
Bioimage informatics

FunImageJ: a Lisp framework for scientific

image processing

Kyle I. S. Harrington1,*, Curtis T. Rueden2 and Kevin W. Eliceiri2,3

1Computational and Physical Systems Group, Virtual Technology and Design, University of Idaho, Moscow,

ID, USA, 2Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison and
3Morgridge Institute for Research, Madison, WI, USA

*To whom correspondence should be addressed.

Associate Editor: Robert Murphy

Received on July 19, 2017; revised on October 7, 2017; editorial decision on October 28, 2017; accepted on October 31, 2017

Abstract

Summary: FunImageJ is a Lisp framework for scientific image processing built upon the ImageJ

software ecosystem. The framework provides a natural functional-style for programming, while

accounting for the performance requirements necessary in big data processing commonly encoun-

tered in biological image analysis.

Availability and implementation: Freely available plugin to Fiji (http://fiji.sc/#download).

Installation and use instructions available at http://imagej.net/FunImageJ.

Contact: kharrington@uidaho.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Lisp programming languages have a long history in the development

of computer programming. Lisp was the second high-level program-

ming language to be developed, and has been one of the primary lan-

guages of artificial intelligence (AI). The utility of Lisp in AI is

largely due to its capacity for expressing and manipulating code as

data, allowing for functional programming styles. As AI becomes

ubiquitous throughout the sciences, the need to incorporate machine

learning and computer vision into the field of biological image ana-

lysis has become increasingly clear. To this end we have developed

FunImageJ as a platform to facilitate the bridge between AI and the

broadly used scientific image analysis platform, ImageJ. Recent ef-

forts from the ImageJ community have vastly improved the accessi-

bility and utility of free and open-access software tools for

biological imaging for not only the user base in biological commun-

ities, but the software development community as well (Schindelin

et al., 2015). Many of these advances have been driven by the

ImageJ2 and SciJava development thrusts, which have facilitated the

development of declarative ImageJ2 plugins and the use of powerful

ImgLib2 (Pietzsch et al., 2012) data structures. While the ImageJ2

platform has brought many more developer tools and scripting lan-

guages to ImageJ, there has been no dedicated support for Lisp- and

functional-style programming. Both programming paradigms offer a

range of utility for image processing that derives first-class status of

mathematical functions, the immutability of data, and treating code

as hierarchical list structures. The application of mathematical func-

tions to collections of pixels for image processing is intuitive to

image analysts; however, the utility of immutability and code as

hierarchies of lists may be somewhat unclear and could be seen as a

limitation. Immutability prevents problems that arise from different

software modules altering the state of the same data, which aids in

the parallelization of processing routines; however, when dealing

with big data, such as biological images, it is sometimes necessary to

rely on mutable functions. For example, when implementing rou-

tines that operate on individual pixels in an image it is generally

preferable to directly mutate the source image, as opposed to creat-

ing a duplicate image with a single altered pixel. In FunImageJ we

attempt to maintain immutability up to the point of altering image

data, at which point it becomes the user’s responsibility to duplicate

image data if immutability is required. Finally, the representation of

code as hierarchical list structures greatly facilitates metaprogram-

ming techniques, allowing programmers to develop computer pro-

grams that generate image processing programs. It is this high-level

capacity to use code to manipulate and synthesize programs that

makes FunImageJ a powerful framework for the development of

biological image processing software, which we demonstrate

VC The Author 2017. Published by Oxford University Press. 899

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 34(5), 2018, 899–900

doi: 10.1093/bioinformatics/btx710

Advance Access Publication Date: 2 November 2017

Applications Note

http://fiji.sc/#download
http://imagej.net/FunImageJ
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx710#supplementary-data
https://academic.oup.com/


through the examples provided in this paper and Supplementary

Material.

2 Materials and methods

FunImageJ was developed to both be used to create independently dis-

tributable programs, as well as ImageJ scripts that can be used within

the Fiji distribution of ImageJ (Schindelin et al., 2012). As ImageJ is

primarily Java-based software, the underlying Lisp dialect is Clojure

(Hickey, 2008), a Lisp built on the Java Virtual Machine. An initial

implementation of an idiomatic Clojure framework for ImageJ

(Harrington et al., 2015) focused on providing accessors to ImageJ

1.x (Schneider et al., 2012), including typing optimizations and some

functional programming features. In FunImageJ, we incorporate a

number of core features of the ImageJ2 (Rueden et al., 2017),

ImgLib2 (Pietzsch et al., 2012), and ImageJ Ops to establish a power-

ful platform for image processing. The ImageJ Ops library provides a

massive set of algorithms and operations for image processing, which

FunImageJ dynamically discovers and re-encodes in idiomatic and

optimized Clojure syntax. In terms of performance, most functions

included in FunImageJ have the same performance as their Java coun-

terparts; however, the dynamic typing nature of Clojure means that

naı̈ve algorithm implementations that do not provide data type infor-

mation at appropriate times can suffer from performance penalties

arising from automatic type inference. By providing a large collection

of namespaces and functions, users can translate between images,

meshes, ImageJ 1.x, ImgLib2 and ImageJ2 with ease. FunImageJ is

open-source software under the permissive Apache 2.0 license.

3 Results

We present an example of FunimageJ applied to the BBBC003v1

image set from the Broad Bioimage Benchmark Collection (Ljosa

et al., 2012). The BBBC003v1 dataset contains a collection of 15

mouse embryos imaged using differential interference contrast

(DIC), and a set of manually produced foreground segmentations.

We present an algorithm can be concisely written that: filters par-

ticulates using ImageJ 1.x regions-of-interest, searches through a set

of filters for the best match on one example image by maximizing

segmentation accuracy, and applies the best filter to all candidate

images. The results of this algorithm are shown in Figure 1.

4 Discussion

Most situations that warrant the use of FunImageJ will involve ei-

ther a high degree of exploratory development or metaprogram-

ming. Lisp dialects are traditionally developed iteratively using a

‘read-eval-print-loop,’ where the programmer slowly grows her

code while ensuring accuracy throughout the entire development

process. Additionally, the paradigm of code-as-data lends itself to

writing code that uses functions as variables, making it easy to

evaluate multiple variants of an algorithm with minimal alterations.

While the dynamic discovery of algorithms provided via the ImageJ

Ops library ensures that a subset of ImageJ algorithms are automat-

ically incorporated into FunImageJ, on-going development efforts

by the ImageJ community continue to introduce new algorithms and

data structures (such as the upcoming ImgLib2 region-of-interest re-

lease, and ImageJ Tensorflow interface) and these advances will re-

quire future development to ensure that they are idiomatically

incorporated into FunImageJ. By building upon ImageJ, FunImageJ

benefits from the big data biological image processing capacity pro-

vided by ImgLib2 (Pietzsch et al., 2012), KNIME Image Processing

(Dietz and Berthold, 2016) and the ImageJ ecosystem (Schindelin

et al., 2015). As a result, FunImageJ has been able to focus on trans-

lating the benefits of Lisp programming to the world of biological

image analysis.

Acknowledgements

This work has greatly benefitted from the helpful ImageJ and FIJI commun-

ities. In particular, the authors would like to thank Albert Cardona, Mark

Hiner, Tobias Pietzsch and Timothy Stiles.

Funding

This work was supported by the NSF Idaho EPSCoR Program and the

National Science Foundation under award number IIA-1301792.

Conflict of Interest: none declared.

References

Dietz,C. and Berthold,M.R. (2016) KNIME for open-source bioimage ana-

lysis: a tutorial. In: Focus on Bio-Image Informatics, edited by Winnok H.

De Vos, Sebastian Munck, and Jean-Pierre Timmermans, 179–97. Advances

in Anatomy, Embryology and Cell Biology 219. Springer International

Publishing.

Harrington,K. et al. (2015) Functional image processing with ImageJ/FIJI. In:

BioImage Informatics Conference.

Hickey,R. (2008) The Clojure Programming Language. In: Proceedings of

the 2008 Symposium on Dynamic Languages, 1:1–1:1. In DLS ’08. ACM,

New York, NY, USA.

Ljosa,V. et al. (2012) Annotated high-throughput microscopy image sets for

validation. Nat. Methods, 9, 637.

Pietzsch,T. et al. (2012) ImgLib2—generic Image Processing in Java.

Bioinformatics, 28, 3009–3011.

Rueden,C.T. et al. (2017) ImageJ2: ImageJ for the next generation of scientific

image data. arXiv preprint arXiv: 1701.05940.

Schneider,C.A. et al. (2012) NIH Image to ImageJ: 25 years of image analysis.

Nat. Methods, 9, 671–675.

Schindelin,J. et al. (2012) Fiji: an open-source platform for biological-image

analysis. Nat. Methods, 9, 676–682.

Schindelin,J. et al. (2015) The ImageJ ecosystem: an open platform for bio-

medical image analysis. Mol. Reprod. Dev., 82, 518–529.

Fig. 1. Optimizing detection of DIC imaged mouse embryos from a single

image. (A) Test input, (B) candidate filters, (C) test target, (D) validation inputs,

(E) overlaid target and detection show agreement for majority of embryo with

minor disagreement at borders, (F) overlaid validation targets and detections

900 K.I.S.Harrington et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx710#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx710#supplementary-data
Deleted Text: 2 Methods
Deleted Text: ,
Deleted Text: <?A3B2 show [AuthorQuery id=
Deleted Text: &hx201C;
Deleted Text: ,&hx201D; 
Deleted Text: ,

