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SUMMARY

The immune system makes decisions in response to combinations of multiple microbial inputs. We do not
understand the combinatorial logic governing how higher-order combinations of microbial signals shape im-
mune responses. Here, using coculture experiments and statistical analyses, we discover a general property
for the combinatorial sensing of microbial signals, whereby the effects of triplet combinations of microbial
signals on immune responses can be predicted by combining the effects of single and pairs. Mechanistically,
we find that singles and pairs dictate the information signaled by triplets in mouse and human DCs at the
levels of transcription, chromatin, and protein secretion. We exploit this simplifying property to develop
cell-based immunotherapies prepared with adjuvant combinations that trigger protective responses in
mouse models of cancer. We conclude that the processing of multiple input signals by innate immune cells
is governed by pairwise effects, which will inform the rationale combination of adjuvants to manipulate im-

munity.

INTRODUCTION

Biological systems make decisions in response to combinations
of multiple signals. For example, to stop an infection, the immune
system has learned to recognize and exploit the inter-depen-
dencies of microbial signals by evolving in a chance-driven world
of encounters with pathogens. By mimicking such responses to
complex microbial signals, live vaccines that are empirically atten-
uated from pathogens have been a powerful means to yield life-
long immunity against many deadly pathogens (Plotkin et al.,
2017). However, the rational design of non-live vaccines using
immunomodulatory agents, such as adjuvants, has remained an
elusive task in many cases where live vaccination is not effica-
cious or feasible (Coffman et al., 2010; Levitz and Golenbock,
2012; Pulendran and Ahmed, 2011). To tackle this challenge, a
central question to answer is how do complex combinations of mi-
crobial or adjuvant signals shape immune responses? Filling this
fundamental gap in our knowledge is critical to learn how to ratio-
nally choose and combine adjuvants to manipulate immunity
against infectious and non-infectious diseases such as cancer.
The molecular signals derived from pathogens, live vaccines,
or adjuvants are largely processed by pattern recognition recep-
tors (PRRs) of the innate immune system (Ablasser and Chen,

2019; Brown et al., 2018; Chow et al., 2018; lwasaki and Medz-
hitov, 2015; Janeway, 1989; Medzhitov, 2009; Takeuchi and
Akira, 2010). To date, pathogen-sensing pathways have been
much studied one pathway at a time. As a first step beyond
the analysis of single pathway effects, many examples of syn-
ergy, independence, or antagonism between pathogen-sensing
pathways have been reported using pairwise stimulations, adju-
vant combinations, or genetic deletions (Bagchi et al., 2007;
Cappuccio et al., 2015; Crozat et al., 2009; Elinav et al., 2011;
Gantner et al., 2003; Kasturi et al., 2011; Kawai and Akira,
2011; Lin et al., 2017; Loo and Gale, 2011; Napolitani et al.,
2005; Negishi et al., 2012; Nish and Medzhitov, 2011; Osorio
and Reis e Sousa, 2011; Ozinsky et al., 2000; Thaiss et al.,
2016). These observations suggest that responses to two micro-
bial stimuli cannot be explained by combining the effects of sin-
gle stimuli. In addition, the higher-order effects of microbial in-
puts on pathogen-sensing pathways and downstream immune
responses have not been systematically analyzed. Thus, we do
not know how pathogen-sensing pathways respond collectively
to multiple input signals, as is often the case with natural infec-
tions or mixtures of adjuvants in vaccines.

Since studying the full scope of combinatorial effects in path-
ogen sensing is impractical because the number of experiments
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(B) Schematic overview of the coculture assay
used to measure the combinatorial effects of mi-
crobial inputs. Dendritic cells stimulated with sin-
gles, pairs, or triplets of stimuli are pulsed with
ovalbumin and subsequently incubated with
transgenic OT-ll T cells. T cell proliferation is
measured by CFSE dilution.

(C) Heatmap showing all 63 microbial stimuli
combinations (rows) used in the study: 7 singles
(blue; top), 21 pairs (green; middle), and 35 triplets
(orange; bottom). Columns indicate the cell gen-
eration and values are average cell numbers (color
scale) (n = 8).

(D) Frequency distribution of the proportion of
divided T cells for single (left), pair (center), and
triplet (right) ligand stimulations.

See also Figures S1 and S2; Table S1.

We identified several triplets of immune
adjuvants with potent anti-tumor effects
and showed that their effects can be ex-
plained using only data on the in vivo ef-
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grows exponentially with the number of stimuli, we need an inno-
vative strategy to decipher the complexity and the combinatorial
logic underlying innate immune sensing. The key challenges to
address include (1) identifying assays and readouts to capture
the complexity of multi-input effects on the immune response
both in vitro and in vivo for immunotherapeutic design; (2) dis-
secting the mechanistic underpinnings of combinatorial sensing;
and (3) finding ways to predict higher-order effects in cells and in
the host, as a means to circumvent the need for testing many
combinations.

Here, we studied how the interplay between higher-order
combinations of microbial signals shapes the output of immune
responses. We asked if the relationships between the effects of
singles, pairs, and triplets of inputs can reveal the combinatorial
logic governing microbial sensing by the immune system (Fig-
ure 1A). First, we measured the effects of a representative set
of seven microbial stimuli and all corresponding pairwise (21)
and triplet (35) combinations on T cell responses using dendritic
cell (DC)-T cocultures in vitro, which provide an integrated
readout for the various DC-derived signals that are regulated
by the combinatorial activation of pathogen-sensing pathways.
Remarkably, we found that the effects of triplet combinations
of stimuli on DC-T responses can be predicted using only the re-
sponses to single and pairwise stimulations. Second, as a mech-
anistic basis for our finding, we observed that singles and pairs of
microbial inputs dictate the information signaled by triplets in
mouse and human DCs at the levels of transcription, chromatin,
and protein secretion. Third, we asked if the combinatorial logic
governing pathogen sensing in vitro would be applicable in vivo
using cell-based immunotherapies in mouse models of cancer.
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fects of adjuvant singles and pairs. Over-
all, we discovered a general property that explains the
combinatorial logic of pathogen sensing and can be exploited
to rationally combine adjuvants for therapeutic design.

RESULTS

A Coculture Assay to Characterize the Combinatorial
Effects of Microbial Stimuli

First, we sought to explore the combinatorial effects of microbial
inputs on the output of an immune response (Figure 1A). To this
end, we systematically measured the effects of singles, pairs,
and triplets of microbial stimuli on the ability of DCs to instruct
T cell responses (Figure 1B). We reasoned that measuring
T cell proliferation provides an integrated readout for the various
DC-derived signals triggered by the combinatorial activation of
pathogen-sensing pathways, which include the regulation of an-
tigen presentation and membrane-bound and secreted co-stim-
uli such as cytokines.

We selected seven well-established ligands for pathogen-
sensing pathways: (1) lipopolysaccharide (LPS or L), (2)
Pam3CSK4 (P), (3) high molecular weight poly(l:C) (H), (4) CpG
DNA type B (C), (5) Sendai virus (SeV or S), (6) depleted zymosan
(2), and (7) cyclic [G(3',5')pA(3,5)p] (8'3'-cGAMP or G), which
are agonists for, respectively, TLR4, TLR2, TLR3/MDA-5,
TLR9, RIG-I, Dectin-1, and STING, the adaptor downstream of
the cGAS pathway. These ligands were selected (1) to encom-
pass most PRR families, (2) because their receptors are ex-
pressed in steady-state DCs (Figure S1A) and are functional as
shown using knockout cells (Figure S1B), (3) by performing
dose-response experiments (Figure S1C), and (4) ensuring that
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each ligand had no direct effects on T cell viability and prolifera-
tion (Figure S1D). Next, we incubated mouse bone-marrow-
derived DCs with the chicken ovalbumin (OVA) protein with or
without ligands for 6 h, then washed and cultured DCs with car-
boxyfluorescein succinimidyl ester (CFSE)-labeled OT-II trans-
genic CD4* T cells specific for the OVAzz3_339 peptide bound
to the major histocompatibility (MHC) class Il molecule I-AP (Fig-
ure 1B) (Barnden et al., 1998). In these experimental settings, li-
gands P and L were the strongest inducers of T cell proliferation
(>45%); G and H the weakest (<10%); and C, S, and Z showed
intermediate levels (20%-40%) (Figure S2A).

We then measured the effects of all possible two- and three-
way ligand combinations in our DC-T coculture system, leading
to 21 pairs and 35 triplets in total (Figures 1C and S2A; Table S1).
The distributions of T cell proliferation values across singles,
pairs, and triplets were comparable, albeit slightly shifted toward
higher values (>60% of T cells divided) in pairs and triplets (Fig-
ures 1D and S2B). We also found that IFN-y secretion by T cells
was higher in pairs compared with singlets and seemingly
reached a plateau at the pair and triplet levels (Figure S2C). Of
note, these changes in proliferation and IFN-y were not due to
toxicity effects of ligand combinations: 90% (57/63) of the condi-
tions tested led to >65% viability in T cells, with the exception of
6 triplets, namely P-Z-G, P-Z-S, P-H-Z, P-L-Z, Z-S-C, and Z-G-
C, which led to viability values ranging from 39% to 62%
(Figure S2D).

Pairwise and Single Stimulations Predict the Effects of
Triplet Combinations

Next, we examined the relationship between single and pairwise
ligand stimulations and the net interactions of three ligands using
the T cell growth data from our combinatorial experiments (Fig-
ure 1C; Table S1). First, we sought to classify how pairs of micro-
bial signals interact. Qualitatively, pairwise ligand stimulations of
DCs resulted in T cell growth patterns that appeared synergistic,
antagonistic, or additive (Figure S3), as shown, for example, in
the pairs of ligands that compose the following triplets: Z-S-G,
P-S-G, and P-L-Z (Figure 2A). We ensured that pairwise ligand
effects were due to the integration of signals at the level of single
DCs, as shown by experiments mixing (1) ligands to stimulate
DCs, or (2) DCs stimulated with single ligands (Figure S4A).
Indeed, mixing cells stimulated with single ligands did not lead
to the synergistic effects observed when mixing ligands for 10
out of the 15 pairs of ligands tested (Figure S4B). To quantify
the effects of crosstalk between ligand pairs, we used the prolif-
eration index (Pi) as a proxy for the T cell response in our in vitro
co-culture system, which corresponds to the average number of
divisions per activated T cell in our DC-T co-culture system (Roe-
derer, 2011) (STAR Methods). Using the proliferation indices
associated with two ligands, A and B, used alone, Piy and Pig,
and in combination, Pisg, we computed a pairwise interaction
score Pisg for each ligand pair defined as l4g = Piag — PiaPis
(STAR Methods). The pairwise interaction score l45 quantifies
the level of synergy, antagonism or lack thereof that results
from crosstalk between two pathways triggered by the ligands
A and B. Indeed, if two responses are independent as postulated
for example in the Bliss independence model (Bliss, 1939, 1956),
then 145 would be equal to Pi,Pig and the effects of ligands A and
B would simply be deemed independent from one another. How-
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ever, any deviations of / 45 from Pi,Pig indicates the existence of
interactions between the ligand-activated pathways, which can
either enhance (synergy) or inhibit (antagonism) each other’s ef-
fects. For example, the pairs P-L and P-S showed antagonistic
effects whereas Z-S, Z-C, and S-G were synergistic (Figure 2B).
Overall, pairwise interaction score calculations revealed that
52% (11/21) of the pairs were synergistic, 10% (2/21) were
antagonistic and 38% (8/21) were additive (Figure 2D), which in-
dicates a complex interplay between pairs of ligands at the level
of DC-T cell responses.

Second, we investigated the relationship between the net ef-
fects of three-ligand interactions and matching singles and
pairs. To do so, we computed a triplet interaction score /45¢
for each triplet of ligands defined as lagc = Piasc — PiaPigPic
(STAR Methods), which encapsulates the level of net pairwise
and triplet interactions by subtracting single ligand effects
from the triplet proliferation index. The proportions of synergis-
tic (51%, 18/35), antagonistic (17%, 6/35), and additive (31%,
11/35) triplet effects were comparable with those measured
for pairwise effects (Figure 2E). Remarkably, pairwise effects
combined qualitatively in a variety of ways to yield triplet effects
Iasc. For example, synergistic interactions of intermediate
strength between pairs, such as those between Z-S and Z-C,
can combine to yield a cumulative effect that is strongly syner-
gistic (Figures 2B and 2C, top panel). Conversely, pairs with
antagonistic (P-S and P-G) and synergistic (S-G) interactions
can combine to yield a cumulative triplet effect (P-S-G) that is
close to zero (Figures 2B and 2C, middle panel). Further, the
pairs P-Z and L-Z showing weak interactions in negative and
positive directions, respectively, combined with the strongly
antagonistic pair P-L to generate a net P-L-Z triplet effect
whose magnitude is similarly antagonistic than that of the P-L
pair alone (Figures 2B and 2C, bottom panel). Taken together,
these results qualitatively showed that pairwise effects
combine in a variety of ways to explain the net effect of triplets,
suggesting an intrinsic property for pathogen-sensing path-
ways whereby three-way interactions between input signals
may be encapsulated in the corresponding pairwise effects
when monitoring DC-T co-culture outputs.

To test the robustness of this property, we asked whether
triplet ligand interactions could be predicted by using only data
from single and pairwise effects. To do so, we used a statistical
analysis derived from the Isserlis theorem (Isserlis, 1918), which
was previously applied to evaluate higher-order effects in com-
binations of antibiotics on bacterial growth (Wood et al., 2012).
We used the following Isserlis expression: Piagc = PiagPic +
PiacPig + PigcPia — 2PisPigPic, where Pi is the proliferation index
of T cells from DC-T cocultures for the indicated combinations of
ligands A, B, and C (STAR Methods). In this approach, the
equality is satisfied when there are no three-way interactions be-
tween signals. As a first approximation, we compared the triplet
interaction scores obtained from experimental values to the
scores inferred computationally using the Isserlis statistical
approach and found a strong agreement between observed
and calculated values (R? = 0.9) (Figures 2C and 3A). Going
further, we found that the proliferation indices for triplets ob-
tained from experiments were similar to those calculated using
the Isserlis formula that uses only single and pairwise prolifera-
tion indices as input values (R? = 0.77) (Figure 3B). The statistical
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Figure 2. Pairwise Effects Qualitatively Combine to Explain the Net Effect of Triplets of Microbial Stimuli

(A) T cell growth pattern upon DC stimulations with ligand singles and pairs. Line plots showing the number of OT-Il cells in each generation of activated cells (cell
generation 1 to 6) upon coculture with DCs stimulated with singles (blue) and pairs (green) corresponding to the triplets Z-S-C (zymosan/SeV/CpG-B; top), P-S-G
(Pam3CSK4/SeV/cGAMP; middle), and P-L-Z (Pam3CSK4/LPS/zymosan; bottom). Error bars, SEM (n = 8).

(B and C) Pairwise (Iag = Piag — PiaPig) and triplet (/asc = Piasc — PiaPigPic) interaction scores for the triplets Z-S-C (top), P-S-G (middle), and P-L-Z (bottom) (C)
and their composite pairs (B). Triplet scores (C) are derived from Pigc values observed experimentally (orange) or calculated (white) using the Isserlis formula:
Piasc = PiagPict+ PiacPig + PigcPia — 2PiaPigPic. Dashed horizontal lines indicate the mean of SEM values across all pairs (B) or triplets (C), used as thresholds for
synergy and antagonism (+0.0256 for pairs and +0.0275 for triplets). Error bars, SEM (n = 8).

(D and E) Bar plots showing pairwise (la» = Piap—PiaPip; D) and triplet (l.pe = Piane—PiaPinPic; E) interaction scores for indicated ligand combinations. Dashed
horizontal lines indicate the mean of SEM values across all pairs (D) or triplets (E) and are used as thresholds for synergy (opaque colors), additivity (medium
opacity colors), or antagonism (light opacity colors). Error bars, SEM (n = 8).

See also Figure S3; Table S1.

STAR Methods). Using an additional transgenic CD4* T cell
model specific for an H2-1-AP-restricted lymphocytic choriome-
ningitis virus (LCMV) glycoprotein-derived epitope (residues 61
to 80) (Oxenius et al., 1998), we obtained similar results

significance of this correlation between values observed exper-
imentally and calculated with Isserlis was confirmed by boot-
strap analysis from one million trials of randomly scrambling sin-
gles and pairs across triplets of different ligands (Figure 3C and

4 Cell Systems 11, 1-14, December 16, 2020



Please cite this article in press as: Pandey et al., Pairwise Stimulations of Pathogen-Sensing Pathways Predict Immune Responses to Multi-adjuvant
Combinations, Cell Systems (2020), https://doi.org/10.1016/j.cels.2020.10.001

Cell Systems

¢? CellPress

OPEN ACCESS

A B C
o
S 0e{R*=09 ' x 1{R2=077 _ o
2 y =1.58x ' 8 y=x 204 | P=2x10 0.77
s : £
= 044 H c ]
G P 8o 15
5 1t g
Q ' = >
£ 027 : R # £
OT-ll 5 ° 051 + $10
ST P B Q a
g ° + 3 *{ﬁ*
3 + : T 0251 + 54
% -0.2 : § +
:
©
< . O of 01
S —0.4¥— t T T T T T T T T T T T T
-0.2 0 0.2 0.4 0 025 05 075 1 0 025 05 075 1
Observed triplet interaction score Observed proliferation index R? value
(0]
o 041 R-os2 « 19 R?=0.78 p=107 0.78
@ y =1.07x . —4— g vex
5 : £
E 0.2 : 5 075 20
© : =
2 : s >
c — w— D
SMARTA BT SN PR £ .« 5 0.5 2
< H 5 o}
= T e 0 104
E ; B _+_
g -024 : T 0.254
s : 3
' ©
TL; : (6] 0 04
§-04ls : - - - - - - : - r T T T
-0.1 0 0.1 0.2 0.3 0 0.25 0.5 0.75 1 0 025 05 0.75 1
Observed triplet interaction score Observed proliferation index R? value

Figure 3. Single and Pairwise Stimulations Predict Triplet Effects

(A) Dot plots of the observed (x axis) and calculated (y axis) triplet interaction scores for all 35 ligand triplets tested and using CD4* T cells from OT-Il (top) or
SMARTA (bottom) transgenic mice. Dashed lines indicate the x and y axis. The solid line indicates a linear model fit (top, y = 1.58 X; bottom, y = 1.07 x). Error bars,

SEM (n = 8 for OT-Il and n = 2 for SMARTA).

(B) Dot plots of the observed (x axis) and calculated (based on the Isserlis formula; y axis) triplet proliferation index values for all 35 ligand triplets tested, using OT-
Il (top) or SMARTA (bottom) T cells. The solid line indicates y = x. Error bars, SEM (n = 8 for OT-Il and n = 2 for SMARTA).

(C) Distribution of R? values obtained between observed and calculated proliferation indices for ligand triplets with random shuffling by bootstrapping (black line)
or without (red line). The number in red indicates the R? value obtained by correlating experimental and calculated triplet proliferation indices as shown in (B). Data

obtained with OT-II (top) and SMARTA (bottom) T cells.
See also Figure S4; Table S1.

suggesting the broad applicability of our observation (Figures
3A-3C, bottom panels).

Using indices that capture other characteristics of T cell
growth patterns from CFSE profiles led to poor correlations be-
tween observed and calculated values, with the exception of the
replication index and, to a lesser extent, the expansion index
which captures similar information to Pi (Figure S4C and STAR
Methods) (Roederer, 2011). Using IFN-y production was not a
good predictor of triplet effects using only data from singles
and pairs (Figure S4D). In addition, the types of PRR pathways
targeted in ligand triplets did not impact the distribution of prolif-
eration indices, although combining ligands from two or three
different PRR families of receptors tended to display higher pro-
liferation level than those combinations of ligands targeting only
the Toll-like receptor (TLR) family (Figures S4E and S4F).

Furthermore, we showed in two control experiments that the
heterogeneity of bone marrow-derived DC cultures, previously
described by others (Helft et al., 2015), did not impact our find-
ings about estimating triplet effects using only data from singles
and pairs. First, the three cell subsets present in DC cultures
based on the surface markers CD11b, CD11c, and MHC class
Il (Figure S4G) responded similarly to combinatorial stimulations
as measured by the transcriptional expression of four signature
cytokines of DC activation (i.e., Cxcl1, Cxcl10, Ifnb1, and //6),

albeit with variations in the magnitude of gene activation (Fig-
ure S4H). Second, when using a homogenous DC culture based
on the enrichment of MHC class IlI-positive cells (Figure S4l), we
found that the proliferation indices for triplets obtained experi-
mentally were similar to those calculated using the Isserlis for-
mula (Figure S4J).

Overall, these results reveal a simplifying property for the
combinatorial sensing of microbial signals, whereby the effects
of triplet combinations of stimuli can be reduced to the effects
of single and pairwise stimulations.

Singles and Pairs of Microbial Stimuli Dictate the
Information Signaled by Triplets in DCs

To investigate the effects of combinatorial stimulations on DC
states, we first measured changes in gene expression in DCs
stimulated for 6 h with all the ligand singles (7), pairs (21), and
triplets (35) used in our co-culture assay. We identified 1,357
genes that were differentially expressed between stimulated
and unstimulated DCs across all 63 combinations (Figure 4A; Ta-
ble S2A; STAR Methods). Interestingly, all of the transcriptional
profiles for triplets clustered closely with singles and pairs using
hierarchical clustering (Figure 4A) and principal component anal-
ysis (PCA) (Figure 4B), without any triplet clustering indepen-
dently of singles or pairs, which suggests that the transcriptional
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Figure 4. Single and Pairwise Stimulations Dictate the Information Signaled by Triplets in Mouse and Human DCs
(A) Heatmap of differentially expressed genes (1,357 in total; rows) from mRNA profiles of mouse DCs stimulated with ligand singles (blue), pairs (green), or triplets
(orange) (columns). Values are log, fold-changes relative to unstimulated cells (FDR-adjusted p-value < 0.01; n = 3). Hierarchical tree is based on clustering using

Pearson’s correlation.

(B) PCA of mRNA profiles of mouse DCs stimulated with ligand singles (7; blue), pairs (21; green), or triplets (35; orange).

(C and D) Bar plots showing for each ligand pair (green) or triplet (orange) the proportion of genes regulated by a triplet or a pair but not by matching composite
singles and/or pairs relative to the total number of genes regulated by that triplet or pair, using a mouse (C) and human (D) DCs (n = 3).

(E and F) Box plots showing the smallest divergences between the level of expression of genes regulated by ligand pairs (green) and triplets (orange) and their
composite singles and/or pairs, using mouse (E) and human (F) DCs (n = 3). Box plots represent the median, first quartile, and third quartile with lines extending to

the furthest value within 1.5 of the interquartile range (IQR).
See also Figures S5 and S6; Tables S2 and S3.

states of DCs stimulated with ligand triplets is comparable to that
of DCs exposed to singles and pairs. To test this, we counted
how many genes were found to be up- or down-regulated in a
ligand pair but not in either one of the singles forming that pair
(referred to as newly regulated genes) (STAR Methods). We
found that 67% (14/21) of the pairs tested regulated genes that
were not differentially expressed in the corresponding single-
ligand treated cells compared to unstimulated control cells (Fig-
ures 4C and S5A; Table S2B). 0.2% to 39% of the genes regu-
lated by those 14 pairs were found to be newly regulated at
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the pair level (Figure 4C). In contrast, 77% (27/35) of the triplets
tested did not regulate new genes relative to matching singles
and pairs, with only 20% (7/35) of the triplets displaying 0.2%-—
1.3% of newly regulated genes and one triplet, P-H-Z, regulating
26 new genes, which is 6.3% (26/412) of all its regulated genes
(Figures 4C and S5A-S5I; Table S2B).

To test whether the genes that were regulated by triplets
showed changes in expression levels that were similar or
different in amplitude compared to all matching singles and
pairs, we computed the smallest possible difference in fold-
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change values relative to control cells for a given gene between
(1) a pair and its matching singles, and (2) a triplet and its match-
ing singles and pairs, which we refer to as expression divergence
(STAR Methods). A low expression divergence value indicates
that the amplitude of the expression change for a given gene
upon triplet stimulation is close to at least one of the composite
stimuli for that triplet, whereas a high expression divergence
highlights genes whose change in expression upon triplet stimu-
lation is different from all-composite stimuli singles and pairs.
While pairs led to significant changes in expression levels
compared to their matching singles, triplets triggered little to
no change in expression levels compared to their composite sin-
gle and pairwise conditions (Figure 4E). These results show that
the genes regulated by ligand triplets are also found to be regu-
lated in matching singles and pairs and at similar levels relative to
unstimulated cells. In other words, triplets of ligands do not seem
to encode new information at the transcriptional level compared
to singles and pairs. Notably, similar results were obtained when
using DCs derived from human blood monocytes isolated from
three independent donors, suggesting that this property of the
response of PRR pathways to multi-stimuli stimulations is pre-
served in humans (Figures 4D, 4F, and S6A; Table S3).

Next, we tested whether this phenomenon would hold true at
the chromatin and secreted protein levels. To do so, we first
compared changes in the gene expression and genome-wide
chromatin accessibility states of DCs stimulated with three
randomly selected ligand triplets P-L-H, P-S-G, or Z-S-G and
their matching singles and pairs (STAR Methods). We found
that similar to what we observed at the mRNA level, triplet stim-
ulations triggered changes in chromatin accessibility at genomic
loci that were already regulated by single and pairwise stimula-
tions (Figures S6B, S6C, S6E, S6F, S6H, and S6l; Table S4). Sec-
ond, we used mass spectrometry on cell culture supernatants to
measure changes in the secretome of DCs stimulated with the
same three triplets and their matching singles and pairs (Figures
S6D and S6G; Table S5; STAR Methods). Similar to the tran-
scriptional and chromatin levels, the secretome of DCs did not
differ significantly in triplet conditions compared to matching sin-
gles and pairs (Figures S6B-S6G). Taken together, these obser-
vations suggest a model whereby activating triplets of pathogen-
sensing pathways does not lead to the regulation of new genes—
at the level of chromatin, transcription, and protein secretion—
compared to corresponding singles and pairs.

Adjuvant Triplets Generate Potent DC-Based Vaccines
against Melanoma in Mice

Having identified a simplifying, intrinsic property that explains
the collective effects of pathogen-sensing pathways in cocul-
tures in vitro, we next sought to test the applicability of this prop-
erty in the natural setting of the host. To do so, we sought to
establish an in vivo model in which triplets of PRR ligands would
lead to a variety of outcomes in terms of host protection. We
reasoned that finding triplets leading to different outcomes for
the host—such as protection against tumor versus none—would
allow us to test whether using data from single and pairwise adju-
vant treatments could describe triplet effects in vivo. To test this,
we used a DC vaccination model to precisely control the expo-
sure of DCs to combinations of microbial stimuli prior to injecting
DCs subcutaneously in mice to assess their protective potential.

¢ CellP’ress

We selected 12 out of the 35 triplets studied to cover all major
transcriptional clusters observed in vitro (Figure 4A). We gener-
ated DC vaccines by stimulating DCs ex vivo with either one of
the triplets for 6 h in the presence of the full ovalbumin (OVA) pro-
tein in the culture medium. Next, we screened the effects of
these DC-based vaccines by injecting them subcutaneously in
mice which received 10° OVA-expressing B16.F10 melanoma
cells (B16-OVA) in the contralateral skin region (Figure 5A).
Remarkably, out of the 12 triplets used to create DC vaccines,
4 led to a strong decrease in melanoma growth whereas the re-
maining 8 triplets did not (Figure 5B).

Next, we sought to characterize the anti-tumor effects of the H-
Z-G adjuvant triplet. First, we used tumor-bearing animals, which
were injected with OVA-loaded DCs that did not receive any stim-
ulation and which showed similar tumor progression as mice inoc-
ulated with B16-OVA cells only (Figure 6A), and thus confirmed the
adjuvant-dependent effects on decreasing tumor growth. In addi-
tion, the anti-tumor effects triggered by H-Z-G-stimulated DCs
loaded with OVA (1) were antigen-specific (Figure 6B), (2) required
the presence of T cells (Figures 6C and 6D), and (3) were appli-
cable to OVA-expressing MC38 colorectal adenocarcinoma and
E.G7 lymphoma cells (Figure 6E). H-Z-G-based DC therapy led
to an increase in CD8* T cell infiltration in the tumor, as opposed
to a DC vaccine prepared with P-L-H that showed no effect on tu-
mor growth (Figure 6F). Second, we found that the anti-tumor ef-
fects of the triplet H-Z-G were mediated in part (1) by endogenous,
migratory DCs not exposed to adjuvant signals but likely activated
by cytokines released by DC-based therapy, as shown by the use
of Batf3~'~ mice lacking conventional DC1 cells (Guilliams et al.,
2014), and (2) by direct antigen presentation by the DC vaccine it-
self as shown by the decrease in anti-tumor activity when using
DCs lacking MHC class Il (Figure 6G). Third, the anti-tumor adju-
vant triplet H-Z-G displayed stronger effects than those observed
with its corresponding adjuvant singles and pairs (Figure 6H) and
with a DC maturation cocktail used in a human DC vaccine against
melanoma (Carreno et al., 2013, 2015) (Figure 6l).

The Effects of Adjuvant Triplets on Tumors In Vivo Are
Predicted by Computation Using Only Single and
Pairwise Effects

Lastly, we asked whether the anti-tumor effects induced by the 4
out of 12 adjuvant triplets tested could be captured by the in vivo
effects of single and pairwise stimulations of DC vaccines. To do
so, we first sought to identify an in vivo proxy for the anti-tumor
effects of the DC vaccination strategies discovered above. We
measured the impact of the 12 DC vaccines tested in our B16-
OVA model (Figure 5B) on the production of 12 T cell-associated
cytokines in the inguinal draining lymph node (dLN) for the skin
site of DC injection. A week after DC vaccine injection subcuta-
neously, the dLN was collected, dissociated and 5 x 10° total
dLN cells were kept in culture in the presence of the OVA protein
(Figure 7A; STAR Methods). By PCA, the 12 triplets tested in vivo
in our tumor model broadly clustered into three groups based on
the cytokine profiles measured in the draining dLN, which re-
vealed that the 4 triplets with anti-tumor effects separated from
the other 8 (Figure S7B; Table S6A). We found that the levels
of IL-17A production by dLN cells at 1-week post-vaccination
were the most strongly anti-correlated with tumor volumes at
~3-weeks post-tumor cell inoculation, suggesting that IL-17A
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Figure 5. Adjuvant Triplets Generate Potent Cell-Based Vaccines Against Melanoma in Mice
(A) Schematic overview of the experimental design. From left to right: mouse DCs are stimulated with adjuvant triplets and pulsed with ovalbumin (OVA) in vitro;
then DCs are injected subcutaneously in mice which received 10° OVA-expressing B16.F10 melanoma cells (B16-OVA) in the contralateral skin region; and tumor

growth is measured over time to assess vaccine effects.

(B) Average tumor growth (solid line) in cohorts of mice treated with DCs pulsed with OVA and stimulated with indicated adjuvant triplets (orange) or left un-
stimulated as control (black). Light color lines indicate the growth from each mouse within each cohort. Error bars, SEM (n = 3—15 mice per cohort).

could be used as a proxy for the anti-tumor effects of the DC vac-
cines used in this study (Figures 7B and S7A-S7C). IL-6 and II-
17F also correlated well with anti-tumor effects but their levels
were lower and closer to the detection limit of our assay (Fig-
ure S7A). Interestingly, IFN-vy levels were high in the 4 triplets
leading to strong anti-tumor effects but were also found to be
elevated in 3 out of the 8 triplets which did not lead to anti-tumor
responses (Figure S7A).

We found that IL-17A production by dLN cells was fully attrib-
utable to CD4* T cells, as shown by cell depletion experiments
(Figure S7D). In addition, using //17a~'~ or Rorc ™'~ mice abol-
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ished the anti-tumor effects of the adjuvant triplet H-Z-G (Fig-
ures S7E and S7F), which further reinforce the potential use
of IL-17A production in the dLN as a surrogate for anti-tumor
effects.

We then measured the levels of IL-17A production by dLN cells
from mice injected with DC vaccines generated with the 4 triplets
displaying anti-tumor effects, namely P-S-G, L-S-G, H-Z-G, and
Z-S-G, as well as their matching singles and pairs (Figures 7C,
S7G, and S7H; Table S6B). Using the statistical framework estab-
lished above for our in vitro DC-T system, we found that the levels
of IL-17A induced by DC vaccines produced with adjuvant triplets
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Figure 6. In Vivo Characterization of the Anti-tumor Effects Mediated by the H-Z-G (Poly(l:C)-Zymosan-cGAMP) Adjuvant Triplet Using
DC-Based Therapy

(A-E) Mean tumor growth (solid lines) in cohorts of wild-type mice, unless indicated otherwise for knockout strains (Tcra™~, C; Cd8a’~, D), injected with 10° B16-
OVA (A-D), 10° MC38-OVA, or 5 x 10° EG7-OVA (E) tumor cells and indicated DC vaccines. DCs + OVA, unstimulated DCs pulsed with ovalbumin protein (OVA);
DCs + H-Z-G, DCs stimulated with the H-Z-G (poly(l:C)-zymosan-cGAMP) ligand triplet without OVA; DCs + OVA + H-Z-G, DCs stimulated with H-Z-G and pulsed
with OVA. Light color lines indicate tumor growth for individual mice within each cohort. Error bars, SEM (n = 3-6 mice per cohort).

(F) Quantification of CD8* T cells infiltrated in B16-OVA tumors (left) and corresponding tumor volumes (right) at day 13 post-injection of tumor cells and indicated
DC vaccines. Ctrl, unstimulated DCs pulsed with OVA; H-Z-G and P-L-H, DCs pulsed with OVA and stimulated with ligand triplets H-Z-G or P-L-H (Pam3CSK4-
LPS-poly(1:C)), respectively. Error bars, SEM (n = 3 mice per cohort).

(G) Mean tumor growth (solid lines) in cohorts of wild-type mice (except for the group indicated as Batf3~/~, middle panel) injected with 10° B16-OVA cells and left
untreated as controls (tumor cells only; black lines), or treated (orange lines) as follows at day zero with wild-type (left and middle panels; WT) or MHC class II-
deficient (right panel; MHCII™/~) DCs pulsed with OVA and stimulated with H-Z-G. Light color lines indicate tumor growth for individual mice within each cohort.
Error bars, SEM (n = 4-7 mice per cohort).

(H and I) Mean tumor growth (solid lines) in cohorts of wild-type mice injected with 10° B16-OVA cells and left untreated as controls (tumor cells only; black lines) or
treated with DCs pulsed with OVA and stimulated with indicated ligand singles (H, poly(l:C); Z, zymosan; G, cGAMP), pairs (H-Z, H-G, Z-G) and triplet (H-Z-G) (H),
or with the I-C-R-H quadruplet (IFN-y at 100 U/mL, sCD40L at 100 ng/mL, R848 at 20 ug/mL, and poly(:C) at 20 ug/mL) ().

Light color lines indicate tumor growth for individual mice within each cohort. Error bars, SEM (n = 4-9 mice per cohort).

were accurately described using only the data from DC vaccines DISCUSSION
made with the corresponding singles and pairs (Figure 7D). The
correlation between observed and calculated |L-17A values was
(1) maintained at two concentrations of OVA and without OVA be-
ing added to dLN cell cultures (Figures 7C, S7G, and S7H) and (2)
statistically significant as shown by bootstrap analysis in which
singles and pairs were scrambled prior to Isserlis calculations (Fig-
ure 7D). These results suggest that interactions among triplets of
immune adjuvants are accurately described by single and pair-

wise effects at the level of the host.

We studied the combinatorial effects of pathogen-sensing path-
ways using a representative set of microbial stimuli. Our data
reveal an intrinsic property governing the combinatorial logic of
microbial sensing: the effects of triplet combinations of microbial
signals can be accurately predicted using the data from the ef-
fects of singles and pairs of stimuli. Remarkably, this simplifying
property of pathogen-sensing pathways was applicable both in
cell cocultures in vitro and cell-based immunotherapies in mouse
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Figure 7. Adjuvant Triplet Effects on Tumor Growth in Mice Are Predicted by Singles and Pairs

(A) Schematic overview of the experimental design. From left to right: mouse DCs are stimulated with adjuvant singles, pairs or triplets and pulsed with ovalbumin
(OVA) in vitro. DCs are then injected subcutaneously in mice and a week later total draining lymph node (inguinal; dLN) cells are placed in culture with or without
OVA. Cytokine concentrations are measured in the dLN cell culture supernatant after 2 days.

(B) Relationship between tumor volume and IL-17A production in the dLN for indicated triplets used to prepare DC vaccines. Shown are B16-OVA tumor volumes
at day 19 post-tumor cell and DC vaccine injections (top), and IL-17A concentrations in dLN cell culture supernatants (bottom). Control, unstimulated DC vaccine
pulsed with OVA only. Error bars, SEM (top, n = 4; bottom, n = 3-15 mice per cohort).

(C) IL-17A production by inguinal dLN cells from mice injected subcutaneously with DC vaccines loaded with OVA and stimulated with indicated singles or
combinations for the four adjuvant triplets with anti-tumor effects: H-Z-G (top left), L-S-G (top right), P-S-G (bottom left), and Z-S-G (bottom right). dLN cells were
plated 7 days post-DC vaccination in a medium containing 1 pg/mL of purified OVA protein. Blue, singles; green, pairs; orange, triplets. Error bars, SEM (n = 4).
(D) Distribution of the distances between IL-17A concentrations for adjuvant triplets with anti-tumor effects (H-Z-G, L-S-G, Z-S-G, and Z-S-G) that were
experimentally observed and calculated using data from composite singles and pairs. Orange line, distribution from experimental values; black line, distribution
observed by bootstrap analysis prior to calculating triplet values using Isserlis.

See also Figure S7; Table S6.

models of cancer. Our finding greatly simplifies the description of
the combinatorial problem posed by the sensing of complex mi-
crobial or adjuvant inputs by innate immune pathways and their
downstream impact on immunity. Overall, our findings are
important for the fundamental understanding of how innate im-
munity processes information from complex inputs, which is
key for the rational control of the innate immune system in ther-
apy (Demaria et al., 2019).

What do our findings tell us about the properties of path-
ogen-sensing pathways in terms of their topology, information
processing capacity, and evolution? First, our results suggest
that the wiring of the pathogen-sensing system allows pairwise
interactions between pathways but limits, if not eliminate,
higher-order interactions, which is reminiscent of results from
disparate studies on other biological systems, such as ecolog-

ical and microbial interactions (Friedman et al., 2017; Grilli
et al., 2017; Vandermeer, 1969); protein folding (Socolich
et al., 2005); neuronal networks (Schneidman et al., 2006);

and responses to antibiotics, drugs, or agonists (Chatterjee
et al., 2010; Wood et al., 2012; Zimmer et al., 2016). It remains
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unknown whether such inter-pathway wiring is similar in the
context of interactions between pathogen-sensing and other
pathways for stress, costimulatory, or cytokine signals. Previ-
ous work by others combining one PRR agonist, LPS, and
other non-PRR agonists found limited higher-order effects at
the level of secretion of few cytokines (Hsueh et al., 2009),
although it remains to be tested systematically using a variety
of stimuli as inputs and by monitoring the net effects of stimuli
combinations on immune responses . Interestingly, pioneering
work by others on how T cells respond to combinatorial costi-
mulatory and cytokine stimuli revealed an even simpler picture
from the one proposed here for pathogen sensing, whereby
pathways acted independently (Gett and Hodgkin, 2000;
Marchingo et al., 2014). Thus, conducting comparative studies
of the combinatorics of various immune signaling pathways will
undoubtedly yield critical information to decipher and manipu-
late these complex systems. Future work is also needed to
decipher the molecular mechanisms underlying the numerous
cases of pairwise synergy and antagonism observed in this
study by, for example, building upon recent systematic efforts
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to understand pairwise crosstalk between TLR pathways (Lin
et al., 2017).

Second, the computation performed by innate immune cells
sensing multiple microbial stimuli aims to rapidly identify a micro-
bial threat and respond appropriately (Janeway, 1989). By
decreasing the likelihood of higher-order interactions, the path-
ogen-sensing system perhaps increases its ability to reliably
perform its functions — detecting microbes and transmitting in-
formation to adaptive immune cells (lwasaki and Medzhitov,
2015) - in the face of perturbations, such as virulence factors
(Finlay and McFadden, 2006) or inborn genetic errors (Bousfiha
et al., 2018).

Third, why are pathogen-sensing pathways limited in the num-
ber of ways that they can interact? From a network biology
standpoint, having some degree of shared and interacting nodes
within a network of pathways is a likely requirement for the
simplifying property we describe for PRRs to emerge. Although
the exact level of node sharing and interactions is not known
across PRR pathways, two decades of work on pathogen
sensing has identified many shared components and examples
of interactions between pathways (Chevrier et al., 2011; Crozat
et al., 2009; Kawai and Akira, 2011; Loo and Gale, 2011; Osorio
and Reis e Sousa, 2011; Thaiss et al., 2016). However, it remains
unknown what a network of pathways should look like in terms of
node sharing and degree of interactions for the simplifying rule
put forth by our results to apply. In other words, what are the
lower and upper limits on node sharing and interactions that
are needed within a network responding to multiple inputs?
Thus, there is a need for theoretical (e.g., simulations) and exper-
imental (e.g., pathway- or network-level engineering) work on
this topic. From an evolutionary standpoint, one possibility is
that while PRR pathways have been selected for by coevolu-
tionary mechanisms between hosts and pathogens, the degree
of crosstalk between PRR pathways is limited by the general
evolutionary forces that guide the assembly of complex biolog-
ical systems. The appearance of a novel pathogen-sensing
pathway, or any other pathway, during evolution, is constrained
by the existing intracellular wiring of the cell. As a result, evolving
a new pathway that could generate many-body interactions is
perhaps an unlikely scenario. More generally, the constraints
imposed by the sequential assembly of evolved systems are
possible explanations as to why pairwise correlations can some-
times capture the complexity of biological systems.

We found that the proliferation and, to a lesser extent, expan-
sion indices are useful metrics to predict higher-order effects us-
ing only data from single and pairwise effects (Figures 3B and
S5C). On the other hand, IFN-y secretion by CD4* T cells in
co-culture with DCs was a poor predictor of triplet effects
when using only data from singles and pairs (Figure S5D). These
observations suggest that predicting triplet effects on DC-T cell
cocultures from singles and pairs requires to focus on the
behavior of activated T cells, which came into contact with
DCs processing combinatorial stimuli. Using metrics taking
into account all T cells in the culture, including inactivated cells,
and single cytokines such as IFN-y leads to poor predictive po-
wer because these readouts likely do not reflect the full scope of
intercellular signaling events between DCs and T cells.

Our data show that all MRNAs, accessible chromatin loci, and
secreted proteins regulated by triplet stimulations were also
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regulated by pairs and singles. Although rare, few exceptions
to this observation were found. For example, the levels of the
1170 and /133 genes appeared significantly different in triplet stim-
ulations compared to matching singles and pairs (Figures S5D-
S5H). Further investigations are needed to uncover the transcrip-
tional mechanisms underlying this finding. In addition, the effects
of combinatorial microbial inputs on other functions of innate
cells, such as phagocytosis, chemotaxis, or metabolism, as
well as on T cells in our co-culture system remain to be studied.

We demonstrated that DC-based vaccines which are pre-
pared with triplet combinations of adjuvants can induce potent
anti-tumor responses. Going further, we found that triplet adju-
vant effects can largely be explained by pairwise and single adju-
vant effects, using the production of IL-17A in the draining lymph
node as a proxy for tumoricidal effects. Our findings provide a
first test for the applicability of our model on the collective
behavior of the pathogen sensing system in vivo. These observa-
tions have several critical implications for therapy and future
research avenues. First, while DC-based vaccines have shown
limited efficacy (Kantoff et al., 2010), partly owing to suboptimal
DC maturation conditions (Garg et al., 2017; Sabado et al., 2017),
we suggest that improved formulations based on the rationale
combination of adjuvants could broaden the scope of therapeu-
tic applications for such cell-based immunotherapies (Figure 6l)
(Carreno et al., 2013, 2015). Second, IL-17A could be useful as a
biomarker for the generation of potent anti-tumor T cell re-
sponses and thus used for the screening of candidate immuno-
therapies that rely on vaccination or other modalities. While an
increase in the number of IL-17-producing cells in the tumor
environment correlates with improved survival for patients with
esophageal squamous cell carcinoma (Lv et al., 2011), further
work is needed to assess its precise role in our DC vaccine
model. Perhaps IL-17 plays an indirect role in the promotion of
cytotoxic T cell responses in the lymph node through the induc-
tion of other cytokines such as IL-12 and IL-6, as shown in other
contexts (Benchetrit et al., 2002; Qian et al., 2017). Lastly, future
studies are needed to translate in vitro effects and predictions
into in vivo outcomes by, for example, identifying in vitro metrics
at the level of DCs or DC-T cell cocultures that can inform how
well a set of adjuvants will perform in vivo.

Overall, our work provides a conceptual framework to deci-
pher the general rules governing the combinatorial logic of im-
mune signaling and to build predictive models for combining ad-
juvants in therapy.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

FITC anti-mouse/Human CD11b antibody (Clone M1/70) Biolegend

APC anti-mouse CD11c antibody (Clone N418)

PE/Cyanine 7 anti-mouse |-A/I-E antibody
(Clone M5/114.15.2)

Biolegend
Biolegend

APC/Cyanine 7 anti-mouse CD4 antibody (Clone GK1.5) Biolegend

Cat#101205; RRID: AB_312788
Cat#117309; RRID: AB_313778
Cat#107629; RRID: AB_2290801

Cat#100413; RRID: AB_312698

APC/Cyanine 7 anti-mouse CD3e antibody Biolegend Cat#100329; RRID:AB_1877171
(Clone 145-2C11)

PerCP/Cyanine 5.5 anti-mouse CD45 antibody Biolegend Cat#103131; RRID:AB_893344
(Clone 30-F11)

Alexa flor 488 anti-mouse CD8a antibody (Clone 53-6.7) Biolegend Cat#100726; RRID:AB_493423
Bacterial and Virus Strains

Sendai Virus strain Cantell ATCC Cat#VR-907

Chemicals, Peptides, and Recombinant Proteins

Recombinant murine GM-CSF Peprotech Cat#315-03-100ug
Recombinant human IL-4 Peprotech Cat#Peprotech 200-04.g
Recombinant human GM-CSF Peprotech Cat#Peprotech 300-03ug
Recombinant murine IFN-y Peprotech Cat#315-05

Recombinant murine sCD40L Peprotech Cat#315-15

EndoFit grade ovalbumin Invivogen Catt#tvac-pov

LCMV GPg1-go peptide
Lipopolysaccharide from E. coli K12
Pam3CSK4

High-molecular weight polyinosinic-polycytidylic
acid (poly(l:C)

Class B CpG oligonucleotide (ODN 1668)
Cyclic [G(3’,5")pA(3’,5’)p] (3'3’-cGAMP)
Cyclic [G(2’,5")pA(3’,5’)p] (2'3’-cGAMP)
Zymosan depleted

R848

DAPI

DMSO hybrimax

Percoll PLUS

Lymphocyte separation medium

0.5M EDTA

Zombie-NIR

RPMI-1640 without phenol red

Urea

Dithiotreitol

lodoacetamide

Trypsin

Formic acid

Acetonitrile

TMT-10 reagents

IGEPAL CA-630

Collagenase type |

Biosynthesis
Invivogen
Invivogen

Invivogen

Invivogen

Invivogen

Invivogen

Invivogen

Invivogen

Biotium

Sigma Aldrich

GE Healthcare Life Sciences
Corning

VWR

Biolegend
ThermoFisher Scientific
Sigma Aldrich
ThermoFisher scientific
Sigma Aldrich
Promega

Honeywell Fluka
Honeywell Fluka
ThermoFisher Scientific
Sigma Aldrich
Worthington Biochemical

Cat#14258-01
Catttlrl-peklps
Catttlrl-pms
Cat#tlrl-pic-5

Cati#tlrl-1668-1
Cati#tlrl-nacga-1
Cat#tlrl-nacga23
Catttlrl-zyd
Cat#tlrl-r848
Cat#40043
Cat#D2650-5X5ML; CAS: 67-68-5
Cat#17-5445-02
Cat#25072CV
Cat#BDH7830-1
Cat#423105
Cat#11835-030
Cat#U4883; CAS: 57-13-6
Cat#20291; CAS: 3483-12-3
Cat#A3221-1VL; CAS: 144-48-9
Cat#V5113
Cat#56302-10X1ML; CAS: 64-18-6
Cat#349998; CAS: 75-05-8
Cat#90110
Cat#18896; 9002-93-1
Cat#L.S004194
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
Buffer RLT Qiagen Cat#79216
Exonuclease | New England Biolabs Cat#M0293
DNase | Thermo Fisher Scientific Cat#AM2239
Critical Commercial Assays

CellTrace CFSE cell proliferation kit ThermoFisher Scientific Cat#C34554
Dynabeads MyOne Silane ThermoFisher Scientific Cat#37002D
High Capacity cDNA Reverse Transcription Kit ThermoFisher Scientific Cat#4368813
LightCycler 480 SYBR Green | Master mix Roche Cat#04707516001
Maxima H Minus Reverse Transcriptase ThermoFisher Scientific Cat#EP0753
Q5 Hot Start High-Fidelity 2X Master Mix New England Biolabs Cat#M0494
DNA Clean & Concentrator-5 Zymo Research Cat#D4013
DNA Clean & Concentrator-25 Zymo Research Cat#D4033
Advantage 2 PCR Kit Clontech Cat#639206
Agencourt AMPure XP Beckman Coulter Cat#A63880
Qubit dsDNA High Sensitivity Assay Kit ThermoFisher Scientific Cat#Q32851
E-Gel EX Agarose Gels, 2% ThermokFisher Scientific Cat#G402002

Nextera XT DNA Library Preparation Kit
Nextera DNA library prep kit

Anti-MHC Class Il microbeads, mouse
Monocyte isolation kit Il, human
CD4(L3T4) Microbeads, mouse

lllumina
lllumina
Miltenyi Biotec
Miltenyi Biotec
Miltenyi Biotec

Cat#FC-131-1024
Cat#FC-121-1030
Cat#130-052-401

Cat#130-091-153
Cat#130-117-043

Mojosort Mouse CD4 T cell isolation Kit Biolegend Cat#480005
ELISA MAX standard set mouse IFN-y Biolegend Cat#430801
ELISA MAX standard set mouse IL-17A Biolegend Cat#432501
LEGENDPLEX Mouse anti-virus response panel Biolegend Cat#740622
LEGENDPLEX Mouse Th cytokine panel Biolegend Cat#740740
Deposited Data

Mouse bone marrow-derived dendritic This paper GEO: GSE134869
cell RNA-seq

Mouse bone marrow-derived dendritic This paper GEO: GSE134867
cell ATAC-seq

Human blood monocyte-derived dendritic This paper GEO: GSE134874
cell RNA-seq

Mouse bone marrow-derived dendritic cell This paper MassIVE: MSV000086093
supernatant mass spectrometry

Experimental Models: Cell Lines

Mouse: Ovalbumin expressing B16 Arlene Sharpe N/A

Mouse: Ovalbumin expressing MC38 Darrell Irvine N/A

Mouse: Ovalbumin expressing EG.7 Darrell Irvine N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6J JAX Cat#000664
Mouse: B6.Cg-Ptprc? Pepc® Tg(TcrLCMV)1Aox/Ppmj  JAX Cat#030450
Mouse: B6.129S(C)-Batf3'™!kmm/ JAX Cat#013755
Mouse: B6(Cg)-Sting1t™1,2camb/ JAX Cat#025805
Mouse: B6.129S6-Clec7a"™'¢/J JAX Cat#012337
Mouse: B6.129P2(SJL)-Myd8g!™!.1Pefr/y JAX Cat#009088
Mouse: C57BL/6J-Ticam1Lps2/J JAX Cat#005037
Mouse: B6.129-Mavs™'4°/J JAX Cat#008634
Mouse: B6.Cg-Ifih1t™!.1°n/y JAX Cat#015812
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REAGENT or RESOURCE SOURCE IDENTIFIER
Mouse: B6.129S2-H2dIAb1-Ea/J JAX Cat#003584
Mouse: //17a"™!-1(cre)Steky JAX Cat#016879
Mouse: B6.129P2-Rorc!™!titt/y JAX Cat#007571
Mouse: B6.129S2-Cd8a"™Mak/J JAX Cat#002665
Mouse: OT-II* TCRa/"CD45.1*/* Arlene Sharpe N/A

Oligonucleotides

Primers for ATAC-seq, see Table S7
Primers for gPCR and RNA-seq, see Table S7

Buenrostro et al., 2013 and this paper

This paper

N/A
N/A

Software and Algorithms

R version 3.3.2
RStudio Version 1.0.136
CFX Manager

Morpheus

Limma

Flowjo

LEGENDplex Data Analysis software
Bcbio-nextgen version 1.1.15

STAR version 2.6.1d

FastQC

Qualimap

MultiQC

featureCounts version 1.4.4
Sailfish version 0.9.2

BWA version 0.7.15
edgeR

Bowtie2 version 2.2.9

MACS?2 version 1.4
Samtools version 1.4.1
Bedtools version 2.26
Rsubread

MaxQuant version 1.6.0.1

sva

All scripts and preprocessed datasets
are publicly available

The R Project
RStudio
Bio-Rad

The Broad Institute
Ritchie et al., 2015
BD

Biolegend

N/A

Dobin et al., 2013
Babraham Institute

Garcia-Alcalde et al., 2012
Ewels et al, 2016

Liao et al. 2014

Patro et al., 2014

Li and Durbin, 2009
Robinson et al., 2010

Langmead and Salzberg,
2012

Zhang et al., 2008

Li et al., 2009

Quinlan and Hall, 2010
Liao et al., 2019

Cox and Mann, 2008
Leek et al., 2012

This paper

https://www.r-project.org/
https://rstudio.com/

https://www.bio-rad.com/en-us/sku/1845000-
cfx-manager-software?1D=1845000

https://software.broadinstitute.org/morpheus/
http://bioinf.wehi.edu.au/limma/
https://www.flowjo.com/solutions/flowjo
http://www.vigenetech.com/LEGENDplex7.htm
https://bcbio-nextgen.readthedocs.io/en/latest/
https://github.com/alexdobin/STAR

https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/

http://qualimap.bioinfo.cipf.es/
https://multigc.info/
http://subread.sourceforge.net/

http://www.cs.cmu.edu/~ckingsf/
software/sailfish/

http://bio-bwa.sourceforge.net/

https://bioconductor.org/packages/release/
bioc/html/edgeR.html

http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

https://github.com/macs3-project/ MACS
http://www.htslib.org/
https://bedtools.readthedocs.io/en/latest/

https://bioconductor.org/packages/release/
bioc/html/Rsubread.html

https://www.maxquant.org/

https://bioconductor.org/packages/release/
bioc/html/sva.html

https://github.com/chevrierlab/combos-paper

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Nicolas

Chevrier (nchevrier@uchicago.edu).

Materials Availability

This study did not generate new unique reagents.
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Data and Code Availability
® The sequencing and mass spectrometry datasets generated during this study have been respectively deposited in the Gene
Expression Omnibus and MassIVE repositories under accession numbers GSE134869, GSE134874 and GSE134867, and
MSV000086093, respectively.
® All scripts and preprocessed datasets are publicly available at the following repository: https://github.com/chevrierlab/
combos-paper.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Female C57BL/6J (stock 000664), B6.Cg-Ptorc® Pepc® Tg(TcrLCMV)1Aox/Ppmj (SMARTA-1; stock 030450), B6.129S(C)-
Batf3'm'K™M/j  (Batf3 knockout; stock 013755), B6(Cg)-Sting?'™!.2°8™mb/y (Sting-1 knockout; stock 025805), B6.129S6-
Clec7a"™144b/J (Dectin-1 knockout; stock 012337), B6.129P2(SJL)-Myd88™!."Pef/j (Myd88 knockout, stock 009088), C57BL/6J-
Ticam1Lps2/J (Trif knockout, stock 005037), B6.129-Mavs'™'4°/J (MAVS knockout, stock 008634), B6.Cg-Ifin1™1.1¢"/y (Mda5
knockout, stock 015812), B6.129S2-H2dIAb1-Ea/J (MHC class Il knockout; stock 003584), [/17a™"-1(ere)Stek/j (1| -17a knockout;
stock 016879), B6.129P2-Rorc™'H/J (RORyt knockout; stock 007571), and B6.129S2-Cd8a™'™a/J (CD8a knockout; 002665)
mice were obtained from the Jackson Laboratories. OT-II* TCRa”"CD45.1*/*(OT-Il) mice were kindly provided by Arlene Sharpe
(Harvard Medical School, Boston, USA). Animals were housed in specific pathogen-free and BSL2 conditions at The University of
Chicago, and all experiments were performed in accordance with the US National Institutes of Health Guide for the Care and Use
of Laboratory Animals and approved by The University of Chicago Institutional Animal Care and Use Committee.

Cell Lines

Ovalbumin-expressing B16.F10 (B16-OVA,; a gift from Arlene Sharpe, Harvard Medical School, Boston, USA) and MC38 (MC38-OVA,;
a gift from Darrell Irvine, MIT, Cambridge, USA) cell lines were cultured in DMEM (ThermoFisher Scientific 11995073) supplemented
with 10% v/v heat-inactivated FBS (Seradigm 1400-500) and penicillin/streptomycin (100 U/mL/100upg/mL, Lonza Biowhittaker
17602E). Ovalbumin-expressing E.G7 (E.G7-OVA,; a gift from Darrell Irvine, MIT, Cambridge, USA) cells were cultured in complete
RPMI medium (composition described in Method Details).

METHOD DETAILS

Cells

Bone marrow-derived dendritic cells (BMDCs) were generated from 6- to 8-week old female mice. Bone marrow cells were collected
from femora and tibiae and plated at 2 x10° cells in 10-cm non-tissue culture treated petri dishes (Corning 351029) in 10 mL of com-
plete RPMI medium containing RPMI-1640 medium (ThermoFisher Scientific 11875119) supplemented with 10% volume/volume
(v/v) heat-inactivated fetal bovine serum (Seradigm 1400-500), L-glutamine (2 mM, Corning 25005CI), penicillin and streptomycin
(Lonza Biowhittaker 17602E), MEM non-essential amino acids (Corning 25025CI), HEPES (10 mM, Corning 25-060-Cl), sodium py-
ruvate (1 mM, Corning 25000Cl), B-mercaptoethanol (55 uM, Fisher Scientific 21-985-023). Recombinant murine GM-CSF (15 ng/mL,;
Peprotech 315-03-100ug) was added to the complete RPMI medium. Cells were fed at days 2, 5, and 7 with 3 mL of complete RPMI
medium containing GM-CSF. At day 8, non-adherent cells were collected by pipetting, centrifuged, and resuspended in fresh com-
plete RPMI medium without GM-CSF. Cells were plated in 100 pL of the medium in non-tissue culture treated 96-well flat-bottom
plates (ThermoFisher Scientific 260860) and incubated overnight prior to stimulations as indicated.

To enrich MHC class Il (MHC-II)-positive DCs from total BMDC cultures, non-adherent cells were collected on day 8 and positively
selected using anti-MHC class Il microbeads (Miltenyi Biotec 130-052-401).

To purify the three DC populations present in total BMDC cultures based on the following markers: CD11c, CD11b and MHC-II, we
used FACS. CD11c" cells were stained with the following fluorescently conjugated antibodies (Biolegend): anti-CD11b (M1/70;
101205), anti-CD11c (N418; 117309), anti-IA/IE (M5/114.15.2; 107629) and DAPI (live/dead marker). Cells were sorted into
CD11b™MHC-II", CD11b*MHC-II™*¢, CD11b*MHC-II'® subpopulations using a BD FACSAria Il instrument.

To generate human blood monocyte-derived dendritic cells (moDCs), human whole peripheral blood from three healthy donors
was obtained from Stemcell Technologies (catalog number 70504.5). Peripheral blood mononuclear cells (PBMCs) were isolated
by density gradient centrifugation as follows: 15 mL of lymphocyte separation medium (LSM) (Corning 25072CV) was carefully un-
derlaid beneath 35 mL of blood diluted 2X with 1X PBS/2 mM EDTA in a 50 mL tube and centrifuged at 400 g for 30 min at 20 C without
break. The upper layer was aspirated leaving the white buffy coat interphase containing PBMCs undisturbed. The interphase was
transferred to a new 50 mL tube containing 10 mL of 1X PBS, mixed and centrifuged at 400 g for 10 h at 20 C. Following the washing
step, the supernatant was removed and PBMCs resuspended in 1X PBS. CD14* Monocytes were then purified from total PBMCs
using the Monocyte Isolation kit Il (purity >90%; Miltenyi Biotec 130-091-153). CD14* monocytes were plated at 10° cells/mL in
10-cm non-tissue culture treated petri in 10 mL of complete RPMI medium prepared as above but without sodium pyruvate and
MEM non-essential amino acids and by adding recombinant human IL-4 (40 ng/mL; Peprotech 200-04pg) and human GM-CSF
(100 ng/mL; Peprotech 300-03ug). Cells were fed at day 3 and 5 with 5 ml of complete RPMI medium for human DCs supplemented
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with GM-CSF as described above. At day 7, non-adherent cells were collected by pipetting, centrifuged and resuspended in fresh
complete RPMI medium without GM-CSF and IL-4. Cells were plated in 100 pL of medium in non-tissue culture treated 96-well flat
bottom plates and incubated overnight prior to stimulations as indicated.

Mouse splenic CD4" T cells were isolated from OT-Il or SMARTA-1 mice using CD4 (L3T4) MicroBeads (130-117-043) and LS col-
umns (130-042-401) from Miltenyi Biotec and labeled with 1 uM CFSE (Thermo Fisher Scientific C34554).

Reagents

Lipopolysaccharide (L) from E. coli K12 (tlrl-peklps), Pam3CSK4 (P) (tIrl-pms), high-molecular-weight polyinosinic-polycytidylic acid
(poly(I:C) or H) (tIrl-pic-5), class B CpG oligonucleotide (ODN 1668 or C) (tlrl-1668-1), cyclic [G(3’,5")pA(3’,5")p] (3’3’-cGAMP or G for
stimulating mouse cells) (tlrl-nacga-1), cyclic [G(2’,5")pA(3’,5")p] (2’3’-cGAMP or G for stimulating human cells) (tlrl-nacga23),
Zymosan depleted which is a S. cerevisiae cell wall preparation (tlrl-zyd), and R848 (tIrl-r848) were purchased from Invivogen. Purified
EndoFit grade ovalbumin (OVA) was obtained from Invivogen (vac-pova). Sendai Virus (SeV) was obtained from ATCC (VR-907). Re-
combinant murine IFN-v (315-05) and sCD40L (315-15) were purchased from Peprotech. The antibody anti-CD4 was purchased from
Biolegend (GK1.5; 100414), and DAPI from Biotium (40043).

In Vitro DC-T Coculture

Mouse BMDCs prepared and plated in 96-well plates as detailed above (10,000 cells/well after overnight incubation) were incubated
for 6 h at 37°C with 200 pg/mL of OVA (for OT-Il CD4* T cells) or 0.005 ng/ml GPg;.go peptide (for SMARTA-1 CD4" T cells) and with or
without indicated ligands used alone or in combination at the following concentrations unless otherwise indicated: LPS, 100 ng/mL;
PAM3CSK4, 250 ng/mL; 3'3’cGAMP or 2’3'cGAMP, 20 ng/mL; Zymosan depleted, 30 ug/mL; Sendai Virus, MOI 10; ODN 1668 CpG-
B, 10 ng/mL; poly(l:C), 20png/mL. After incubation, BMDCs were washed by medium replacement, and fresh complete RPMI medium
(100 uL) was added to the cultures. 50,000 freshly isolated and CFSE-labeled transgenic OT-Il or SMARTA-1 T cells were then added
to the DC culture in 100 pL of complete RPMI medium. Cocultures were incubated at 37°C for 3 days and T cells were harvested by
pipetting and centrifugation. T cells were resuspended in 1X PBS buffer supplemented with 0.5% FBS and 2 mM EDTA (VWR
BDH7830-1) and stained using an anti-CD4 antibody and DAPI to exclude dead cells. Flow cytometry data were acquired on the No-
voCyte flow cytometer (Acea Biosciences/Agilent) and analyzed using the FlowdJo software (BD).

For experiments whereby DCs stimulated with single ligands were mixed prior to coculture with T cells, mouse 100,000 DCs were
incubated for 6 h at 37°C with 200 ug/mL of OVA with single ligands. The supernatant was aspirated and 100 pL of PBS containing
10 mM EDTA was added to cells for 10 minutes at 37°C to detach them. Cells were harvested by pipetting, counted, and plated at a
1:1 ratio (5,000 cells for every single ligand). 50,000 freshly isolated and CFSE-labeled transgenic OT-II T cells were then added to the
DC culture in 100 pL of complete RPMI medium.

Mouse Tumor Models

The abdomen of mice used for experiments were shaved using a pet trimmer (Wahl Bravmini CLP-41590) on the day before tumor cell
and BMDC injections. Mice were injected subcutaneously with 500,000 E.G7-OVA, 100,000 B16-OVA, or MC38-OVA cells resus-
pended in 100 pL of sterile saline in the flank. At the same time, mice were injected subcutaneously in the contralateral flank with
250,000 BMDCs that had been incubated with 25 ug/mL of OVA and indicated ligands for 6 h at 37°C and washed three times
with 1X PBS prior to being resuspended at 250,000 cells/100 pL in sterile saline. For consistency across experiments, tumor cells
were thawed from liquid nitrogen stocks frozen in 90% FBS and 10% DMSO 2 days prior to injections and passaged twice in total.
Tumor volumes were calculated using the formula 1/2 x D x d?, where D is the major axis and d the minor axis (in mm). Mice were
sacrificed when tumors reached 1000 cm?® or upon ulceration.

For analysis of tumor-infiltrating lymphocytes, B16-OVA tumors were dissected from mice, weighed, and mechanically disaggre-
gated before digestion with collagenase type | (400 U/ml; Worthington Biochemical) for 30 min at 37°C. After digestion, tumors were
passed through 70-um filters, and lymphocytes were enriched by centrifugation using a gradient of 40/70% Percoll PLUS (GE Health-
care Life Sciences 17-5445-02). Cells were stained with the following fluorescently conjugated antibodies (Biolegend): anti-CD3e
(145-2c11), anti- CD45 (30-F11), anti-CD8a (53-6.7) and Zombie-NIR (live/dead marker). Flow cytometry data were acquired on
the NovoCyte flow cytometer (Acea Biosciences/Agilent) and analyzed using the FlowJo software (BD).

Restimulation of Total Lymph Node Cells with Ovalbumin

Mice were injected subcutaneously in both flanks with 250,000 BMDCs that had been incubated with 25 pg/mL of OVA and indicated
ligands for 6 h at 37°C and washed three times with 1X PBS prior to being resuspended at 250K cells/100 pL in sterile saline. Seven
days after DC injections, the inguinal draining lymph nodes (dLNs) were collected from each mouse and minced using a microtube
pestle (USA Scientific 1415-5390) in 1.5 mL tubes containing 500 pL of complete RPMI medium. Cell suspensions were filtered on a
100-um filter mesh, centrifuged, and resuspended in complete RPMI medium prior to counting cell concentrations. Cells were then
plated at 500,000 total dLN cells/well in 200 pL of complete RPMI medium in non-tissue culture treated flat-bottom 96-well plates
(Thermofisher Scientific 260860). Cells were incubated with 1 or 10 ug/mL OVA or left untreated for 2 days at 37°C and 5% CO,.
Cell culture supernatants were collected and stored in single-use aliquots at -80°C until further processing for measuring cytokine
concentrations as described below.
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For the culture of CD4+ T cells depleted dLN cells, CD4+ T cells were depleted from whole lymph node single-cell suspension by
positive selection using the MojoSort Mouse CD4 T Cell Isolation Kit (BioLegend 480006).

Cytokine Quantifications

Cell culture supernatants were collected from (1) BMDC (100,000 cells/well) cultures 8 h after stimulation, (2) DC-T cocultures after a
3-day incubation period, or (3) total draining lymph node (dLN) cell cultures (500,000 cells/well) kept in culture for 2 days, and stored
frozen at -80°C in single-use aliquots.

For sandwich Enzyme-Linked Immunosorbent Assay (ELISA), cell culture supernatants were diluted using the ELISA assay diluent
(Biolegend 4212013), and cytokine concentrations were measured using the ELISA MAX standard set mouse IFN-y (BioLegend
430801) and IL-17A (BioLegend 432501) kits according to the manufacturer’s instructions.

For flow cytometric, bead-based immunoassays, DC, and dLN cell culture supernatants were diluted and processed using the
LEGENDplex mouse anti-virus response panel (BioLegend 740622) and the LEGENDplex mouse Th cytokine panel (BioLegend
740740) kits, respectively. Data were acquired on the NovoCyte flow cytometer (Acea Biosciences/Agilent) and analyzed using
the LEGENDplex software v8 (BioLegend).

Secretome Analysis

Mouse BMDCs (10° cells/96-well in 100 pL of medium) were stimulated for 8 h at 37 C in complete RPMI medium made with RPMI-
1640 without phenol red (ThermoFisher Scientific 11835-030) and without FBS (serum-free conditions). Cell culture supernatants
were collected by pooling 3 wells per condition for a total volume of ~330-390 pL in a 1.5-mL tube and centrifuged at 1000 g for
5 min to remove remaining cells. Supernatants were transferred to new tubes and centrifuged at 20,000 g for 10 min to remove cell
debris.

Supernatants (~300 pL) were denatured by adding 100 puL of 8 M urea (Sigma Aldrich U4883) and incubating for 5 min at room
temperature (RT) with shaking at 800 rpm. Proteins were reduced with 5 mM dithiotreitol (Thermo Fisher scientific 20291) for
30 minutes at RT and alkylated with 10 mM iodoacetamide (Sigma A3221-1VL) for 30 minutes at RT in the dark with shaking
at 1000 rpm. Proteins were digested with 0.5 pg of trypsin (Promega V5113) for 16 h at room temperature with shaking at
700 rpm. The digestion was stopped by acidification by adding 4uL of formic acid (Honeywell Fluka 56302-10X1ML) to obtain
a pH < 3 (pH indicator strips, EMD 9586). Peptide samples were desalted on C18 stage tips and to enable multiplexing,
peptide samples were labeled with TMT-10 reagents (Thermo Scientific). The TMT-labeled samples were loaded on C18 stage
tips and separated into 6 high-pH fractions using elution solvents containing ammonium formate buffer (0.0175% NH4OH,
Sigma-Aldrich; 0.01125% formic acid, Fluka; 2% acetonitrile, Honeywell) and 10, 15, 20, 22.5, 25 and 50 % acetonitrile
(Honeywell).

Tryptic peptides were analyzed on an EASY-nLC 1200 system coupled to a Q-Exactive Plus (ThermoFisher Scientific). The EASY-
nLC system was equipped with a 75 pm x 20 cm column (packed in-house with 1.9 um C18 resin; Reprosil Gold, Dr. Maisch) and
operated at a flow rate of 250 nL/min applying a 110 min linear gradient from 2 to 90 % solvent B (90 % ACN, 0.1 % FA)in A (3
% ACN, 0.1 % FA). MS measurements were performed on Q Exactive Plus with the following modifications: MS1 spectra were re-
corded at a resolution of 60k using a maxIT of 10 ms. Fragment spectra were acquired at 45-k resolution using a maxIT of 86 ms for
proteome measurements.

RNA Extraction

Mouse BMDCs (100,000/96-well or 10,000/96-well for sorted BMDCs) and human moDCs (10,000/96-well) were stimulated with indi-
cated ligands for 6 h at 37°C, and after stimulation culture, supernatants were removed by aspiration. Cells were lysed with 30 pL of
RLT buffer (Qiagen 79216) containing 1% (v/v) B-mercaptoethanol (VWR 97604-848). Total RNA was isolated using Dynabeads My-
One Silane (Thermo Fisher Scientific 37002D) and RLT buffer using a custom protocol (Kadoki et al., 2017). The remaining genomic
DNA was removed by on-bead DNase | (Thermo Fisher Scientific AM2239) treatment at 37 C for 20 min. After washing two times with
80% ethanol, total RNA was eluted from beads in nuclease-free water.

RT-qPCR

Total RNA was reverse transcribed using the High Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific 4368813) with
both random nonamers (Ng) and oligo(dT) primers. Real-time quantitative PCR reactions were performed on the CFX384 Real-Time
PCR Detection System (Bio-Rad Laboratories) with LightCycler 480 SYBR Green | Master mix (Roche) and 0.5 mM of each primer in
a final volume of 10 uL with 40 cycles of denaturation at 95°C for 15 s and annealing/extension at 60°C for 40 s. The following for-
ward-reverse primer pairs were used to measure levels the following mouse genes: Gapdh (5’-ggcaaattcaacggcacagt-3’, 5’-agatggt
gatgggcttcce-3’), TIr2 (5’-aagaggaagcccaagaaage-3’, 5’-cgatggaatcgatgatgttg-3’), TIr3 (5’-cacaggctgagcagtttgaa-3’, 5’-tttcgg
cttcttttgatget-3°), Tir4 (5’-acctggcetggtttacacgtc-3’, 5’-ctgccagagacattgcagaa-3’), TIr9 (5’-actgagcacccctgcttcta-3’, 5’-agattagtcag
cggcaggaa-3’), Ddx58 (5’-ccacctacatcctcagctacatga-3’, 5’-tgggccctigtigtictict-3’), Tmem173 (5’-tgaaaggctcttcattgtctctt-3’, 5’-tggc
atcttctgcttcctaga-3’), Clec7a (5’-atcagcattcttccccaactcg-3’,5’-cagttecttctcacagatactgtatga-3’), Cxc/70 (5’-gccgtcattttctgectca-37,
5’-cgtccttgcgagagggatc-3’), Tnf (5’-ccctcacactcagatcatcttct-3’, 5’-gctacgacgtgggcetacag-3’), Cxcl1 (5’-ctgggattcacctcaagaacatc-3’,
5’-cagggtcaaggcaagcctc-3’), Ifng (5’-ctggcttccatcatgaacaa-3’, 5’-agagggctgtggtggagaa-3’), /16 (5’-tgttctctgggaaatcgtgga-3’, 5’-gctac
gacgtgggctacag-3’) and human gene: GAPDH (5’-agccacatcgctcagacac-3’, 5’-aatacgaccaaatccgttgact-3’). Amplification products
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were subjected to melting curve analysis using the CFX Manager System (Bio-Rad Laboratories) to exclude the amplification of non-
specific products.

RNA-seq

Multiplexed RNA-seq libraries were prepared using the following overall workflow (Kadoki et al., 2017): (1) oligo(dT)-primed RT re-
action with sample barcoding followed by cDNA pooling; (2) single-primer PCR amplification; and (3) full-length cDNA tagmentation
and amplification by PCR.

First, total RNA samples obtained from 1x10% mouse BMDCs or 1x10* human moDCs were reverse transcribed to cDNA by dena-
turing 10-pL RNA samples with 1 puL containing 2 pmoles of a custom RT primer, which is biotinylated in 5’ and containing sequences
from 5’ to 3’ for the lllumina read 1 primer, a 6-bp cell barcode, a 10-bp unique molecular identifier (UMI) and an anchored oligo(dT)sg
for priming (5’-/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCT[6-bp barcode]NNNNNNNNNNTTTTTTTTTTTTTTTTTTTT
TTTTTTTTTTVN-3’; where 5Biosg = 5’biotinylation, V=A, G or C, N=A, G, C or T) (Table S7), at 72°C for 2 min and shap cooled on
ice. A 9-uL RT mix containing 4 pL of 5X RT buffer, 1 uL of 10 mM dNTPs, 2 pmoles of template switching oligo (5’-iCiGiCA-
CACTCTTTCCCTACACGACGCrGrGrG-3’; where iC = iso-dC, iG = iso-dC, rG = RNA G) (Table S7), 0.5 uL. Maxima H Minus Reverse
Transcriptase (ThermoFisher Scientific EP0753) and 3.5 pL of nuclease-free water was added to the denatured RNA samples, and
plates were incubated at 42°C for 120 min. Next, double-stranded cDNA samples were pooled using DNA Clean & Concentrator-5
columns (Zymo Research D4013), and residual RT primers were removed using exonuclease | (New England Biolabs M0293).

Second, pooled full-length cDNA was amplified with 4-6 cycles of single-primer PCR using the following primer: 5’-/5Biosg/
ACACTCTTTCCCTACACGACGC-3’ (5Biosg = 5’ biotinylation) (Table S7) and the Advantage 2 PCR Kit (Clontech 639206) in a 50-
uL reaction volume and using the following cycling condition: 1 cycle at 95°C for 1 min; 4-6 cycles at 95°C for 15 sec, 65 C for 30
sec, 68°C for 6 min; and 1 cycle at 72°C for 10 min. Amplified cDNAs were cleaned up using 0.6X volume of magnetic beads Agen-
court AMPure XP (Beckman Coulter A63880) and quantified using the Qubit dsDNA High Sensitivity Assay Kit (ThermoFisher Scien-
tific Q32851).

Third, 1 ng of cDNA was tagmented and amplified by PCR using the following forward forward 5’-aatgatacggcgaccaccgagatcta-
cactctttccctacacgacgctcttccg*a*t*c*t-3’ (Table S7), where * indicates phosphorothioated DNA bases, and lllumina i7 reverse primers
using the Nextera XT Kit (lllumina) with the following cycling conditions: 1 cycle at 72°C for 3 min; 1 cycle at 95 C for 30 sec; 12 cycles
at 95°C for 10 sec, 55 C for 30 sec and 72°C for 30 sec; and 1 cycle at 72°C for 5 min. Libraries were cleaned up using 0.8X volume of
magnetic beads Agencourt AMPure XP and gel purified using E-Gel EX Agarose Gels, 2% (ThermoFisher Scientific G402002), quan-
tified with the Qubit dsDNA High Sensitivity Assay Kit (ThermoFisher Scientific Q32851), and sequenced on the NextSeq550 platform
(llumina) using the NextSeq 500/550 high output kit v2 and following sequencing conditions: 17 cycles for Read 1, 8 cycles for Index
1, 66 cycles for Read 2.

Chromatin Accessibility

The original ATAC-seq protocol (Buenrostro et al., 2013) was used with modifications as follows. 50,000 mouse BMDCs were centri-
fuged and cell pellets were lysed in 50 pL of ice-cold lysis buffer containing 10 mM Tris-HCI, pH 7.4, 10 mM NaCl, 3 mM MgCl,, and
0.1% IGEPAL CA-630, and immediately centrifuged at 500 g for 10 min at 4'C. Supernatants were discarded and pelleted nuclei were
processed for tagmentation by adding the following mix: 22.5 puL of nuclease-free water, 2.5 uL of transposase and 25 pL of TD buffer
from the Nextera DNA library prep kit (llumina FC-121-1030), and by incubating the mixture at 37°C for 30 min. Tagmented genomic
DNA was purified using DNA Clean & Concentrator-25 columns (Zymo research D4033). Sequencing libraries were generated using
the following forward (5’-aatgatacggcgaccaccgagatctacactcgtcggcagcgtcagatgtg-3’) and barcoded reverse (5’-caagcagaagacgg-
catacgagat[8-bp barcode]gtctcgtgggctcggagatgt-3’) primers, and by performing 12 cycles of amplification with the Q5 Hot Start
High-Fidelity 2X Master Mix (New England Biolabs M0494) using the following cycling conditions: 1 cycle at 72°C for 5 min; 1 cycle
at 98°C for 30 sec; and 12 cycles at 98°C for 10 sec, 63 C for 30 sec and 72°C for 1 min. Libraries were purified using DNA Clean &
Concentrator-25 columns to remove remaining primers, and amplicon size distributions measured using high sensitivity D5000
screentape (Agilent Technologies 5067-5592). Libraries were then quantified using the Qubit dsDNA High Sensitivity Assay Kit (Ther-
moFisher Scientific Q32851) and sequenced on the NextSeq550 platform (lllumina) using the NextSeq 500/550 high output kit v2 and
following sequencing conditions: 42 cycles for Read 1, 8 cycles for Index 1, 42 cycles for Read 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of Flow Cytometry Data on T Cell Proliferation

The ultimate goal of our analysis is to test whether the effects of single and pairwise microbial inputs (i.e., ligands for pattern-recog-
nition receptors) can help to explain the effects of higher-order combinations (i.e., triplets of ligands). We describe below all of the
main steps of our analysis and the full code is publicly available in the following repository: https://github.com/chevrierlab/
combos-paper.

CFSE Data Processing

We analyzed raw flow cytometric data using the FlowJo software to calculate live and dead CD4" T cells. Representative plots for our
gating strategy are shown in Figure S1. Next, we manually drew gates for each CFSE peak in a given profile to calculate the numbers
of T cells per division (referred to as cell generation).
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Computing Statistics of CFSE Profiles

To characterize the cellular proliferation profiles, we computed commonly used statistics for CFSE measurements (Roederer, 2011).
The percent of T cells in the final population that have divided (proportion of divided T cells) was calculated by dividing the number of
cells present in all the peaks below the undivided peak (i.e., cell generation 0) by the total number of live cells. Next, we calculated the
following metrics:

(i) the number of cells present at the start of the coculture (starting cells), given by Zf’pegk",

(i) the number of activated cells (cells that went into division) is the number of cells present at the start (i) minus the number of cells
which did not divide (i.e., cells in peak zero),

(iii) the total number of divisions, given by 722,

(iv) the total number of cells, given by S/ peak;, and

(v) the total number of cells which divided at least once is the total number of cells (iv) minus the number of cells which did not
divide (i.e., cells in peak zero).

Using the metrics listed above, we calculated the following six metrics that are commonly used to characterize CFSE proliferation
profiles®2:

(@) The proliferation index (Pi) is the total number of divisions (jii) divided by the number of activated cells (i), which provides the
average number of divisions undergone per activated cell

(b) The division index (Di) is the total number of divisions (jii) divided by the number of starting cells (i), which provides the average
number of divisions per starting cell.

(c) The precursor frequency (Pf) is the number of activated cells (i) divided by the number of starting cells (i), which is the prob-
ability that a cell will divide at least once.

(d) The expansion index (Ei) is the total number of cells in the culture (iv) divided by the number of cells at the start (i), which is the
fold expansion over the culture time.

(e) The replication index (Ri) is the total number of divided cells (v) divided by the number of activated cells (i), which is the fold
expansion for activated cells.

(f) The fraction diluted (Dil) is the total number of divided cells (v) divided by the total number of cells (iv), which is the fraction of
cells in the final culture which divided at least once

In addition, we normalized experimental Pi, Di, Pf, Ei, Ri, and Dil values across all singles (7), pairs (21), and triplets (35) by dividing
each value by the maximum value measured within each technical replicate of each experiment. Resulting normalized indices were
used for computations of interaction scores and Isserlis calculations as delineated below.

Computing Interaction Scores for Pairs and Triplets
To characterize the interactions that emerge when two ligands are combined (i.e., two PRR pathways being activated), we compute a
pairwise interaction score /45 for two ligands A and B and given by

lag = Piag - PiaPig

where Pi values are the proliferation indices computed as described above for both singles a and b and the pair ab. If I, is close to
zero, then Piag = PisPig, which is equivalent to Bliss independence, a common phenomenological model used in pharmacology to
describe non-interacting drug pairs (Bliss, 1939, 1956). To define regions of approximately additive behavior between two ligands, we
computed the mean of the standard errors of all 21 Pisg values obtained, which reflects the compounded measurement error for our
experimental assay. We used the mean of the standard errors m, shown as a dotted line in Figures 2B and S4D, as a threshold to
define ligand pairs with synergistic (lag > +m), antagonistic (las < -m), and additive (-m < I45 < +m) behaviors.

The starting hypothesis of this analysis implies that the net effect of a ligand triplet combination arises from the cumulative effect of
the pairwise interactions (Wood et al., 2012). To assess this, we calculated a triplet interaction score / 45¢ for three ligands A, B, and C
and given by

IABC = PiABC = PlAPIBplc

where Pi values are the proliferation indices computed as described above for the singles A, B, and C and for the triplet ABC. I agc
provides a metric to measure the level of net pairwise and triplet interactions by subtracting single ligand effects from the triplet pro-
liferation index. First, similar to above for pair interaction scores, we used the / ,5¢c score to classify the interaction between three pairs
as synergistic, antagonistic or additive, using the same thresholding approach based on the mean of the standard errors for /45c
values. Second, we compared / 45¢ Values obtained through experimental measurements to those obtained by a statistical approach
that uses only information from singles and pairs and is defined below by an Isserlis formula.

Statistical Modeling of Triplet Effects from Single and Pair Effects

Following up on the work of Wood and colleagues (Wood et al., 2012), we hypothesized from the outset that an equation derived from
the Isserlis theorem (Isserlis, 1918), originally used to describe moment relationships, could serve as a statistical model to computer
triplet effects using data from singles and pairs only. To test this, we used the following Isserlis formula:
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Piisserlis = PiAPiBC + PiBPiAC + PicpiAB - 2P|AP|BP|C

where Pi values are computed and normalized as explained above from experimental values. Pissenis Values were computed from
normalized Pi values for each of the 35 triplets and averaged across technical and biological replicate experiments. The correlation
between average Pisseris Values and experimentally observed triplet Pi values (Piagc) was measured by calculating an R-squared
statistic using the Im() function in R (https://www.r-project.org/).

Bootstrap Analysis

We used bootstrapping to estimate the statistical significance of the correlation observed between averaged experimental (Piagc)
and calculated (Pisseris) proliferation indices for triplets. We randomized normalized, experimental Pi values for singles and pairs
across all experimental replicates generated in this study. Pissenis Values were then computed from these randomized Pi data
sets and compared to experimental Piagc values by calculating an R-squared statistic as above. We plotted the distribution of boot-
strapped R-squared values from 500,000-1,000,000 randomizations. Lastly, we computed a p-value by calculating the fraction of
bootstrapped R-squared values higher than the observed R-squared value.

RNA Sequencing Data Analysis

Sequencing read files were processed to generate raw (1) read and (2) UMI count matrices. For (1), we used the RNA-seq pipeline in
the bcbio-nextgen project version 1.1.5 (https://bcbio-nextgen.readthedocs.io/en/latest/). Reads were aligned to the human hg19
genome or the mouse mm10 genome augmented with transcripts from Ensembl release 78 with STAR version 2.6.1d (Dobin
et al.,, 2013). Quality control metrics were compiled with a combination of FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/), Qualimap (Garcia-Alcalde et al., 2012), MultiQC (https://github.com/ewels/MultiQC) (Ewels et al., 2016) and
custom metrics (3 million mapped reads were obtained on an average per sample). Expression quantification was performed using
both featureCounts version 1.4.4 (Liao et al., 2014) with multi-mapping reads excluded and Sailfish version 0.9.2 (Patro et al., 2014)
with a kmer size of 31 with 30 bootstrap samples. For (2), we used custom scripts to map Read 2 sequences onto RefSeq mRNAs
using BWA version 0.7.15 (Li and Durbin, 2009), demultiplex the output based on barcodes stored in Read 1 (first 6 bp), and
computed gene expression using UMIs stored in Read 1 (base 7 to 16) to produce raw UMI count matrices.

Differential expression (DE) analysis was done using custom scripts in R (https://www.r-project.org/). Raw count matrices were
normalized across samples using the calcNormFactor function in edgeR (Robinson et al., 2010) and subsequently filtered to keep
genes with at least 50 counts per million (cpm) in 2 samples. We identified DE genes using the following cutoffs: a 1.5-fold change
with a Benjamini and Hochberg FDR adjusted p-value < 0.01 by comparing cells stimulated with each ligand combination to un-
treated, control cells using limma (http://bioinf.wehi.edu.au/limma/) (Ritchie et al., 2015).

To ask if a gene x found to be differentially regulated upon stimulation with a given triplet ABC is also regulated in any of the com-
posite conditions of that triplet (i.e., singles A, B, C and pairs AB, AC, BC), we used the following criteria: (1) gene x is regulated in
condition ABC compared to control cells using the same thresholds as above (fold-change > 1.5 with FDR < 0.01); (2) gene x is not
regulated in the composite conditions of triplet ABC (i.e., A, B, C, AB, AC, or BC) compared to control using the same thresholds as in
(1); and (3) the level of gene x is significantly different between condition abc and all of its composite treatments (i.e., A, B, C, AB, AC or
BC) using as a threshold a Benjamini and Hochberg FDR adjusted p-value < 0.1. The number of genes which followed these three
criteria were counted for each triplet, and the proportion of newly regulated genes for each of the 35 triplets (i.e., genes regulated by
triplet stimulation but not by matching single and pairwise stimulations) was calculated as the ratio between the number of new and all
regulated genes.

To ask if a gene displayed a change in expression that is lower or higher upon triplet stimulation than that of the change observed in
all matching stimuli singles and pairs, we computed an expression divergence metric for each gene regulated by a triplet by subtract-
ing the log-fold change values of composite singles or pairs from the log-fold change of the corresponding triplet. The smallest value
obtained between a given triplet and its matching composite singles and pairs was used as expression divergence.

ATAC-seq Data Analysis
Sequencing reads were aligned to the mouse mm10 genome using bowtie2 version 2.2.9 (http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml) (Langmead and Salzberg, 2012) with the a maximum fragment length of 2000, and were sorted using samtools
version 1.4.1 (http://samtools.sourceforge.net/) (Li et al., 2009). Peaks were called using MACS2 version 1.4 (Zhang et al., 2008) with
a g-value threshold of 0.01 and a fixed background lambda using the following command:

parameters callpeak —gsize 1.87e9 —nomodel -t out/${name}/${name}_sorted.bam -n out/${name}/${name} —-nolambda -slocal
10000 -q .01

Peaks found in each sample were merged into a joint set of all peaks using the merge function in bedtools version 2.26 (Quinlan and
Hall, 2010). Reads for each peak were counted across experimental conditions using featureCounts() from the Rsubread package
(Liao et al., 2019).

To identify differentially accessible peaks across conditions and newly regulated peaks in triplets compared to matching compos-
ite treatments, we used the same procedure as the one described above for RNA-seq. Peaks were considered differentially acces-
sible in treatment if they were different from the control by a fold-change greater than 1.5 and an FDR < 0.01.
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Principal Component Analysis of Gene Expression and Chromatin Accessibility Data
Log, fold change values between treated groups and the control group were obtained for each gene using limma, scaled to unit vari-
ance and centered by subtracting the mean before applying the prcomp() function in R. For human RNA-seq data analysis, PCA was
performed on all three donors together and results were displayed for each donor individually.

Secretome Data Analysis

For preprocessing of the data from peptide and TMT 10 experiments, peptide identification and quantification were performed using
MaxQuant (version 1.6.0.1) (Cox and Mann, 2008). For the quantification at the MS/MS level, 'Reporter ion MS2’ was enabled and
"10plexTMT’ isobaric labels were selected. Tandem mass spectra were searched against the mouse reference proteome (mouse
uniprot fasta) supplemented with common contaminants. For all searches, carbamidomethylated cysteine was set as fixed modifi-
cation and oxidation of methionine and N-terminal protein acetylation as variable modifications. Trypsin/P was specified as the pro-
teolytic enzyme with up to 2 missed cleavage sites allowed. Results were adjusted to a 1% false discovery rate (FDR). The reporter-
ion intensities were corrected for isotopic impurities before using the reporter-ion signals in each MS/MS spectrum for quantitative
calculations.

For differential expression analysis, the corrected reporter ion intensities obtained from the mass-spectrometric measurements
were divided by the internal standard mix reporter ion intensities and log,-transformed using custom scripts in R. The internal stan-
dard was hereby an equal mix of all analyzed samples. The log, fold change for the treated vs. control samples were calculated, me-
dian-MAD normalized, and analyzed for significant differences by a one-sample moderated T test. All identifications were considered
significant with a Benjamini-Hochberg adj.p < 0.1.

For batch correction between experiment 1 (P-S-G triplet and composite ligand singles and pairs) and 2 (Z-S-G and P-L-H triplets
and composite ligand singles and pairs), log, fold change values calculated above were corrected using the ComBat() function from
the sva package in R (http://bioconductor.org/packages/release/bioc/html/sva.html) (Leek et al., 2012). Batch corrected log, fold
change values were averaged across replicates, then scaled to unit variance and centered by subtracting the mean before applying
the prcomp() function in R for principal component analysis.

To benchmark the data obtained by our secretome analysis, we compared it to cytokine concentration values obtained by a bead-
based immunoassay performed on supernatants from BMDC cultures and focusing on the following cytokines: CXCL1, TNF-a,
CCL2, CCL5, CXCL10 and IL-6, which were detected by mass spectrometry and could be measured using a commercially available
kit (LEGENDplex mouse anti-virus response panel; BioLegend 740622). Average log, fold changes were computed between each
treated group and the untreated control group. A linear model for the relationship between the log, fold change values from secre-
tome and immunoassay measurements was calculated using the Im() function in R.

Generation of Heatmaps

Heatmaps for RNA-seq, ATAC-seq, and secretome data display the indicated numbers of transcripts, loci and proteins, respectively.
Color intensities are determined by log, fold change values for each heatmap. The rows of each heatmap were ordered by hierar-
chical clustering of log, fold change values using one minus Pearson’s correlation as a distance metric. All heatmaps were generated
using the Morpheus software (https://software.broadinstitute.org/morpheus/).

Analysis of Lymph Node Cell Restimulation Data

For principal component analysis, cytokine concentration values obtained by bead-based immunoassays were averaged within
treatment and control groups, then scaled to unit variance and centered by subtracting the mean before applying the prcomp() func-
tion in R.

For statistical modeling of triplet effects from single and pair effects, IL-17A concentration values were averaged within each exper-
iment, treatment group, and OVA concentration. Average values were normalized by dividing each value by twice the maximum value
within a given experiment. Normalized IL-17A concentration values were averaged across experiments for each treatment and OVA
concentration group. We hypothesized that the same Isserlis statistical approach used above to calculate the proliferation index of
T cells in vitro could be used to calculate IL-17A values, which serve as a proxy for the effect of the T cell response on tumor growth.
To do so, we subtracted normalized, averaged IL-17A concentration values, referred to as //, from one and used the following formula:

"isserlis = ”A”BC + ”B”AC + ”C”AB - 2”A”B”C

Next, to compare IL-17A values obtained experimentally for a given triplet (//45¢) to those obtained with the Isserlis formula (l/isseriis)s
we plotted the distribution of the distances between these two values (/lisseris — Il asc)-

To estimate the significance of our Isserlis calculations, we used bootstrapping similarly to what is described above for the analysis
of our in vitro coculture data. Here we randomized experimental IL-17A values (after averaging, normalization, and subtracting from
one) for singles and pairs across experiments prior to calculating /l;sseis s above. The distribution of the ll;ssenis — Il asc Values was then
plotted using bootstrap values from 1000 randomizations.
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Figure S1. Selection of pattern-recognition receptor ligands, Related to Figure 1

(A) Bar graph showing steady state mRNA expression in mouse dendritic cells (DCs) of the pattern
recognition receptors or adaptor encoded by the following genes: 7/r4, Tir2, Tir3, TIr9, Ddx58
(RIG-I), Clec7a (DECTIN-1) and Tmem173 (STING), which collectively recognize the seven
ligands used in this study. Error bars, SD (n = 2).

(B) Bar graphs showing mRNA expression of Cxc//0 and Tnf (top two rows) and OT-II T cell
proliferation (bottom row) upon stimulation of wild type (WT) and indicated knockout mouse
dendritic cells (DCs) with the seven ligands selected for this study: cGAMP, CpG-B, Pam3CSK4,
LPS, Zymosan, Sendai virus and poly(I:C). Error bars, SD (n = 2).

(C) Dose-response analysis for the seven ligands selected for this study (indicated in left plots).
For each ligand, indicated concentrations were used to stimulate DCs prior to adding OT-II cells
(ug/mL for ligands G, Z, H, C and S; ng/mL for ligands P and L). Shown are proliferation (line
plots; left) and viability (bar plots; right) measurements for OT-II T cells as a function of ligand
concentrations. For proliferation plots, the logarithmic (G, C, P, L and S), linear (H) and cubic (Z)
fits are shown as solid lines. The black circles (proliferation plots) and bars (viability plots) indicate
the concentration selected for combinatorial screening analyses. Error bars, SEM (n = 3).

(D) To control for the potential effects of ligands on T cells, as opposed to DCs, we measured OT-
IT T cells proliferation with CFSE in three conditions using indicated ligands: (1) T cells incubated
with ligands only (T cells only; left), (2) T cells incubated with DCs that were stimulated and
washed prior to the addition of T cells (T cells + DCs; middle), and (3) T cells incubated with DCs
that were stimulated, pulsed with the ovalbumin protein and washed prior to the addition of T cells
(T cells + DCs + Ovalbumin; right). Shown are representative CFSE profiles from live OT-II CD4*
T cells (n = 3).
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Figure S2. Impact of combinatorial stimulations of dendritic cells on T cell proliferation,
cytokine secretion and viability, Related to Figure 1

(A) Bar plots showing the CFSE profiles of OT-II cells cocultured with DCs stimulated with
indicated ligand singles (blue), pairs (green) and triplets (orange). Percentages show the proportion
of cells that underwent division. Error bars, SEM (n = 8).

(B-D) Bar plots showing the proportion of OT-II cells that divided (B), the production of IFN-y in
DC-OT-II coculture supernatants (C), and the percentage of live OT-II cells (D) upon DC
stimulations with indicated ligand singles (blue), pairs (green) and triplets (orange). Error bars,
SEM (n = 8).
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Figure S3. Pairwise and triplet interaction scoring across triplets of stimuli, Related to
Figure 2

Line plots showing the number of OT-II cells in each generation of activated cells (cell generation
1 to 6) upon coculture with DCs stimulated with singles (blue) and pairs (green) corresponding to
indicated triplets (top). Bar plots indicate pairwise (I4z = Piss - Pi4Pip) and triplet (Iupc = Piasc -
Pi PigPic) interaction scores for indicated triplets and their composite pairs. Triplet scores are
derived from Pispc values observed experimentally (orange) or calculated (white) using the Isserlis
formula: Pispc = PiapPict+ PiscPip + PipcPis - 2PisPipPic. Shown are 32 out of the 35 triplets
tested, with the remaining 3 shown in Figure 2A-C, ordered by decreasing triplet interaction scores
(as in Figure 2E). Error bars, SEM (n = 8).
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Figure S4. Assessing various T cell proliferation metrics and the clustering of ligand triplets
and their proliferation in relationship to receptor families, Related to Figure 3

(A) CFSE profiles of OT-II CD4" T cells cocultured with DCs stimulated with indicated ligand
singles, ligand pairs, or DCs stimulated with ligand singles and mixed at 1:1 ratio (Mixed cells).
Percentages show the proportion of cells that underwent division.

(B) Bar plots showing the proportion of OT-II cells that divided in cocultures with DCs stimulated
with indicated ligand pairs or DCs mixed after single ligand stimulations (Mixed cells). Error bars,
SD (n = 3).

(C-D) Dot plots of the observed (X axis) and calculated (Y axis) triplet values for all 35 ligand
triplets tested and using the indicated CFSE-derived proliferation metrics (see STAR Methods)
(C), or IFN-y concentrations from DC-OT-II cell cocultures (D). The solid line indicates y = x.
Error bars, SEM (n = 8). (E-F) Scatter plots of the observed (X axis) and calculated (Y axis) triplet
proliferation index values for all 35 ligand triplets tested (same data as shown in Figure 3B). The
solid lines indicate y = x. Colors indicate the number (E) and the type (F) of PRR families covered
by a given triplet. CLR, C-type lectin receptor; TLR, Toll-like receptors; RLR, RIG-I-like receptor;
CDS, cytosolic dsDNA sensor. In D, density distributions are shown (top and right) for the number
of PRR pathways targeted by a ligand triplet: one, two and three PRR families per triplet.

(G-H) Gating strategy for fluorescence activated cell sorting (FACS) of the three following
subpopulations present in GM-CSF-induced bone-marrow-derived DC cultures: CD11b"MHCII'"
(green), CD11b"MHCII™ (red), CD11b*MHCII" (purple) cells (G), and qPCR analysis of Cxcll,
Cxcll10, Ifnb1 and 116 gene expression in indicated subpopulations (right) stimulated with indicated
ligand singles or combinations (P, Pam3CSK4; S, Sendai virus; G, cGAMP) (H). The bottom row
in G indicates changes in gene expression measured by RNA-seq on total, unsorted BMDCs.

(D) Flow cytometry analysis of cells from total BMDC cultures before (top) or after (bottom)
enrichment of MHC-II" cells using magnetic microbeads.

(J) Dot plots of the observed (X axis) and calculated (based on the Isserlis formula; Y axis) triplet
proliferation index values for all 35 ligand triplets tested using MHC-IT" DCs enriched as shown
in I. The solid line indicates y = x. Error bars, SEM (n =4-7).
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Figure S5. Genes newly regulated by ligand pairs and triplets compared to their composite
ligand singles and pairs, Related to Figure 4

(A) Dot plots showing log2 fold changes in gene expression (Y axis) in mouse DCs stimulated
with indicated ligand pairs (14 out of 21 tested; top two rows) or triplets (8 out of 35 tested; bottom
row) relative to unstimulated control cells against log2 average expression values (X axis) (n = 3).
Red dots, genes regulated by indicated pairs or triplets but not by their composite ligand singles
and/or pairs; black dots, all differentially regulated genes by indicated pairs or triplets; grey dots,
all genes detected.

(B-I) Shown are normalized expression levels in mouse DCs for indicated genes as log2 counts
per million upon stimulation with indicated triplets: P-H-Z (B), P-H-S (C), P-Z-G (D), P-L-Z (E),
L-Z-G (F), P-L-G (G), Z-G-C (H) and H-S-C (I). a, b, c, singles (blue dots); ab, ac, bc, pairs (green
dots); abc, triplet (orange dots); Ctrl, control unstimulated cells (black dots). Error bars, SEM (n
=3).
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Figure S6. Effects of combinatorial stimulations on the transcriptional, chromatin
accessibility and secretome profiles of dendritic cells, Related to Figure 4

(A) Principal component analysis (PCA) of mRNA profiles of human blood monocyte-derived
DCs (moDCs) from three independent healthy donors (from left to right: donor (D) 1 to 3)
stimulated with indicated ligand singles (5; blue), pairs (10; green) or triplets (10; orange).

(B-D) Principal component analysis (PCA) of mRNA (B), chromatin accessibility (C) and
secretome (D) profiles of mouse DCs stimulated with indicated (numbers) ligand singles (6; blue),
pairs (8; green) or triplets (3; orange) (n = 2-3).

(E-G) Heatmaps of differentially regulated (rows) genes (E), accessible genomic loci (F), or
secreted proteins (G) from mouse DCs stimulated with indicated ligand singles (6; blue), pairs (8;
green) or triplets (3; orange). Values are log2 fold-changes relative to unstimulated cells (color
scales) (n = 2-3).

(H-I) Bar plots showing for each ligand pair (green) or triplet (orange) the proportion of genes (H)
or accessible loci (I) regulated by a triplet or pair but not by its composite ligand singles and/or
pairs relative to the total number of genes (H) or loci (I) regulated by that triplet (n = 2-3).
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Figure S7. Effects of DC vaccines on draining lymph node cytokine secretion profiles,
Related to Figure 7

(A-B) Bar plots (A) and principal component analysis (PCA; B) of the secretion profiles of 12
cytokines measured in supernatants from total draining lymph node (dLN) cell cultures upon in
vitro restimulation with the OVA protein (1 pg/mL). dLN cells were prepared from mice injected
a week earlier with DC vaccines pulsed with OVA and stimulated with indicated ligand triplets or
left unstimulated as control (grey). Dark and light orange bars (A) and dots (B) respectively
indicate ligand triplets with or without anti-tumor properties in vivo (based on data shown in Figure
5). Error bars, SEM (n = 4).

(C) Pearson’s correlation metric between cytokine concentrations (A) and B16-OVA tumor
volumes at day 19 (Figure 5B) for the 12 adjuvant triplets used in tumor growth and dLN
restimulation experiments.

(D) Production of IL-17A by total dLN cell cultures prepared from mice injected a week earlier
with DC vaccines pulsed with OVA and stimulated with the H-Z-G (poly(I:C)-Zymosan-cGAMP)
triplet (H-Z-G) or left unstimulated as control (Ctrl). Shown are results for total dLN cells (total
dLN) and dLN cells depleted of CD4+ T cells (CD4" T cell-depleted dLN cells).

(E-F) Mean tumor growth (solid lines) in cohorts of wild-type (WT), Rorc” and 111 7a”~ knockout
mice injected with 10° B16-OVA and indicated DC vaccines. DCs + OVA, unstimulated DCs
pulsed with OVA; DCs + OVA + H-Z-G, DCs stimulated with H-Z-G and pulsed with OVA. Light
color lines indicate tumor growth for individual mice within each cohort. Error bars, SEM (n = 3-
6 mice per cohort).

(G-H) IL-17A production by total inguinal draining lymph node (dLN) cells from mice injected
subcutaneously with DC vaccines loaded with OVA and stimulated with indicated ligand singles
or combinations covering the following four triplets with anti-tumor effects: H-Z-G, L-S-G, P-S-
G and Z-S-G. dLN cells were plated 7 days post-DC vaccination in medium without OVA (G), or
restimulated with 10 pg/mL of purified OVA protein (H). Blue, singles; green, pairs; orange,
triplets. Error bars, SEM (n = 4).
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