased inclusion in glioma. More details on this below. 
 
● Similar to the previous comment, the authors mention that microexons were enriched in both 
species with a general trend towards less inclusion in glioma, the figure (Fig. 5c) does not explicitly 
show that glioma has less inclusion of microexons. Clarification of the x-axis and how dPSIs are 
calculated in this specific plot are required to address this discrepancy.  
 
This data is now shown in Figure 5b. The y axis indicates the count of events with or without 
significant changes in human and/or mouse. We separated those counts according to the different 
combinations of change or lack thereof: blue for dPSI<-0.1, red for dPSI> 0.1, and gray for no change. 
dPSI values are calculated as the difference of PSI values in the two conditions. The plot shows that 
when the events are significantly changing in both species, the events tend to go in the same 
direction in both species, i.e. the first two bars are larger than the rest.  
 
Additionally, the plot shows that in the particular case of microexons, the first bar (blue in both, i.e. 
less inclusion in glia) is much larger than the second bar (red in both, i.e. more inclusion in glia) or 
than any other possible combination. To further clarify this result, we have added a Figure (new 
Figure 5c) to make more explicit the direction of change of the microexons in human and mouse. This 
figure depicts the changes in translation of the conserved microexons and shows more explicitly the 
pattern of conservation described. 
 



 
 
Reviewer #2 (Remarks to the Author): 
 
Summary 
Reixachs-Sole et al have developed a new pipeline to better understand translation of mRNAs at the 
level if mRNA isoform rather than gene. They have gone to validate the results of using this in both 
human and mouse, with a variety of different data sets and approaches. By comparing differences in 
mRNA isoform abundances and translation they show that several micro-exon containing isoforms 
are regulated between glia and glioma. 
 
The aim to understand translation is the mRNA isoform level is admirable and represents an 
important step forward in linking mRNA processing and translation. Overall, I think this is a good study 
but many aspects could benefit from improved explanations and examples to illustrate, especially for 
a general interest journal such at Nature Communications. The focus ends up being on differential 
expression of microexons, between glia and glioma, rather than differences in isoform 
abundance and translation, which seems the logical requirement for this new pipeline the 
authors developed here.This work is novel and is certainly interesting the gene expression field. 
 
Specific points; 
 
a) Authors mention that exon boundaries are frequently bound by RNA-binding proteins. However, the 
majority of these exon boundaries are at exon-intron boundaries in the nuclear. There is limited 
evidence to suggest that in spliced transcripts that make it out to the cytoplasm are more bound by 
RBPs than other parts of spliced transcripts.  
  
We did not mean to say that there are more RBPs bound in the cytoplasm. We have eliminated this 
statement as it was not clear enough.  
 
b) The manuscript would benefit greatly from a more detailed explanation of the novel ORQAS 
method that the authors have developed. For example, it seems like the designation of Ribo-seq 
reads to isoforms is based on relative abundance of mRNA isoforms from RNA-Seq-is this true? Then 
these transcripts would be filtered based on whether corresponding ORFs make it through cut-offs for 
uniformity of ribosome profiling reads across the ORF and periodicity. My concern is that transcripts 
may fail to pass these two thresholds for reasons other than alternative ORF translation. Similar 
metrics have been used previously to define translation events, so it is not obviously why they pipeline 
presented here is able to deconvolute translation of ORFs from alternatively spliced isoforms. 
  



We have tried to improve the explanation of the pipeline in the text to clarify all these points and have 
included an extended description of the advantages with the corresponding tests. The assignment of 
Ribo-seq reads de novo, without any prior information does not work well because Ribo-seq produces 
not as many reads as RNA-seq. Additionally, these are shorted and not as uniformly distributed. As a 
consequence, direct isoform quantification methods like Kallisto or Salmon with Ribo-seq reads does 
not work well. Ribomap uses the RNA-seq abundance as priors for the optimization algorithm to 
distribute Ribo-seq reads among the different isoforms.  
 
Multiple previous analyses have shown that uniformity and periodicity are essential to establish the 
Ribosome activity on an ORF. We thus applied the same principle in each isoform ORF, with the 
crucial difference that the reads used for that calculation are only those assigned to the isoform. To 
support this principle, we calculated the validation by immunohistochemistry (IHC) of the translation 
prediction on single-ORF genes. These are 1005 genes with one single ORF annotated, and non-
overlapping with the single-ORF genes used as positive controls (used in Fig. 1b). For these genes 
we calculated the proportion of cases that have evidence of protein expression from 
immunohistochemistry (IHC) experiments from the human protein atlas (THPA):  

 
 

 
Single-isoform genes do not have any ambiguity in the assignment of reads to ORFs. In the plot, “Not 
evaluated” are ORFs that do not have sufficient RNA expression to be considered for quantification, 
whereas “Not translated” are ORFs that despite having enough RNA and Ribo-seq reads, they do not 
pass the periodicity and uniformity cut-offs. Ribomap would predict the latter as translated. However, 
as shown, they have very little evidence of translation from THPA. 
 
In the manuscript we further validated the predictions made with ORQAS in various ways: 

1) Enrichment of mass-spec peptides in regions that are unique in isoforms  
2) Enrichment of conservation of translated isoforms between human and mouse 
3) Enrichment in high polysomal fractions of the translated isoforms vs the ones not-translated.  

We also considered that the conservation between human and mouse of the differential inclusion in 
ORF abundance of microexons constitutes further evidence supporting that ORQAS can determine 
translation at isoform level.  
 
 
c) Uniformity of periodicity could be used as a cut-off since changes on frame could indicate 
inconsistency caused but translation of ORF from alternative transcript. I guess the question is 



whether periodicity is stable across the transcript. How is periodicity calculated? It could be that the 
value of periodicity is an average across the ORF, so it is already reflecting whether it is constant 
enough.  
  
Periodicity is calculated as the proportion of all reads mapping to the ORF that correspond to a given 
frame. We calculated the periodicity in 3 different windows of ~100 nucleotides at the beginning 
(START), in the middle (MIDDLE) and at the end of each ORF, separating ORFs according to 
different lengths. We can observe that the periodicity is uniform in these three windows and 
comparable to the total periodicity (now shown in Supp. Fig. 5): 
 

 
 
We also analysed the distribution of differences of periodicity for each of these 3 windows in each 
ORF with the total periodicity of the same ORF and the majority of them do not show changes higher 
than 0.1 (dashed line) (now shown in Supp. Fig. 5):  
 

 
 
d) In the section “Ribosome profiling discriminates translation abundance at isoform level” it is not 
clear what “combination of protein features” means in Fig 2b. It seems unsurprising that isoforms 
called translated have evidence of their protein expressed. It would be informative to generate a false 
discovery rate, for those isoforms that have no evidence of translation. It is not clear how mass spec, 



immunohistochemistry and uniprot data was treated to ensure that signal could be confidently 
assigned to a specific ORF isoform over another? 
 
Previous fig. 2b (now moved to Supp. Fig. 3) represents a validation at the gene level using the 
protein expression annotation from THPA, which is based on Mass Spectrometry, 
Immunohistochemistry, and Uniprot (associated known protein). The intention of this plot was to 
provide a first coarse-grained validation of predictions. For every gene with one or more translated 
ORFs predicted, we calculated whether there was evidence of translation for that gene. The plot 
shows that most of the genes for which we predict one more translated isoform has  indeed some 
protein expression evidence (7992 out of 7992+365).  
 
 
e) In the text, polysome association is described, whereas in Fig 2c, high polysomes are mentioned. 
What specific complexes were defined as high polysomes? How many transcripts were included in 
this monosome vs high polysome distribution? From RNA-Seq data it is not clear how we can be sure 
that this is transcript specific. If RT-qPCR with primers designed specifically for detection of specific 
isoforms match this same pattern? 
 
Polysome fractions used in our analysis were defined in (Blair et al. Cell Reports 2017), which was 
based on the procedures described in (Floor & Doudna Elife 2016). Their definition was as follows: 
Monosomes = 1 ribosome, Low polysomes = 2-4 ribosomes, High polysomes = 5 or more ribosomes. 
In the table below we show the number of expressed transcripts in the analysed data: 
 

Condition Fraction Expressed transcripts 

hESC High Polysome  57562 

hESC Monosome  48967 

Neu High Polysome 49342 

Neu Monosome 43023 

 
We used Salmon to assign reads from each polysomal fractions to the transcript isoforms. Salmon 
performs an unambiguous assignment of reads to transcripts based on the similarities of the read to 
other reads mapping to the same transcript using an optimization. Abundances can be estimated to 
each transcript in each subpopulation of RNAs from the corresponding RNA-seq. The abundances 
were normalized as in (Maslon et al. Elife 2014) by dividing the abundance in a given fraction over the 
total abundance in all fractions being compared. In general, these normalized values are never 0 
(does not appear in fraction) or 1 (unique to the fraction), but the values vary enough to determine the 
enrichment in specific fractions, as shown before in (Maslon et al. Elife 2014). 
 
f) The validation performed in Fig3a is excellent. But these sections would benefit greatly from 
examples illustrating these types of events.  
  
We have generated plots for isoform-specific regions with uniquely-mapped reads for a couple of 
examples:  ENSG00000196867 and ENSG00000213995, which are now shown in Supp. Fig. 11 and 
Supp. Fig. 12.  In these plots we show the uniquely-mapped Ribo-seq reads (green), Ribo-seq reads that 
map to 2 different places (red), and Ribo-seq reads that map to 3 different places (blue).  
 
g) There is very little explanation of many of the panels. For example, 3c): what was the aim of this 
over how mass spec data had be used to support ORF isoform translation? 
 



We have tried to improve the description in the legend and in the text of the various figures. In 
previous Fig. 3c, Mass-spec peptides from mouse hippocampus and glia were used to validate unique 
regions. These are two types of regions: those sequences that are specific to a single isoform (unique 
sequence) and those ORFs that are specific to an isoform (the sequence might be shared with other 
isoforms, but the ORF is unique and specific to the isoform). We have modified the cartoon in Figure 
3a to clarify the possible configurations of these regions. For improved clarity, we have also separated 
into independent panels the validation of isoform-specific sequences with Ribo-seq reads (now in 
Figs. 3b and 3c) and the validation of isoform-specific ORFs with P-sites or mass-spec peptides (now 
in Figs. 3d and 3e).  
 
h) It is not clear how S4 is different to Fig3? Is it same but just including human samples too? 
 
Supp Figure 4 (now Supp. Fig. 13) represents the same type of analyses as Fig. 3 (now in Figs. 3b, 
3c, 3d and 3e) but for other samples. These figures represent the density of Ribo-seq reads in 
isoform-specific sequences (Fig. 3b), isoform-specific sequences with 10 or more Ribo-seq reads 
(Fig. 3c), the density of P-sites in isoform-specific ORFs (Fig. 3d) and the number of isoform-specific 
ORFs with one or more peptides from Mass-Spec. Supp. Fig. 13 contains the same plots for the 
samples not included in Fig. 3.  
 
i) Use of SUPPA in Fig4 to probe differential translation linked to differential splicing is really the most 
interesting part of the manuscript. Since one of the big questions in the field is whether certain spliced 
isoforms are preferentially translated. This analysis starts to address this. Fig 4c suggests this is 
generally not the case. The majority of analysis focuses on whether the translation of spliced 
microexons and their differential splicing. This is an important question and result. However, it is not 
clear whether this analysis was dependant on the original pipeline ORQAS, developed here. 
  
Yes, we used ORQAS to quantify ORFs in ribosome space, and then used SUPPA to transfer that 
information at event level. We have tried to explain this better in the manuscript. 
 
j) The focus of results seemed to be on changes correlating between RNA-Seq and Ribo-Seq, 
especially in Fig 5, that are differential between different cell types. But given the manuscript aims to 
understand isoform translation it would be more appropriate to analyse more deeply events whose 
RNA-Seq and Ribo-Seq don’t correlate. These are the situations, one would argue, that require 
understanding of isoforms at bot splicing and translation level.  
 
Our main objective is to estimate the impact of differential splicing on translation. We argue that to be 
able to address that one needs to evaluate isoform translation, since differential expression and 
splicing is simply a result of what happens to the isoforms. Those isoforms whose RNA-seq 
abundance and Ribo-seq abundance do not correlate are probably related to translation efficiency 
(TE), which is out of the scope of this manuscript.  
 
We considered those events that changed significantly in opposite directions in RNA and Ribosome space. We 
expect those that increase significantly PSI in RNA but decrease in Ribosome would be related to a decrease in 
TE, and those events that decrease significantly in PSI in RNA but increase in Ribosome would be related to an 
increase in TE. We calculated the TE in these cases: 
 



 
Except for a few cases, the TE is similar in glia and glioma for all isoforms. This suggests that TE does not 
change globally and explains a very limited number of significant changes in splicing and translation. 
 
k) In discussion “These estimates are far from” should be reworded to give indication of direction of 
change. 
 
We have changed it to  “considerably lower than” 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have developed a new method, ORQAS (ORF quantification pipeline for alternative 
splicing) to quantify isoform-specific translation abundance, and have applied their method to a 
number of different datasets including glia/glioma and ES cells/neurons. 
 
One of the limitations of ribosome profiling is that it does not directly measure protein peptide 
abundance and assumes that engaged ribosomes are direct arbiters of protein levels. As the authors 
point out, this is not strictly true, and builds upon previous studies to attempt to examine open reading 
frames that are more likely to be translated. Their polysome data is convincing. 
 
While I have some concerns about the novelty given that other studies examining alternative splicing 
and ribosome profiling have previously been published, I do think that the authors have significantly 
improved upon these studies and this study deserves to be published in Nature Communications. 
 
I have a few queries: 
 
1. In Figure 4C, the correlation between the ribo-seq and RNA-seq data is remarkably high, close to 1 
- almost too good to be true. What happens to the datasets that are not significant, i.e.. what is the 
correlation between non-significant alternative splicing events for which there is ribo-seq data and 
vice-versa? 
 
We have plotted now all the events in this comparison (now shown in Fig. 4b for human and in Supp. 
Fig. 14c for mouse):  
 



 
 
In these figures we show in red the cases that are significant in both Ribo-seq and RNA-seq space. In 
black or dark gray, we show the cases that are only significant in one case, and in light gray, the cases that 
are significant in neither of them. The density bands in the plot shows the distribution of cases along the 
axes. Empty circles indicate the microexons (red if significant, black/dark-gray/gray otherwise). In the inset 
in blue we give the correlation of the red points (including microexons), in gray we give the correlation of all 
other exons (black/dark-gray/gray, including microexons). There is overall a considerably high correlation of 
the non-significant cases (dark/dark-gray/gray points), but the correlation of the significant cases is higher. 
 
2. I would suggest that the authors improve their description of their method in the first results section, 
including on expanding on the descriptions of uniformity and periodicity and why the integration of 
which is a significant advance over ribosome profiling alone. 
 
We have added more details about the method in the first section. We have also added new analyses 
to justify the different steps in the method and we show a new analysis to show that the periodicity 
does not across ORFs. Among the tests to better explain the advantages of the ORQAS we selected 
genes with one single ORF annotated (different gene set from the one used as positive control in Fig. 
1b) and calculated the proportion of cases that have evidence of protein expression from 
immunohistochemistry (IHC) experiments from the human protein atlas (THPA):  
 

 



The cases labelled “Not evaluated“ are those that do not show enough RNA expression to be 
evaluated by ORQAS. The cases labelled “Not translated” are the predictions that Ribomap would 
give without any filters for periodicity or uniformity. In both cases there was an enrichment of cases 
without evidence of translation from THPA. In contrast, after imposing the thresholds (the cases 
labelled “Translated”), we observed a higher proportion of cases with protein evidence at different 
levels. We show this now in Figure 1c. To further show that ORQAS is superior to other methods, we 
have included an exhaustive comparison with SaTAnn and with the results from (Weatheritt et al. 
2016). These comparisons show that ORQAS can detect more translated alternative isoforms per 
gene, less potential false positives, and more microexons. 
 
  



 
ADDITIONAL REVIEWERS' COMMENTS: 
 
Reviewer #1 (Remarks to the Author): 
 
In our first review, our major concerns were that the paper lacked a comparison with other methods 
(e.g RiboMap and SaTAnn), testing of the uniformity and periodicity parameters, and additional 
validations such as quantification between cytoplasmic and nuclear extracts. 
 
The authors adequately answered our concerns by: 
● Testing if one single ORF genes (1005) had protein expression evidence (according to 
immunohistochemestry experiments from the human protein atlas), as well as being better detected 
by ORQAS than with RiboMap 
● Comparing a Weatheritt et al 2016 dataset with ORQAS and running SaTAnn with the same 
samples. 
● Comparing the capacity of ORQAS and SaTAnn in detecting short unique regions and microexon-
containing isoforms. 
● Comparing the ORF length in high-polysomal and monosomal fractions. 
● Testing the robustness of ORQAS by comparing the expression of tissue-specific genes (according 
to THPA) and calculating translation in their glial samples.  
 
We would have preferred if the authors had made a simulated dataset of Ribo-seq and used it to 
compare ORQAS, RiboMap and SaTAnn. Nevertheless, the authors nicely show that ORQAS is able 
to quantify transcript isoforms using Ribosome profiling reducing the number of false-positive results 
in comparison with previous methods. 
 
Minor concerns: 
 
We also asked that they should show the exact p-values in the figures and text, we request this 
should be done for easier interpretation. As well, we request that all figures and text should have the 
same consistency throughout the document showing the exact p-values and statistical tests used. 
 
Exact p-values have been added in places where they were not present previously and the format of 
the figures has been unified to provide all tests as numerical p-values. The statistical test in each 
cases is also indicated.  
 
We found that some minor corrections in the new data such as: 
● Fig. 3f and Supp Fig. 13a the names of the x-axis are missing. We cannot tell which data is of 
human or mouse samples. 
 Figures 3f and 13a have been fixed to include the x-axis. 
 
● In the response to referees, regarding the section discussing translation in monosomes and 
polysomes, the authors mention that they did not see any significant difference in the distribution of 
transcript lengths between monosomes and high-polysomes and show the distribution of ORF length 
of monosomes and high-polysomes. We ask the authors to test the homoscedasticity of these 
distributions, as it seems they are bimodal. 
We show below the quantile-quantile (qq) plots where the quantiles of the distribution of ORF length 
in monosomes and high-polysomes have been plotted against theoretical quantiles of a normal 
distribution. The lack of interruption in the sample quantiles allows us to conclude that there is no 
bimodal behavior in those distributions. 
 
 
 



 
 
Human ESC monosomes:     Human ESC high-polysome: 
 

 
 
Human neural cells monosomes:   Human neural cells high-polysomes: 
 
 

 
 
● In the methods, they should explain the specific parameters used in SaTAnn. 
A sentence in the methods section has been added to clarify that we used ORFquant (formerly known 
as SaTAnn) with default parameters and with the same ORF annotation used for ORQAS. 
 
● All legends need to state the number of data points used in the figure. 
The number of data points has been added in the legend of the figures. 
 
● The authors should also articulate the limitations of their method, for example, the use of periodicity 
means that events in the 5’ UTR are not evaluated. 
 
Thanks for raising this question. The main limitation of our approach is that it is based on annotated 
transcripts and ORFs. Accordingly, uORFs or potential new ORFs not present in the annotation are 
not considered. However, it can be adapted to include these cases: once novel transcripts and ORFs 
are predicted from RNA sequencing, one could apply ORQAS to assess their translation activity. 
Similarly, uORFs can be assessed based on abundance and periodicity (e.g. PMID: 31810458). So 



one could envision adding those regions to analyse them with ORQAS. We have indicated these 
potins in the Discussion section.  
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have done a thorough job addressing the reviewers concerns and the manuscript is 
much improved as a result. I am happy to recommend publication of this manuscript and congratulate 
the authors on a great study. 
 
Thank you very much. 


