
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Major comments: 

(1) The authors found that 89,948 CAGE peaks (⇠ 8.6%) initiate at 84,555 STRs... is this more so 

than expected by chance or just the rate one would observe for 84,555 random features? 

(2) The authors refer to the sequence level instructions for the STR transcription. This is one of the 

most interesting findings, but still underdeveloped. While conservation appears to associate, the 

authors never demonstrate these conserved regions are in fact instructions. Currently they have 

observed a pattern, which does not imply it causes (or instructs). 

(3) Its unclear whether the regions identified are any more clinically relevant than other features. If 

one were to take an equivalent quantity quantity of randomly generated regions compared to STRs, 

perhaps they would also identify 34,578 of those random regions harbour at least one ClinVar 

variants. This is another example of a section in the manuscript where numbers are provided, but no 

statistics to put the findings into context. 

(4) The authors could further develop associations of STRs with different biotypes -- ie, are there 

different patterns between STRs and non-coding RNAs, enhancer RNAs, etc. 

(5) Overall, its not clear from this manuscript what the critical limitation to this point is for identifying 

different STR classes. Why was this not possible before since one could observe their DNA repeat 

motif? Further, while this CNN model is relevant for analyzing CAGE data, its unclear how broadly 

applicable this is since there are various strategies for monitoring transcription. 

(6) This study would be more impactful had the authors demonstrated the application of the CNN 

models for improving eSTR computations. 

 

Minor comments: 

(1) There are numerous grammatical errors throughout the manuscript. For instance: 

"This type of machine learning approches takes as input the DNA" should read "This type of machine 

learning approch takes as input the DNA". And "making hard to learn models" should be "making it 

hard to learn models". 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Short tandem repeats (STRs) are polymorphic genetic elements associated with gene expression and 

disease. STRs are also transcribed, and the function of these STR-RNAs only begins to be studied. 

Here, Grapotte et al. conduct a systematic investigation of transcribed STRs by overlapping STRs with 

genome-wide maps of transcription start sites obtained by CAGE mapping. They furthermore develop 

and apply a new assay, Cap Trap RNA-seq, to validate these transcription sites. Next, the authors 

train machine learning models to predict different classes of transcribed STRs using their flanking 

sequence. These results indicate that transcription of STRs could be influenced by flanking regions in a 

way that is conserved between human and mouse and that differ between STR classes. 

 

This study is welcome because systematic studies of transcription initiation at STRs have been lacking. 

However, I have major concerns concerning i) the delineation of the contribution compared to the 

state of current knowledge, ii) the lack of insights, and iii) inconsistencies casting doubt about the 

rigour of the analysis. Regarding the writing style, the manuscript is in parts quite hard to read 

because of very complex sentence structures. It also contains a large number of typos. Major and 

minor concerns are detailed below. Altogether, I suggest a major revision. 

 

Major 

----- 

 



1. The introduction omits prior studies on STR-containing RNAs. It gives the false impression that this 

is the first study describing transcribed STRs (“we hypothesized that transcription initiation also occurs 

at STRs”). The introduction of Mills et al eLife, 2019 (https://elifesciences.org/articles/48940; not 

cited) provides several references that should be mentioned. (Yap et al., 2018; Jain and Vale, 2017; 

Zhu et al., 2011; McNulty et al., 2017; Johnson et al., 2017; Velazquez Camacho et al., 2017; Shirai 

et al., 2017; Rošić et al., 2014). The authors should thereby precisely delineate the novelty of their 

work with respect to this prior work. 

 

2. The authors report that 89,948 CAGE initiate at 84,555 STRs. Is that overlap statistically 

significant? This depends on how overlap is computed. Are the authors using some windows round 

peaks and if so, how large are they? 

 

3. The (T)n class represents the same class than the (A)n. Is that the reason why these classes have 

equal sizes in Fig 1B? But then, why do the fractions differ in 1C? 

 

4. I am confused by the fact that the model uses the “3’ end of each STR”. STRs are determined using 

an algorithm run only on the + strand. How is the 3’end of an STR defined? What is the biological 

interpretation of it? Why using the 3’end for modeling transcription initiation? I would expect focusing 

on the promoter, i.e. toward the 5’end and making use of CAGE to define the strand of an STR. More 

justifications would help. 

 

5. The authors state “the discovery that STR flanking sequences are not inert but rather contain 

important features that play critical roles in their biology”. This is not exactly novel. Actually, I found 

the insights of this work to be quite shallow despite previous work on the topic. Notably, Sun et al., 

Cell, 2018 (although cited by the authors) showed that many disease-associated STRs (daSTRs) are 

located at boundaries demarcating 3D chromatin domains. Would the DL models improve with 

chromatin domain annotation? Do the authors find chromatin boundary motifs such as CTCF to be 

predictive? 

 

6. Model performance is not compared to any baseline model. What is the performance of a predictor 

that returns the median CAGE count for each STR class? 

 

7. Major aspects of the CNN training procedure are not provided. These include: How did the training 

data was stratified? What are STR class counts in the training and testing data? How many STR’s have 

a CAGE-peak in the training and testing data? 

 

8. Establishing proper cross-validation in sequence-based predictions can be difficult due to 

homologous regions. Some of STRS may be part of homologous regions. Deep models may then 

overfit. The author should assess the issue of homologous regions. 

 

9. The input and target of the CNN should be precisely described. A figure showing how a STR 

sequence + flanking regions is converted into an input matrix would be very helpful for understanding. 

Moreover, it is not clear which parts of the sequence exactly were replaced with “N”. 

 

10. A density-scatter or hexbin plots showing predicted vs observed CAGE counts on held out data 

should be provided to visualize the quality of the predictions. 

 

11. I missed some model interpretation. Can model interpretation technique (see review Eraslan et al. 

Nat Review Genetics 2019) indicate TF binding sites? For directionality, does the model capture known 

motifs involved in transcription directionality (e.g. U1 binding sites Almada et al Nature 2013, 

probably motifs have been reported since then) ? 

 

12. On page 10, it is stated that 766,747 (T)n elements are predicted. However, in Figure 1B there 

are only ~ 400,000 T(n) STR’s. Where does this difference stem from? 



 

13. Figure 5, 6, and S8 should be provided for metrics computed on held-out test data. 

 

14. Page 12. The statement “formally demonstrating the existence of STR class-specific features for 

transcription prediction.” is too strong. One cannot exclude that one have obtained different results, 

would other algorithms or mathematical functions have been applied. 

 

15. Figure 7 should be provided for ClinVar pathogenic and ClinVar benign variants separately (side-

by-side) to assess whether there is an enrichment for pathogenic variants. The authors make a strong 

claim in this direction in the abstract but it is not supported without such comparison. 

 

16. Fig 7B needs a multiple-testing corrected statistical test to establish that the enrichment shown 

around the TSS is significant. 

 

17. Page 15, this statement is unclear: “Likewise, several diseases were found enriched comparing 

variant fractions located at transcribed STRs (Fisher’s exact test < 5e-3, Supplementary Table S2)”. 

What is meant with “variant fraction” and what is meant by “enriched”? I could not reconstruct the 

Fisher test contingency tables leading to the p-values provided in Suppl. Table S2. Also, multiple 

testing correction on this large number of tests should be applied. 

 

18. Page 16 states that the models have learned key positions that correspond precisely to genetic 

variants linked to human diseases. However, it is stated on page 15: “The clinical significance of the 

variants, as defined in theClinVar database, does not appear directly linked to the transcription rate of 

STRs”. How do these statements connect? 

 

19. As this claim is provided in the abstract, it should be very precisely nailed or removed. 

 

Minor 

------ 

 

20. Some of the other catalogs mentioned on page 5 (“compared to other catalogs.”) should be 

explicitly names and referred to. 

 

21. Figure 3: To directly compare values in 3A and 3B, a scatter plot of the values in 3B against those 

in 3A would be more informative (labelling points with STR names). Also, showing confidence intervals 

(e.g. binomial) would be useful. An alternative to the scatterplot would be side-by-side bar plots (With 

confidence intervals). 

 

22. Page 9: “as defined in [4],” does not read well. A better style would be “as defined by <name et 

al> [4],”. 

 

23. Page 9, typo: “We used deep” -> “We used a deep” 

 

24. Page 9. It is written that “Transcription at (A)n, which is mostly detected on the (-) strand, does 

confirm the observation that transcription at (T)n is mostly (+).” This sentence suggests that (T)n is 

only transcribed on the (+) strand. But what it actually shows is that (T)n is transcribed in the sense 

direction of whatever strand it is on, whereas (A)n is not. That is, the strand where (T)n is found (the 

complement of (A)n) is the one that is transcribed. 

 

25. Page 10, typo: “approches” -> “approaches” 

 

26. Page 11, typo: “we masked the 7bases located downstream the STR 3’ ends” -> “we masked the 

7 bases located downstream of the STR 3’ ends” 

 



27. Page 13. “compare Figure 1B and Figure 6A”. A scatter-plot should be provided to facilitate this 

comparison, with labelled dots. The R package ggrepel offers nice options for dot labelling. 

 

28. Page 13 “Less reliable that the human one” should be “less reliable than the human one” (than) 

 

29. The authors could discuss the observation that STR transcripts mostly reside inside the nucleus 

and do not get exported. 

 

30. Page 17 “the findings made by by Bertuzzi et al. in”: twice “by”. 

 

31. Usage of the model: Could the authors describe how the model can be used by practitioners 

wanting to, for example, interpret variants on patient data. Is there a simple workflow to apply the 

model to standard bioinformatics files such as variants in a vcf, or must the user manually transform 

the input data into a model with specific input format? 

 

32. Fig 7, “variance”. Do you mean “variants”? 

 

33. The discussion is very repetitive with respect to the introduction. 

 

34. On page 26, what does “brut force algorithms” exactly mean? Did the authors try every possible 

numeric value to find the optimal result? Moreover, the correct spelling is “brute force”. 



Reviewer #1: 
 
Major comments: 
 
(1) The authors found that 89,948 CAGE peaks (⇠ 8.6%) initiate at 84,555 STRs... is this more 
so than expected by chance or just the rate one would observe for 84,555 random features? 
 
We have generated a set of 1,620,030 randomly chosen intervals using bedtools shuffle. Only 
2.3% of these intervals intersected with CAGE peaks, indicating that the percentage (8.6%) 
observed in the case of STRs is significant (Fisher’s exact test p-value < 2.2e-16). All details 
of the analysis have been added in the revised version of the manuscript (see Results, page 
5, and Methods sections, page 24) 
 
(2) The authors refer to the sequence level instructions for the STR transcription. This is one 
of the most interesting findings, but still underdeveloped. While conservation appears to 
associate, the authors never demonstrate these conserved regions are in fact instructions. 
Currently they have observed a pattern, which does not imply it causes (or instructs).  
 
We acknowledge that machine learning approaches only unveil correlation between predictive 
and predicted features, not direct causation. One way to clarify that point, in our case, is to 
assess whether modifying DNA sequence (i.e. predictive features) with genetic variants truly 
impacts transcription initiation. We sought to tackle this problem by looking at TSSs harboring 
variants acting as eQTLs for the corresponding genes, in a scenario similar to that described 
by Bertuzzi et al. in the case of a minisatellite [reference #20].  
 
Details of the analyses and results are provided in the revised manuscript (Supplementary 
Figures S16 and S17 and page 17-19). Our idea was to compare the sign of the difference of 
the predictions made by our models for the reference and the alternative alleles and the sign 
of the eQTL slope (i.e. gene expression increase (slope > 0) or decrease (slope < 0)). We now 
show that, when the predictions are accurate on the reference genome (error <= 0.2), the 
models are able to predict the impact on expression i.e. in most cases, the sign of the 
difference between the predictions made with the alternative and predictive alleles is similar to 
that of the eQTL slope. Importantly, this is no longer observed for the STRs where the models 
perform poorly on the reference genome (error > 0.2). Binomial tests were used to statistically 
assess the relevance of these findings. Thus, when accurate, our models are able to predict 
the effects of eQTLs, supporting a causal relationship between the predictive and the predicted 
variables rather than a mere correlation. We also changed the term ‘instructions’ for ‘features’ 
throughout the revised manuscript before showing these results. 
 
 
(3) Its unclear whether the regions identified are any more clinically relevant than other 
features. If one were to take an equivalent quantity quantity of randomly generated regions 
compared to STRs, perhaps they would also identify 34,578 of those random regions harbour 
at least one ClinVar variants. This is another example of a section in the manuscript where 
numbers are provided, but no statistics to put the findings into context.  
 
When considering a set of 3,076,234 randomly chosen intervals (3,076,234 being the number 
of STRs with strand orientation thanks to CAGE data), we found 53,679 variants intersecting 
with these intervals, even indicative of a depletion of ClinVar variants at STRs (1.7% for 
random vs. 1.1% for STRs, Fisher’s exact test p-value < 2.2e-16). The number ‘34,578’ was 
initially indicated only to support the results depicted in Figure 7A. We have now modified the 
manuscript to make this aspect clearer (page 16).  
 
Please see also Reviewer #2 point #15 



 
(4) The authors could further develop associations of STRs with different biotypes -- ie, are 
there different patterns between STRs and non-coding RNAs, enhancer RNAs, etc. 
 
As suggested by Reviewer#1, we have computed the enrichment of STR classes in FANTOM 
CAT biotypes and the computations are now provided as Supplementary Table S3 (page 20). 
The strongest enrichments correspond to (A)n, (AT)n and (AAAT)n at enhancers, which are 
GC-poor sequences compared to promoters for instance [reference #50]. 
 
(5) Overall, its not clear from this manuscript what the critical limitation to this point is for 
identifying different STR classes. Why was this not possible before since one could observe 
their DNA repeat motif? Further, while this CNN model is relevant for analyzing CAGE data, 
its unclear how broadly applicable this is since there are various strategies for monitoring 
transcription. 
 
We acknowledge that STR classes are defined by their DNA repeat motif. This is indeed the 
definition used in our study (see Introduction section page 4). Rather, Figure 5B shows that 
this classification is also possible when considering 50bp STR flanking sequences only, and 
masking the DNA repeat motif. This point has now been clearly stated in the revised 
manuscript (page 11). 
 
We agree with Reviewer#1 that many methods exist to monitor transcription initiation. Our 
models were optimized to predict CAGE signal and cannot, as such, be directly applied to 
other types of data. However the methodology used here is generic and could be applied to 
other type of data as long as we can associate a numeric signal to a specific genomic region. 
This limitation has clearly been indicated in the revised manuscript (page 31).  
 
(6) This study would be more impactful had the authors demonstrated the application of the 
CNN models for improving eSTR computations.  
 
Several eQTLs considered in our response to point#2 implicate variants located in STR 
flanking sequences that do not affect their length. However, our results show that these eQTLs 
represent in fact genuine eSTRs, which were not considered in previous eSTR computations. 
As such, we believe that these results demonstrate that the application of CNN models can 
indeed improve eSTR computations simply allowing considering more variants, in particular in 
STR flanking sequences and re-assigning eQTLs as eSTRs. We have included this point in 
the Discussion section of the revised manuscript (page 21). 
 
We are now in the process of computing eSTRs considering variants in flanking sequences at 
a genome-wide scale using GTEx data. Given the time and amount of work required to process 
these data, we believe these analyses could form the body of a completely separate study. 
Not providing these genome-wide analyses would probably not impinge the message 
conveyed by our study, which is aimed at describing the discovery of a predictable transcription 
initiation at STRs. 
 
Minor comments: 
 
(1) There are numerous grammatical errors throughout the manuscript. For instance: 
"This type of machine learning approches takes as input the DNA" should read "This type of 
machine learning approch takes as input the DNA". And "making hard to learn models" should 
be "making it hard to learn models". 
 
We have corrected the manuscript accordingly. 
 
Reviewer #2 (Remarks to the Author): 



 
Short tandem repeats (STRs) are polymorphic genetic elements associated with gene 
expression and disease. STRs are also transcribed, and the function of these STR-RNAs only 
begins to be studied. Here, Grapotte et al. conduct a systematic investigation of transcribed 
STRs by overlapping STRs with genome-wide maps of transcription start sites obtained by 
CAGE mapping. They furthermore develop and apply a new assay, Cap Trap RNA-seq, to 
validate these transcription sites. Next, the authors train machine learning models to predict 
different classes of transcribed STRs using their flanking sequence. These results indicate that 
transcription of STRs could be influenced by flanking regions in a way that is conserved 
between human and mouse and that differ between STR classes. 
 
This study is welcome because systematic studies of transcription initiation at STRs have been 
lacking. However, I have major concerns concerning i) the delineation of the contribution 
compared to the state of current knowledge, ii) the lack of insights, and iii) inconsistencies 
casting doubt about the rigour of the analysis. Regarding the writing style, the manuscript is in 
parts quite hard to read because of very complex sentence structures. It also contains a large 
number of typos. Major and minor concerns are detailed below. Altogether, I suggest a major 
revision. 
 
Major 
----- 
 
1. The introduction omits prior studies on STR-containing RNAs. It gives the false impression 
that this is the first study describing transcribed STRs (“we hypothesized that transcription 
initiation also occurs at STRs”). The introduction of Mills et al eLife, 2019 
(https://elifesciences.org/articles/48940; not cited) provides several references that should be 
mentioned. (Yap et al., 2018; Jain and Vale, 2017; Zhu et al., 2011; McNulty et al., 2017; 
Johnson et al., 2017; Velazquez Camacho et al., 2017; Shirai et al., 2017; Rošić et al., 2014). 
The authors should thereby precisely delineate the novelty of their work with respect to this 
prior work. 
 
We have included the references indicated by Reviewer#2 [see references #30-34] and better 
cited previous reports demonstrating transcription of STRs. We have also modified the 
manuscript to better delineate the novelty of our work with respect to these studies: We 
acknowledge that previous studies reported the transcription of STR-containing RNAs and, as 
such, STRs can be considered as transcribed. The novelty of our work resides in the discovery 
that STRs can initiate transcription, therefore not being mere passenger in other RNAs but 
containing genuine TSSs for distinct RNAs. These clarifications have been included in the 
Introduction (page 4) and Discussion (page 19) sections and the word ‘initiation’ has been 
added to ‘transcription’ throughout the revised manuscript. 
 
2. The authors report that 89,948 CAGE initiate at 84,555 STRs. Is that overlap statistically 
significant? This depends on how overlap is computed. Are the authors using some windows 
round peaks and if so, how large are they? 
 
Please see our response to Reviewer#1’s comment #1. 
 
To intersect CAGE peaks and STRs, we used the bedtools window and a window of 5 bp 
upstream and downstream STR coordinates (the exact command line is provided in the 
Methods section, page 24). 
 
3. The (T)n class represents the same class than the (A)n. Is that the reason why these classes 
have equal sizes in Fig 1B? But then, why do the fractions differ in 1C? 
 



In the HipSTR catalog, (T)n and (A)n are distinct classes with 411,609 and 411,236 loci 
respectively. The y-axis of Figure 1B does not allow to show such small difference. Thus the 
fractions in Figure 1C differ between (T)n and (A)n simply because different loci are 
considered. 
 
4. I am confused by the fact that the model uses the “3’ end of each STR”. STRs are determined 
using an algorithm run only on the + strand. How is the 3’end of an STR defined? What is the 
biological interpretation of it? Why using the 3’end for modeling transcription initiation? I would 
expect focusing on the promoter, i.e. toward the 5’end and making use of CAGE to define the 
strand of an STR. More justifications would help. 
 
HipSTR indeed provides a catalog built on the (+) strand but CAGE data are stranded data 
(see Figure 1A). Thus, CAGE allows to orientate each STR of the HipSTR catalog as 
exemplified here: 
 
** HipSTR catalog (see hg19.hipstr_reference.bed): 
chr1 10001 10468 6 78 Human_STR_1 AACCCT 
 
** Same STR with CAGE data (see hg19.hipstr_reference.cage.bed made available at 
https://gite.lirmm.fr/ibc/deepSTR) 
 
chr1 10001 10468 Human_STR_1;AACCCT;+ 0.410901 + 
chr1 10001 10468 Human_STR_1;AACCCT;- 0.354298 - 
 
It is then possible to determine the 3’end of each STR according to the strand considered (here 
10468 on the (+) strand and 10002 on the (-) strand).  
 
To build a CNN, we needed aligned sequences with same length. However, as shown in Figure 
S1, CAGE peaks are scattered along STRs. We thus decided to align the sequences on the 
3’end of the STR, as defined by the CAGE data.  
 
These explanations have now been added in the Methods section of the revised manuscript 
(page 30). 
 
5. The authors state “the discovery that STR flanking sequences are not inert but rather contain 
important features that play critical roles in their biology”. This is not exactly novel. Actually, I 
found the insights of this work to be quite shallow despite previous work on the topic. Notably, 
Sun et al., Cell, 2018 (although cited by the authors) showed that many disease-associated 
STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. Would the DL 
models improve with chromatin domain annotation? Do the authors find chromatin boundary 
motifs such as CTCF to be predictive?  
 
As suggested by Reviewer #2, we confronted the work of Sun et al.  
 
The figure below shows that daSTRs are associated with high transcription initiation rate as 
measured by CAGE (enclosed Figure 1, Wilcoxon test p-value = 2.35e-15), confirming our 
results (new Figure B). 



 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
However, we did not observe significant difference in transcription initiation at STRs located 

within or outside TAD boundaries in human ES cells (Table S4H, Wilcoxon test p-value = 
0.02017 > 0.01) and in human cortical plate tissue (Table S4I, Wilcoxon test p-value = 0. 
01553 > 0.01)(enclosed Figure 2). Therefore considering the location of STRs in TAD 
boundaries cannot improve the predictions of our CNNs. 
 
Results obtained interpreting our models (see point #11) did not show enrichment for CTCF 
motif. 
 
It may be worth noting that Sun et al. studied STR flanking regions at a scale much larger than 
ours. As indicated in Table S1 and in the Method section of their manuscript, ‘the final size of 
all boundaries is 120kb’. In contrast, we studied 50bp-long STR flanking sequences, making it 
possible to have several hundreds of STRs within the same TAD boundary. As a consequence, 
STRs can have different flanking sequences in our case but identical flanking regions 
according to Sun et al.. This major scale discrepancy makes it hard to discuss our work in the 
light of that of Sun et al.. 
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Figure 1 : CAGE signal at all STRs (left) or 26 daSTRs (right) 
described in Sun et al., Cell 2018. Wilcoxon test p-value = 
2.35e-15   

Figure 2 : CAGE signal at STRs located outside (left) or inside (right) TAD boundaries described by Sun et al., Cell 2018 in 
human cortical plate tissue (Table S4I) and human ES cells (Table S4H). Wilcoxon tests were used to assess statistical 
difference. p-value = 0. 01553 and 0.02017 in human cortical plate tissue and human ES cells respectively. 



6. Model performance is not compared to any baseline model. What is the performance of a 
predictor that returns the median CAGE count for each STR class? 
 
The performances of our models were computed as Spearman correlations. Therefore, 
computing the performance of the predictor that returns the median CAGE count would require 
the computation of the correlation between CAGE signal and a constant value. While this is 
formally not possible, because standard deviation of the vector equals 0 and correlation 
calculation is not possible, one can consider that such correlation is null. 
 
As a comparison to baseline model, we also computed the correlation between observed 
CAGE signal and randomized CAGE signal (equivalent to a predictor that returns a random 
value drawn from observed values). Randomization was repeated 10 times and Spearman 
correlation is invariably close to 0 (absolute value(r) < 5.10-4). This results has been indicated 
in the Methods section (page 32). 
 
7. Major aspects of the CNN training procedure are not provided. These include: How did the 
training data was stratified? What are STR class counts in the training and testing data? How 
many STR’s have a CAGE-peak in the training and testing data? 
 
We acknowledge that aspects of the training procedure were initially only provided in the git 
repository and as a schematic representation in Figure S6. We made an new Supplementary 
Figure (see new Supplementary Figure S7) to better describe our approach. This figure also 
includes a table with STR class counts and number of STRs with a CAGE peak in training and 
testing sets. We also modified the Methods section (pages 30-32) to make the details of the 
procedure more apparent in the core manuscript. 
 
8. Establishing proper cross-validation in sequence-based predictions can be difficult due to 
homologous regions. Some of STRS may be part of homologous regions. Deep models may 
then overfit. The author should assess the issue of homologous regions. 
 
We agree with Reviewer#2 and homologous sequences present in the train and test sets may 
indeed lead to overfitting. To clarify that point, we used BLASTn to look for homology between 
(T)n sequences of the test and train sets. The model learned on (T)n was used because it is 
the most accurate and therefore the more likely to overfit.  
 
We found 102,209 sequences from the test set with > 60% query cover and identity > 80% 
with at least one sequence of the train set. We separated these sequences (test set #1, 
homologous sequences) from the rest of the test set (test set#2, 121,808 non-homologous 
sequences). We then computed Spearman correlations between the predicted and the 
observed CAGE signals using these two test sets: 0.73 with test set #1 and 0.78 with test set 
#2. In both cases, correlations decreases, as compared to that computed on the whole test set 
(0.84), likely due to differences in CAGE signal distribution between whole test set, test set #1 
and #2 (Supplementary Figure S18). However, model performance measured on test set #2 
is greater than that obtained with test set #1. This is in contrast to what is expected in case of 
model overfitting due to sequence homology. We then concluded that homology observed 
between train and test sets is not sufficient to make the model overfit. 
  
This analysis has been included in the revised version of the manuscript (pages 31-32). 
 
9. The input and target of the CNN should be precisely described. A figure showing how a STR 
sequence + flanking regions is converted into an input matrix would be very helpful for 
understanding. Moreover, it is not clear which parts of the sequence exactly were replaced 
with “N”. 
 



We have modified the Figure S6 to better show how STR sequences are converted into one-
hot encoded matrices for both classification and regression (see new Supplementary Figure 
S7). We also provide an example of sequence used in each CNN task at the bottom of the 
new Figure 5 to show which bases have been replaced by N. The Methods section has also 
been modified to better explain how and why some bases were replaced by Ns (pages 30, 32 
and 33). 
 
10. A density-scatter or hexbin plots showing predicted vs observed CAGE counts on held out 
data should be provided to visualize the quality of the predictions. 
 
Hexbin plots showing predicted vs observed CAGE signal on held out data have been provided 
in Supplementary Figure S9. 
 
11. I missed some model interpretation. Can model interpretation technique (see review 
Eraslan et al. Nat Review Genetics 2019) indicate TF binding sites? For directionality, does 
the model capture known motifs involved in transcription directionality (e.g. U1 binding sites 
Almada et al Nature 2013, probably motifs have been reported since then) ? 

We sought to identify representations of sequence motifs captured by CNN first layer filters 
using a strategy inspired by the work of Maslova et al. [reference #47]. Details of the analysis 
have been provided in the revised version of the manuscript (pages 16 and 33). This approach 
indeed identified several influential first layers correlating with JASPAR PMW scores (results 
are provided at https://gite.lirmm.fr/ibc/deepSTR/figures). However, it is important to remember 
that our models were optimized to predict CAGE signal, not to learn interpretable 
representations from input DNA sequences. Koo and Eddy have indeed recently demonstrated 
that tackling these two questions - prediction and interpretation - requires distinct CNN 
architectures, in particular adapting max-pooling and convolutional filter size [reference #48]. 
At present, our models likely learn partial motifs and do not limit the ability to learn motifs in 
deeper layers. This limitation has clearly been stated in the revised manuscript (page 16). 

Regarding transcription directionality, because our CNNs are specifically designed to predict 
CAGE signal, they cannot learn features or motifs involved in transcription directionality. We 
nonetheless looked for motifs known to be involved in transcription directionality at canonical 
TSSs, namely, polyadenylation sites (polyA sites) and U1 binding sites [Almada et al., Nature 
2013, reference #40]. These analyses have been included in the revised version of the 
manuscript (pages 9 and 10). As shown in the new Supplementary Figure S6, we did observe 
an enrichment of potential U1 binding sites downstream FANTOM CAT TSSs, as previously 
reported [reference #40], but not downstream (T)n 3’end. Moreover, while polyA sites are 
clearly enriched upstream FANTOM CAT TSSs (downstream in the antisense orientation), this 
observation does not hold true for (T)n (new Supplementary Figure S6).  
 
Hence, our results suggest that the determinants of transcription directionality at STRs differ 
from what is observed at canonical TSSs. These results are in agreement with that obtained 
by Ibrahim et al., [reference #42], who showed that ‘a single model of transcription initiation 
within and across eukaryotic species is not evident.’ This conclusion has been added in the 
revised manuscript (page 10). 
 
12. On page 10, it is stated that 766,747 (T)n elements are predicted. However, in Figure 1B 
there are only ~ 400,000 T(n) STR’s. Where does this difference stem from? 
 
See also our response to point #4. 
 
Figure 1B shows the number of elements in each STR class according to the HipSTR catalog, 
which is not stranded. In contrast, the STR sequences used as input in our CNNs are stranded 



thanks to the CAGE data, thereby almost doubling the number of elements in each class. This 
has now been indicated in the Methods section (page 30). 
 
13. Figure 5, 6, and S8 should be provided for metrics computed on held-out test data. 
 
All results depicted Figures 5,6 and S8 were indeed provided with metrics computed on held-
out test data, as initially indicated in Figure S6 and the git repository. This has now been also 
indicated in the core manuscript and in the Methods section (page 30). 
 
14. Page 12. The statement “formally demonstrating the existence of STR class-specific 
features for transcription prediction.” is too strong. One cannot exclude that one have obtained 
different results, would other algorithms or mathematical functions have been applied. 
 
We have modified the manuscript to make this statement less strong (see page 13, ‘Overall, 
the performance of one model tested on another STR class drastically decreases (Figure 5C), 
revealing the existence of STR class-specific features predictive of transcription initiation.’). 
 
15. Figure 7 should be provided for ClinVar pathogenic and ClinVar benign variants separately 
(side-by-side) to assess whether there is an enrichment for pathogenic variants. The authors 
make a strong claim in this direction in the abstract but it is not supported without such 
comparison.  
 
ClinVar variants considered in Figure 7A are located in a window encompassing STR +/- 50bp 
(corresponding to the length of sequences used as input in CNN models). In the original Figure 
S9, we used a window encompassing STR +/- 5bp. We have corrected this mistake and 
considered a window encompassing STR +/- 50bp in both cases. Initial Figure S9 has now 
been moved to the core manuscript as Figure 7B.  
 
We performed statistical tests on the results presented in the new Figure 7B. An ANOVA test 
revealed the existence of differences in CAGE signal at STRs associated with the different 
classes of ClinVar variants. We next performed pairwise comparisons using Mann-Whitney 
tests and showed that STRs associated with pathogenic variants exhibit stronger CAGE signal 
than STRs associated with benign variants (see new Supplementary Figure S12, Wilcoxon 
test p-value = 1.84e-59). We therefore modified the sentence ‘The clinical significance of the 
variants, as defined in the ClinVar database, does not appear directly linked to the transcription 
rate of STRs’ into ‘Looking at the clinical significance of the variants, as defined in the ClinVar 
database, we indeed noticed that STRs associated with pathogenic variants exhibit stronger 
transcription initiation that STRs associated with other variants (Figure 7B and Supplementary 
Figure S12)’ (page 16). 
 
Second, we looked at the distribution (Supplementary Figure S14A) and the impact 
(Supplementary Figure S14B) of pathogenic and benign variants. The distribution of both types 
of variants is similar to that shown in the new Figure 7D and corresponds to the positions 
identified by our models as key for prediction (new Figure 7C). We did not notice difference in 
the impact induced by benign and pathogenic SNVs on transcription initiation prediction, as 
expected provided the results obtained with random and all ClinVar SNVs (new Figure 7C). 
Thus pathogenic and benign variants are not distinguishable by their distribution around STR 
3’end nor their impact on transcription initiation predictions.  
 
We acknowledge that our wording might have been misleading by suggesting a direct link 
between the distribution of variants around STR 3’end and their clinical impact. We now clearly 
state (pages 15-17) that (i) pathogenic variants are found at STRs with transcription initiation 
level higher than that encountered at other STRs affected by other types of variants and (ii) 
ClinVar variants, whatever their clinical significance, are more frequently found at positions key 



for predictions. We re-organized Figure 7 and modified the manuscript, including abstract, 
accordingly. 
 
Please also see our response to point #18. 
 
16. Fig 7B needs a multiple-testing corrected statistical test to establish that the enrichment 
shown around the TSS is significant. 
 
A Kolmogorov-Smirnov test was used to compare the distribution of ClinVar variants around 
STR 3’ends and the distribution of random variations (original Figure 7B). It indicates a 
statistically significant difference (p-value = 2.95e-11, indicated page 50 of the revised 
manuscript).  
 
17. Page 15, this statement is unclear: “Likewise, several diseases were found enriched 
comparing variant fractions located at transcribed STRs (Fisher’s exact test < 5e-3, 
Supplementary Table S2)”. What is meant with “variant fraction” and what is meant by 
“enriched”? I could not reconstruct the Fisher test contingency tables leading to the p-values 
provided in Suppl. Table S2. Also, multiple testing correction on this large number of tests 
should be applied. 
 
We have provided all the details of the calculations in the revised Table S2 (first sheet, 
README). As suggested by Reviewer#2, the p-values were adjusted for multiple testing using 
the Benjamini and Hochberg correction.  
 
We acknowledge that our wording ‘enriched’ was misleading since, for some diseases, STRs 
can be associated with less variants than expected by chance. We have modified the 
manuscript accordingly (page 16). 
 
18. Page 16 states that the models have learned key positions that correspond precisely to 
genetic variants linked to human diseases. However, it is stated on page 15: “The clinical 
significance of the variants, as defined in the ClinVar database, does not appear directly linked 
to the transcription rate of STRs”. How do these statements connect? 
 
As indicated in our response to point #15, we performed new analyses and noticed that STRs 
associated with pathogenic variants exhibit higher transcription initiation levels that STRs 
associated with benign variants (new Figure 7B). We also now simply state, in the revised 
manuscript, that ClinVar variants are more frequently found at positions key for predictions 
with no difference linked to pathogenicity (page 17). We also conclude that the pathogenicity 
of ClinVar variants appears to be linked to the transcription initiation level of the targeted STR 
rather than to the position of the variation or its impact on prediction (page 17). 
 
19. As this claim is provided in the abstract, it should be very precisely nailed or removed. 
 
We have modified the manuscript, including the abstract, to clarify our claims, in accordance 
to our responses to points #15 and #18 (pages 2 and 15-17).  
 
Minor 
------ 
 
20. Some of the other catalogs mentioned on page 5 (“compared to other catalogs.”) should 
be explicitly names and referred to. 
 
We have named the other catalogs (GENCODE, Human BodyMap and miTranscriptome) and 
provided the references (page 5). 



 
21. Figure 3: To directly compare values in 3A and 3B, a scatter plot of the values in 3B against 
those in 3A would be more informative (labelling points with STR names). Also, showing 
confidence intervals (e.g. binomial) would be useful. An alternative to the scatterplot would be 
side-by-side bar plots (With confidence intervals). 
 
Figure 3A and 3B have been combined into one side-by-side barplot and Binomial proportion 
95% confidence intervals have been added (see new Figure 3). 
 
22. Page 9: “as defined in [4],” does not read well. A better style would be “as defined by 
<name et al> [4],”. 
 
The manuscript has been modified. 
 
23. Page 9, typo: “We used deep” -> “We used a deep” 
 
The manuscript has been corrected. 
 
24. Page 9. It is written that “Transcription at (A)n, which is mostly detected on the (-) strand, 
does confirm the observation that transcription at (T)n is mostly (+).” This sentence suggests 
that (T)n is only transcribed on the (+) strand. But what it actually shows is that (T)n is 
transcribed in the sense direction of whatever strand it is on, whereas (A)n is not. That is, the 
strand where (T)n is found (the complement of (A)n) is the one that is transcribed. 
 
We agree with Reviewer#2. Our directionality score computes the ratio between transcription 
on (+) and (-) strands at STRs, which are systematically defined on the (+) strand in HipSTR 
catalog i.e. (T)n on (-) strand are defined as (A)n. Thus, positive directionality score at (T)n 
means that transcription occurs on the (+) strand, where the (T)n is found. Conversely, 
negative score detected at (A)n indicates that transcription occurs on the (-) strand, where (T) 
is found. We clarified this aspect in the revised manuscript and clearly stated that ‘transcription 
initiation preferentially occurs on the same strand as (T )n STRs’ (page 9). 
 
25. Page 10, typo: “approches” -> “approaches” 
 
The manuscript has been corrected. 
 
26. Page 11, typo: “we masked the 7bases located downstream the STR 3’ ends” -> “we 
masked the 7 bases located downstream of the STR 3’ ends” 
 
The manuscript has been corrected. 
 
27. Page 13. “compare Figure 1B and Figure 6A”. A scatter-plot should be provided to facilitate 
this comparison, with labelled dots. The R package ggrepel offers nice options for dot labelling. 
 
We used the R package ggrepel to draw a scatter plot and compare the numbers of loci of 
each STR class in human and mouse. As in Figure 1B, for sake of clarity, the analysis was 
restricted to human STR classes with > 2,000 loci. This plot is shown as Supplemental Figure 
S10 and referenced page 14.  
 
28. Page 13 “Less reliable that the human one” should be “less reliable than the human one” 
(than) 
 
The manuscript has been corrected. 



 
29. The authors could discuss the observation that STR transcripts mostly reside inside the 
nucleus and do not get exported. 
 
We have modified the Discussion section (page 20) to state: ‘Besides, we show that most 
CAGE tags initiating at STRs remain nuclear (Figure 4A). This observation suggests that, 
similar to other repeat-initiating RNAs [references #55,56], STR-initiating RNAs could also play 
roles at the nuclear/chromatin levels, for instance in DNA topology [references #56,57]’. 
 
However, because we do not provide additional results, we do not feel confident at this stage 
to go beyond this suggestion. 
 
30. Page 17 “the findings made by by Bertuzzi et al. in”: twice “by”. 
 
The manuscript has been corrected. 
 
31. Usage of the model: Could the authors describe how the model can be used by 
practitioners wanting to, for example, interpret variants on patient data. Is there a simple 
workflow to apply the model to standard bioinformatics files such as variants in a vcf, or must 
the user manually transform the input data into a model with specific input format?  
 
The models are provided at https://gite.lirmm.fr/ibc/deepSTR. They can be used to predict 
transcription initiation level at STRs using a fasta file. Likewise, impact of genetic variations 
can be assesses by comparing the predictions obtained for instance with reference and 
mutated sequences (as in Figure 7). These aspects have been clearly indicated in the Methods 
section (page 32). 
 
32. Fig 7, “variance”. Do you mean “variants”? 
 
We did mean ‘variance’. Changes are computed as the difference between these two 
predictions (reference - mutated, Supplementary Figure S10) and their impact is measured as 
their variance at each position around STR 3' end (x-axis). 
 
33. The discussion is very repetitive with respect to the introduction. 
 
The Discussion has been modified according to Reviewer#2’s comment. 
 
34. On page 26, what does “brut force algorithms” exactly mean? Did the authors try every 
possible numeric value to find the optimal result? Moreover, the correct spelling is “brute force”. 
 
We have provided details of the brute force algorithms used in the methods section (pages 31 
and 32) and have corrected the manuscript (‘brute’ instead of ‘brut’). 
 
 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I am satisfied with the responses. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have addressed all my points. 


