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Supp. Figure 1: Overview of editing detection pipeline. (A) The general pipeline for

identifying novel editing sites in zebrafish brain, using matched DNA and RNA

sequencing data. (B) Schematic representation for choosing reliable editing sites

which meet cutoffs for editing enrichment and consistency. In the first step we removed

clusters of editing sites with potential alignment errors, particularly we excluded

clusters of sites that includes multiple substitutions types within 400 bp. We then

searched for mismatch accompanied by neighboring same mismatch within the same

window of 400 bp. (C) Count of hyper-editing events in zebrafish brain samples. Most

of the detected mismatches were of A-to-G type.
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Supp. Figure 2: A-to-l editing sites within coding sequences (A) Validation
of cadpsa (chrl:19855459), griadb (chr21:22036840), strbp (chr10:9898151)
and cacnhalda (chrl11:36554179) editing using direct Sanger sequencing (see

methods). (B) Conserved editing sites between zebrafish and humans.

Compared cohorts of zebrafish editing levels (grey) and human editing levels

2



(light blue) of conserved editing sites. Human editing levels were calculated on
brain samples from GTEx donors (205 samples). (C) Multiple alignment (using
Clustal Omega) between human and zebrafish cadps genes (left) and gria3

genes (right). The editing events are marked in orange triangles).
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Supp. Figure 3: RNA editing in different brain regions. (A) Heat map of RNA-

editing levels of the 149 detected coding editing events (Supplementary table 5). Only

sites covered with more than 10 reads are shown. The color of each rectangle

represents the editing level (white denotes 0% editing; blue denotes 100% editing).

Black rectangles denote editing sites supported by less than 10 reads or those that
had no coverage. (B) ADAR expression levels distribution of ADAR1, ADARZ2a,

ADAR2b and ADARS3 for six brain regions.
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Supp. Figure 4: RNA editing during zebrafish development. Analyses of publicly
available dataset (PRJEB12982) from 18 time points along the embryonic
development in zebrafish (A) ADAR expression levels of ADAR1, ADAR2a, ADAR2b
and ADARS3 suggest that ADAR1 and ADAR2b are overexpressed in the initial steps
of embryonic development. (B) Distribution of repeats editing index values over
developmental stages. High levels of editing are detected in early developmental
stages, with a similar pattern of ADAR1 and ADAR2b expression.


https://www.ncbi.nlm.nih.gov/bioproject/PRJEB12982
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Supp. Figure 5: ADAR motif. All editing sites exhibited the known ADAR motif across
tissues, with a strong depletion of guanosine (G) immediately upstream of the edited

site, and some enrichment of G immediately downstream
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Supp. Figure 6: Heat map of RNA-editing frequency of putative A-to-l editing
sites. Only sites covered with more than 10 reads are shown. The color of each
rectangle represents the editing level (white denotes 0% editing; blue denotes 100%
editing). Black rectangles denote editing sites supported by less than 10 reads or those
that had no coverage. (A) Clustering analysis of the 149 detected coding editing events
across tissues, revealed a clear separation between brain and non-brain tissues (B)
Clustering analysis of 757,717 putative editing sites revealed an almost perfect

separation between tissues.
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Supp. Figure 7: Transcript expression levels during zebrafish development.
Comparison of transcripts’ mean expression levels of genes that were edited at 0 hours
(253 genes) versus the same genes at 2, 4, 9 and 24 hours. Expression levels of edited
genes at Oh decreases during developmental stages, comparing to unedited genes.
Thus, it is possible that RNA editing of those genes impact the mRNA stability in early
embryonic stages, yet, further analyses are needed.



