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Figure S1: SIAMCAT reproduces the results of previous machine learning meta-analyses

To show how SIAMCAT can reproduce the results of previous meta-analyses, we reanalyzed the data from
Duvallet et al. (a) and Pasolli et al. (b) (see references in the main text). SIAMCAT workflows were
implemented to fully recapitulate the machine learning workflows as described in the respective
publications, using the randomForest ML algorithm in both cases. Cross-validation performance
quantified by AUROC for discriminating between diseased patients and controls is indicated by diamonds
with black borders (95% confidence intervals denoted by horizontal lines) for the SIAMCAT reproduction.
The AUROC values reported in the publications are indicated by diamonds without borders. The sample
size of each dataset is given as additional panel (cut at N = 200 and given by numbers instead). For all
classification tasks, the reported results fall within the confidence interval of the SIAMCAT results.
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Figure S2: SIAMCAT can detect confounding factors such as metformin treatment

To show how SIAMCAT can aid confounder detection, we re-analyzed the data from (Forslund et al. 2015),
which included samples with type 2 diabetes (T2D) and non-diabetic (ND) controls and information about
metformin treatment. (a) Output of the check.confounders function for the data from Forslund et al. shows that
only T2D cases were treated with metformin, suggesting that metformin-treatment could confound the
associations between microbiome features and T2D. (b) Analysis of variance (using ranked abundance data)
shows that many species differ as much (or more) by metformin treatment as by T2D status. Extreme cases of
confounding are highlighted. Dot size is proportional to the mean relative abundance across samples. (c)
Relative abundance of Enterobacteriacaea sp. are significantly larger for metformin-treated (metformin+) T2D
cases compared to metformin-negative (metformin-) T2D or ND controls (P-values from Wilcoxon test). (d)
SIAMCAT models can easily distinguish between metformin+ T2D and ND controls and between metformin+
T2D cases and metformin- T2D cases. On the other hand, metformin- T2D cases and ND controls are harder
to distinguish. See Figure 1b in Forslund et al. as reference.
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Figure S3: Metagenomic samples are more similar within subjects than across subjects

To illustrate that metagenomic measurements are more similar within subjects than across subjects, all
pairwise Bray-Curtis dissimilarities were calculated for in-house datasets with repeated measurements for
different subjects. Dissimilarity values are displayed as boxplots and coloured depending on whether the
two samples came from the same subject or from two different subjects. The dissimilarities for samples
from the same subject are significantly lower than across subject for all datasets (P-values from Wilcoxon
test). Boxes denote the IQR across all values with the median as a thick black line and the whiskers
extending up to the most extreme points within 1.5-fold IQR.
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Figure S4: Large-scale application of the SIAMCAT machine learning workflow to human gut

a

Taxonomic profiles (MetaPhlAn2)

Functional profiles (HUMANN2)

< 2%
& <
2%
< <
2% 2%
< <
& o
<
<& <
344 & <&
2% 2%
<& <&
& %
<& <&
—— —_—
337
I I I I I I I
0 100 200 05 0.6 0.7 08 0.9 0.6 0.7 08 0.9
N samples AUROC AUROC

metagenomic disease association studies in the curatedMetagenomicsData package.

(a) Application of SIAMCAT machine learning workflows to taxonomic profiles generated from fecal shotgun
metagenomes using MetaPhlAn2 as available from curatedMetagenomicData (Pasolli et al. 2017). Cross-
validation performance for discriminating between diseased patients and controls quantified by the area under
the ROC curve (AUROC) is indicated by diamonds (95% confidence intervals denoted by horizontal lines) with
sample size per dataset given as additional panel (cut at N = 250 and given by numbers instead). See Table 1
and Additional File 2: Table S1 for information about the included datasets and key for disease abbreviations.
(b) Application of SIAMCAT machine learning workflows to functional profiles obtained from HUMANN2 as

provided by curatedMetagenomicData (Pasolli et al. 2017) for the same datasets as in (a).
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Figure S5: Dataset size relates to classification accuracy and the AUROC confidence interval

(a) Dataset size is plotted against model accuracy as measured by AUROC for the best-performing parameter
set (see Figure 4 in the main text and Additional File 1: Fig. S4). Dots are colored by the input data type. 57%
of the classification tasks based on datasets with 100 or more samples could be classified with an AUROC of
0.75 or higher compared to only 35% of classification tasks based on datasets with fewer than 100 samples.
(b) Dataset size is plotted against the range of the 95% confidence interval for the best AUROC. Dots are
colored by the input data type. There is a clear trend toward an overall lower range of the confidence interval
for bigger datasets.
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Figure S6: Machine learning can distinguish group differences even when samples can not be
separated based on common ecological distances

(a) Machine learning model accuracy as measured by AUROC for the best-performing parameter set (see
Figure 4 in the main text and Additional File 1: Fig. S4) is plotted against the AUROC quantifying the
separation of groups on the Bray-Curtis distance (see Methods). Dot size is proportional to the number of
samples for each classification task and dots are colored by data type. Dot outline indicates if the P-values
calculated by PERMANOVA is below 0.05 or above. For many classification tasks, our analysis indicates no
separation of groups based on the Bray-Curtis distance, whereas machine learning models can be trained to
accurately distinguish between the two groups. (b) Principal Coordinate plots based on the Bray-Curtis distance
for the classification tasks highlighted in (a). Control samples are shown as grey dots and disease samples are
shown in red irrespective of the disease. For the classification tasks in the upper row, there is a good separation
both based on the Bray-Curtis distance and the machine learning analysis. For the tasks in the lower row,
however, accurate machine learning models can be trained but there is no apparent separation based on the
Bray-Curtis distance. (c) Equivalent plot as in (a), but based on the Euclidean distance after log-transformation.
(d) Equivalent plots as in (b), but based on the Euclidean distance after log-transformation.
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Figure S7: Classification accuracy is not impacted by choice of profiler

(a) Model accuracy as measured by AUROC is plotted for the best-performing parameter set (see Figure 4 in
the main text and Additional File 1: Fig. S4) for taxonomic and functional profiles derived from the same
dataset. Profiles from mOTUs2 and eggNOG4.5 are plotted against each other as are profiles from MetaPhlAn2
and HUMANNZ. Overall, the accuracies are very well correlated (Pearson’s r = 0.91, P < 2e-16), indicating that
taxonomic and functional profiles lead to very similar model performances across a wide range of classification
tasks. Dot size is proportional to the number of samples per classification task and dots are colored according
to the disease. See Table 1 for a key of the disease abbreviations. (b) For those classification tasks that involve
the same dataset and the same disease and for which both mOTUs2 and MetaPhlAn2 profiles are available,
all AUROC values from the complete parameter set exploration are shown as boxplots with the color indicating
the two different profilers. The AUROC values for the best-performing parameter set (see Figure 4 in the main
text and Additional File 1: Fig. S4) are indicated by dots and triangles, respectively. Although there are
differences between mOTUs2 and MetaPhlAn2 on individual datasets, there is no clear trend towards either
method, indicating that the choice of taxonomic profiler does not significantly impact the resulting model
accuracy (P = 0.41 from paired Wilcoxon test with the best-performing AUROC values). Boxes denote the IQR
across all values with the median as a thick black line and the whiskers extending up to the most extreme points
within 1.5-fold IQR.
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Figure S8: Influence of feature selection cutoff and normalization method on classification accuracy
(a) Accuracy as measured by AUROC is displayed for all parameter combinations and all datasets of different
input types broken down by different cutoffs in the feature selection procedure. "All" indicates that the feature
selection was turned off and all possible features were used for training of the machine learning model.
Whereas the choice of feature selection cutoff is less important for profiles generated with the RDP profiler, the
other data types seem to profit the more features are included, especially in the case of HUMANN2 profiles.
Boxes denote the IQR across all values with the median as a thick black line and the whiskers extending up to
the most extreme points within 1.5-fold IQR. (b) Accuracy as measured by AUROC is displayed for all
parameter combinations and all datasets of different input types broken down by the different normalization
methods included in the parameter exploration. The resulting accuracy is barely impacted by the choice of
normalization method when the model is trained with the Random Forest classifier. For the other two machine
learning algorithms, however, the naive total sum scaling (TSS) normalization is not sufficient for optimal
performance. Boxes denote the IQR across all values with the median as a thick black line and the whiskers
extending up to the most extreme points within 1.5-fold IQR.
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Figure S9: Baseline evaluation of cross-study transfer of machine learning models via AUROC and false-
positive rate

(a) For the three conditions in our meta-analysis that were represented by three or more data sets each, namely
colorectal cancer (CRC), Crohn’s disease (CD), and ulcerative colitis (UC), we conducted a classical evaluation of
the SIAMCAT ML models on the external datasets within the same disease using ROC analysis. Bar height
corresponds to the mean AUROC of models trained on the other datasets and evaluated on the one indicated at the
bottom (points indicate individual model performances and error bars show the standard deviation). For a detailed
description of the control-augmentation approach see main text, Figure 5, and Methods.

(b) False-positive rates are shown for models in application to data from different diseases. The evaluations on
disease cases and controls are summarized in the top and bottom panels, respectively. The horizontal black line
corresponds to a false-positive rate of 10% to which all models were calibrated using their respective cross-
validation dataset (see also Additional File 1: Fig. $10). While a false-positive rate below 10% is maintained with
few exceptions by the control-augmented models, the naively transferred models largely fail to properly control the
false-positive rate on cases of different diseases as well as on the controls from these studies. See Table 1 for
disease abbreviations.
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Figure S10: Measures for extended evaluation of cross-study application of machine learning models

(a) Given a training dataset containing controls (CTR-TR) and cases for a specific disease (DIS-TR), a ML model
can be trained with SIAMCAT to distinguish between cases and controls. This ML model then produces within-study
predictions (on samples that were left out during cross-validation), on the basis of which model performance is
calculated as AUC (area under the ROC curve). Additionally, we determine the decision boundary that corresponds
to a 10% false positive rate (FPR) in cross validation, that is, at which cutoff 10% of the control samples would be
incorrectly classified as diseased.

When the trained ML model is applied to samples from other datasets, two situations can arise: either the external
test set contains cases from the same disease (DIS-TE) in addition to corresponding controls (CTR-TE) (top box);
or the external test set contains cases (DIS-TE) from a different disease (bottom box). In the former case, standard
cross-study evaluations can be conducted (see Additional File 1: Fig. S9). For general cross-study evaluation of
model performance that is also applicable across different diseases, we introduce two additional measures.

First, we calculate cross-study portability from a ROC analysis between a true-positive rate estimated from cross-
validation cases (DIS-TR) and a false-positive rate estimated from external controls (CTR-TE), which we rescale to
the interval between 0 and 1 for convenience. Analogously to a standard AUC, this measure captures how well
external controls (CTR-TE) can be separated from the cases contained in the cross-validation data set (DIS-TR).
Low cross-study portability values indicate that there is no separation between cases and external controls, meaning
that the model would show an increased false-positive rate on control samples from other datasets.

Second, we calculate the prediction rate for external cases (DIS-TE) at a prediction cutoff that corresponds to a
false-positive rate of 10% adjusted on the cross-validation data set. For data sets with cases from the same disease,
this evaluation amounts to assessing prediction rate (of the same disease, i.e. true-positive rate) across data sets.
In contrast, if the external study is for a different disease than the cross-validation data set, this measure quantifies
to which extent the model exhibits an elevated false positive rate for other diseases. This could be due to technical
differences between studies (which would also be reflected in a low cross-study portability) or due to biological
similarity between diseases (if the same microbial markers are enriched in both diseases, one would expect an
elevated prediction on the other disease as well). This measure is thus a proxy for the disease-specificity of the ML
model.

(b), (c), and (d) illustrate the within-study and test set predictions for selected examples from our ML meta-analysis
for transfer across data sets for the same (a) or different diseases (c), (d) with (d) presenting an extreme example of
issues with both cross-study portability and disease-specificity. Numbers indicate the type of comparison / evaluation
measure taken across data sets (as indicated on the right-hand side of the plots).
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Figure S11: Naive machine learning models show lower cross-study portability when applied to
external datasets compared to control-augmented models

Cross-study portability on the control portion of external studies (see Methods) is shown as a heatmap for naive
models (a) and control-augmented models (b). The heatmap only includes models with an AUROC of 0.75 or
higher (see Figure 5 in the main text). Values equal or smaller than 0.75 are highlighted.
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Figure S12: Naive machine learning models make a high level of false predictions on external datasets
Detection rates for other diseases (red color-scheme) or the same disease (green color-scheme) are shown for
the naive ML models. True positive rates of the models, when applied to the training set in cross-validation, are
indicated by boxes around the tile. Detection rates over 10% are labeled. When compared to Figure 5d in the
main text, the naive ML models show dramatically higher detection rates on other diseases compared to
control-augmented ML models.
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Improvement over the reference method for control-augmentation

Figure $13: Control-augmentation strategy generally improves model transfer without a strong dependence
on the type and number of controls sampled

(a) Cross-study portability and (b) prediction rate on the same disease (upper row) and on other diseases (lower row)
are compared for all models between the reference method for control augmentation (as described and displayed in
the main text) and variations of that approach. Here, it is important to acknowledge that “control” is not a clear
concept and its definition varies greatly across studies. Nonetheless, it is useful at an operational level to enrich for
asymptomatic individuals, therefore reducing bias that could result from unintended comparisons to patients with a
different disease. The reference method consisted in the addition of five times the number of controls sampled
randomly in each cross-validation split from a set of three large (>250 samples) cohort studies (see Methods in the
main text). The other approaches are defined as follows:

The naive models are models without augmentation, shown as a baseline to visualize the improvements in model
transfer achieved by control-augmentation (reference method). While cross-study portability and disease-specificity
generally improve, the prediction rate on the same disease (e.g. for different studies including cases of colorectal
cancer or Crohn's disease) is sometimes reduced by control-augmentation, reflecting a general tradeoff between
sensitivity and specificity.

Control-augmentation with similar datasets was used for a subset of datasets in our ML meta-analysis that
clustered together (all datasets included samples from the same population and were generated in the same
laboratory; Yu et al. Gut 2017, Jie et al. Nat comun 2017, He et al. Gigascience 2017, and Qin et al. Nature 2012).
When training on those datasets, controls were randomly sampled from the other datasets listed above. Using
similar datasets in the control-augmentation does not lead to the same improvements that are seen when using a
more diverse set of studies to augment.

Control-augmentation with two times the number of control samples is very similar to the reference method in
that controls are sampled from the same cohort studies as in the reference method but a lower number of controls
is added (twice the number instead five times the number of controls). The method performs very similarly albeit
slightly worse compared to the reference method.

For the control-augmentation with other datasets, we sampled twice the number of control samples from another
pool of datasets (Danish samples from Nielsen et al. Nat Biotech 2014, samples from mothers in Backhed et al. Cell
Host & Microbe 2015, Vincent et al. Microbiome 2016, Zhu et al. Microbiome 2018, and Poyet et al. Nat Med 2019);
more data sets were necessary to obtain a sufficient number of control samples for the reference control-
augmentation approach. We used only samples reported as controls and filtered out repeated samples from the
same subject, whenever applicable. The results of this methods are also similar to the reference approach, but lead
to a further decrease in prediction on the same disease.

Lastly, we used control-augmentation with random datasets, for which we randomly sampled five datasets out of
the meta-analysis set and used their control samples to augment the training set. The resulting augmented model
was not evaluated for model transfer on the datasets which were used for augmentation. This method behaves
similarly to the control-augmentation with other datasets with only minor differences to the reference method.
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Figure S14: Datasets cluster by disease, both when considering machine learning model weights or
associations

(a) Principal coordinate (PCo) analysis based on Canberra distances between relative models weights for naive
ML models. Each dot represents a trained model from the repeated cross-validation. Datasets are indicated by
90% density ellipses. For more convenient labeling, the CRC datasets are abbreviated by their first letter. (b)
PCo analysis based on Canberra distances between relative models weights for control-augmented ML
models. Each dot represents a trained model from the repeated cross-validation and datasets are again
indicated by 90% density ellipses. (¢) PCo analysis based on the Canberra distances between genus-level
generalized fold changes for each dataset.
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Figure S15: Machine learning model weights reveal shared and disease-specific predictors

Heatmap showing the relative weights of control-augmented ML models for mOTUs in selected genera. Blue
values indicate that the mOTU is a control-enriched predictor and red values indicate a disease-enriched
predictor.
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Figure S16: SIAMCAT can be applied to metagenomic and metatranscriptomic measurements from
environmental samples

(a) A LASSO model trained with SIAMCAT can distinguish samples from polar ocean environments from non-polar
ocean samples with an AUROC of 0.998. (b) The model interpretation plot generated by SIAMCAT shows the
distribution across all samples for those genera which are most predictive of polar and non-polar ocean
environments (central heatmap). The importance of these genera in the model are shown as barplot on the left.
Below the central heatmap, other environmental measurements are shown together with the model predictions. (c)
Ranked model predictions are plotted for all metagenomic ocean samples used for training the model, separated by
polar and non-polar ocean environments. The dotted line represents the cutoff for the predictions that corresponds
to a false positive rate of 10%. (d) Dots show the ranked model predictions derived from applying the trained model
to meta-transcriptomic ocean samples, separated by polar and non-polar ocean environments. The dotted line
represents the cutoff for the predictions that corresponds to a false positive rate of 10% on the metagenomic
discovery set (see (c)). (e) A LASSO model trained with SIAMCAT can distinguish samples from low-iron ocean
environments from high-iron ocean samples with an AUROC of 0.85. (f) The model interpretation plot generated by
SIAMCAT shows the distribution across all samples for those genera which are most predictive of high and low-iron
ocean environments (central heatmap). The importance of these genera in the model are shown as barplot on the
left. Below the central heatmap, other environmental measurements are shown together with the model predictions.
(g) Ranked model predictions are plotted for all metagenomic ocean samples used for training the model, separated
by high and low-iron ocean environments. The dotted line represents the cutoff for the predictions that corresponds
to a false positive rate of 10%. (h) Dots show the ranked model predictions derived from applying the trained model
to meta-transcriptomic ocean samples, separated by high and low-iron ocean environments. The dotted line
represents the cutoff for the predictions that corresponds to a false positive rate of 10% on the metagenomic
discovery set (see (g)).



