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Abstract

Protein–metabolite interactions play an important role in the cell’s metabolism and many

methods have been developed to screen them in vitro. However, few methods can be

applied at a large scale and not alter biological state. Here we describe a proteometabolomic

approach, using chromatography to generate cell fractions which are then analyzed with

mass spectrometry for both protein and metabolite identification. Integrating the proteomic

and metabolomic analyses makes it possible to identify protein-bound metabolites. Applying

the concept to the thermophilic fungus Chaetomium thermophilum, we predict 461 likely pro-

tein-metabolite interactions, most of them novel. As a proof of principle, we experimentally

validate a predicted interaction between the ribosome and isopentenyl adenine.

Introduction

Interactions between proteins and endogenous metabolites are a hallmark of all cellular pro-

cesses, from metabolism to signaling. In the former, enzymes interact with metabolites to cata-

lyze chemical reactions, and in the latter, chemical compounds serve as co-factors for proteins

to mediate protein function [1]. Protein–metabolite interactions have been historically discov-

ered mostly individually, but more recently also by a variety of in vitro screening approaches
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[2,3]. Detection of interactions in vivo is much more difficult. Current methods mostly depend

on overexpressing target proteins [4] or adding additional metabolite analogues, including

thermal proteome profiling [5] and chemoproteomic approaches [6].

Several concepts have been developed to integrate proteomics and metabolomics on the

same samples to find the relationship between proteins and metabolites [7,8]. Most methods

focus on measuring free proteins and metabolites, then infer their associations, the associa-

tions can be indirect, unspecific and confounded. Few untargeted methods can be used

directly to study protein–metabolite interactions in vivo without altering the biological state of

the respective systems.

Recently, a method called PROMIS to detect endogenous protein–small molecule interac-

tions in vivo has been presented and successfully applied in Arabidopsis thaliana [9]. In a simi-

lar vein, our method aims at the large-scaled, unbiased identification of direct and stable

protein–metabolites interactions in vivo. We use size exclusion chromatography (SEC) to

purify protein complexes [10] and their non-covalently bound metabolites in cell lysates. As a

consequence, these fractions are free of unbound metabolites. Within the extracted fractions,

proteins and metabolites are dissociated and separately identified using mass spectroscopy

(MS)-based proteomics and metabolomics [11]. Improvements in in silico methods for metab-

olite identification allowed the assignment of many metabolites with high confidence [12,13].

Based on the correlations between paired elution profiles of proteins and metabolites we pre-

dict interactions between them.

Results

We applied the concept to Chaetomium thermophilum, a thermophilic fungus and model

organism for structural biology [14] as its protein complexes are particularly stable and is thus

an ideal model organism for studying multimolecular interactions [15]. We grew C. thermo-
philum in standard medium, lysed the cells, and separated the crude native cell lysate with

SEC. We then collected 30 size-fractions with molecular weights from 200 kDa to 5000 kDa

(Fig 1A), which excludes small protein complexes and most individual proteins. As metabo-

lites usually have a molecular weight below 1.5 kDa [16], those fractions can only contain

metabolites which were bound to proteins or protein complexes. We split the collected frac-

tions into two parts: one part was digested by trypsin and analyzed by bottom-up proteomics

[17]. Altogether, 3,286 proteins were identified with high confidence (1% FDR), correspond-

ing to 46% of the proteome. For the second part, chemical compounds were extracted by

methanol and analyzed by untargeted mass spectrometry (Fig 1B). Tandem mass spectrometry

(MS2) was used for compound identification: spectra were searched against public spectral

databases for high-confidence identification. Furthermore, spectra were also searched by in sil-
ico identification methods [12,13] to maximize the rate of identification (S1 Fig). Altogether,

we identified 257 metabolites in all fractions that were found to be bound to proteins or pro-

tein complexes (S1 Table). Prior to MS, metabolites were separated by hydrophilic interaction

liquid chromatography (HILIC) according to their polarity. We were therefore able to com-

pare the retention time in the HILIC column to the predicted polarity information (logP) to

verify the accuracy of the compound identification (S2 Fig). We use known metabolite concen-

trations [18] in the well-studied Saccharomyces cerevisiae as a reference to estimate the identi-

fied metabolite concentration. This showed that our method can identify metabolites that have

cellular concentrations higher than 100 μM (S3 Fig, see Methods).

By comparing the theoretical molecular weights to the observed protein complex, we find a

good agreement for heteromeric complexes, which suggest high quality of the data (Fig 2A).

For individual proteins, homomeric complexes, and metabolites, the observed molecular
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weights are much higher than the theoretical molecular weight. This shows that proteins and

compounds formed complexes of higher molecular weight.

We found that many lipids eluted in the high molecular weight fractions, which may be due

to the formation of micelles during cell lysis [19]. We also identified many short peptides that

could be the regulatory peptides [20] or the products of proteolysis (Fig 2B). With the excep-

tion of the lipids eluting in high molecular weight fractions, the metabolites were nearly

equally distributed crossed different fractions in different molecular property (S4 Fig).

For every protein and metabolite, we determined their intensity in each fraction by label-

free quantification. We found that the compounds have varying intensity profiles (Fig 2C). As

the metabolites should be bound to proteins, a metabolite should have a similar elution profile

as its protein binding partner. To pinpoint such interactions, we first identified protein com-

munities using the method described by Kastritis et al. [15], which resulted in 95 protein com-

munities. Then, we calculated the correlations of intensity profiles between all pairs of protein

communities (or single proteins) and metabolites. By comparing protein–metabolite intensity

profiles, we found that many peptides are associated with the 26S and 20S proteasomes (Fig

2C). During proteolysis, the proteasome generate fragments of lengths of two to ten amino

acids [21], which we seem to capture. We verified that the observed peptides are likely to stem

from the in vivo degradation of proteins rather than from the subsequent degradation of the

proteasome itself during sample preparation by computing the relative frequencies of the tri-

peptides in the proteasome vs. the whole proteome (S5 Fig).

Using 730 known protein–metabolite interaction data from the Brenda database [22], we

observed an enrichment of known protein–metabolite interactions among highly correlated

protein–metabolite pairs (p< 1-e15 with Mann-Whitney U test, Fig 3A). We further found

that highly abundant proteins are more likely to have known interactions in the Brenda

Fig 1. Workflow of the proteometabolomics experiment. (a) Cell lysate from Chaetomium thermophilum was

separated by size exclusion chromatography and fractions with molecular weight between 200k Da and 5,000k Da were

collected. (b) The collected fractions were divided into two parts, one part was digested by trypsin and analyzed by

protein MS, the other part was extracted by methanol and analyzed by metabolite MS. Protein–metabolite interactions

were inferred from the resulting intensity profiles.

https://doi.org/10.1371/journal.pone.0254429.g001
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database for which we can detect the binding partner (p = 2e-15 with Mann-Whitney U test,

Fig 3B). This may be partially due to the bias in existing data towards more abundant proteins,

but also due to the experimental design that makes it more likely to detect proteins and com-

pounds in sufficient amounts and fidelity when the protein is more abundant.

For protein–metabolite interaction prediction, we removed the data from the last three

fractions. Too many proteins co-eluted in these fractions, making it difficult to predict pro-

tein–metabolite interactions with high confidence. As microsomes and micelles eluted in the

early fractions, we removed lipids from these to avoid a false signal from lipids contained in

the microsomes. We then calculated two scores for each candidate interactions: a correlation

score based on the Pearson correlation between the protein and metabolite intensity profiles;

and an intensity score based on the protein’s abundance. For each identified metabolite, we

calculated these two scores and their respective empirical distribution function of the correla-

tion and intensity. We used Fisher’s linear discriminant to find the best combination of the

correlation score and intensity score as benchmarked with known protein–metabolite

Fig 2. Identified proteins and metabolites. (a) For proteins (top part) and metabolites (bottom part), the relation

between theoretical molecular weight and observed molecular weight (according to their elution time) is shown. When

proteins are annotated with the molecular weight of heteromeric complexes that they participate in, there is a good

correlation between the theoretical and observed molecular weights. Notably, metabolites are observed at molecular

weights far above their actual molecular weight. (b) Relative intensity profiles for one example each from the five

classes of identified metabolites. (c) Relative intensities of the 20S and 26S proteasomes and co-eluted peptides.

https://doi.org/10.1371/journal.pone.0254429.g002
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interactions and selected the top 10% as high confidence predictions (Fig 4, S2 Table). For

example, FAD is known to interact with dihydrolipoyl dehydrogenase as a cofactor in the

pyruvate dehydrogenase complex [23] (Fig 5A). Some metabolites have many interaction part-

ners, for example AMP. In these cases, not all interaction partners can be highly correlated,

but our method will pick up the proteins with the highest amount of bound metabolite (due to

a combination of protein concentration and binding affinity). Therefore, our method is most

suited to propose interaction partners for metabolites that are binding to a small number of

proteins.

To validate our predicted protein–metabolite interactions, we focused on the interaction

between isopentenyl adenine and ribosome as it has both very high correlation score and

intensity abundance score (Fig 5B). First, a two-step chromatography experiment was pre-

formed: we used ion-exchange chromatography (IEX) to separate the cell lysate. Then, all

Fig 3. Distribution of correlations and intensities for protein–metabolite interactions. (a) The distribution of

protein−metabolite correlations is bimodal, with known interactions showing increased correlations. We chose a

cutoff of 0.5 for interaction predictions. (b) Proteins of higher intensity (i.e. abundance) are enriched among the

known interactions. In both panels, the difference between the distributions is highly significant (p� 2e-15 using

Mann-Whitney U test).

https://doi.org/10.1371/journal.pone.0254429.g003

Fig 4. The top 10 scoring protein–metabolite interactions. Known interactions are shown in red, and proposed novel interactions

are shown in black. One of the identified compounds, namely cyromazine, is an insecticide. It is not clear whether this compound has

been introduced as part of the growth medium, or if this is a mis-annotation of an endogenous compound.

https://doi.org/10.1371/journal.pone.0254429.g004
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fractions were separated by SEC. We found that isopentenyl adenine still co-eluted with the

ribosome (Fig 5C) in the two-step chromatography experiment. We further measured the

ribosome’s activity by an in vitro transcription assay in a wheat germ extract system (Figs 5D

and S6), as the system is well established. We found that ribosomal activity increased when iso-

pentenyl adenine is present, supporting the predicted interaction. In one experiment, one data

point could not be used due to a failure in the Western blot, but it is clear that the ribosome

activity was increased. In all three other experiments, we could confirm a statistically signifi-

cant increase using one-tailed one-sample t-test (S6 Fig).

Discussion

We present a proof of concept that the combination of SEC, untargeted proteomic, and meta-

bolic MS is able to identify physical in vivo protein–metabolite interactions. Our integrated

approach does not rely on modifications to either proteins or metabolites and investigates cell

in its native state. It can therefore be easily adapted to other organisms, both uni- and multicel-

lular. Compared to the PROMIS method, our approach independently affirms the feasibility of

the concept, and goes beyond it by adding a combined ranking of candidates based on pro-

tein–metabolite correlations and protein abundances. There are several possibilities to

improve the method. To refine the scoring system, to discover additional interactions, and to

study the impact of environmental changes, a next step would be to subject cells to a variety of

conditions such as changes in medium, temperature, oxygen content etc. The resolution of the

method can be further increased by adding further fractionation steps. Nevertheless, the con-

cept presented here is already an entry point for large-scale detection of endogenous metabo-

lites bound to proteins or their complexes.

Fig 5. The predicted protein–metabolite interactions. (a) For three example proteins, predicted and known

interactions with metabolites are shown. (b) The intensity score and correlation of all possible proteins which can

interact with the metabolite isopentenyl adenine. Among all those proteins, the ribosome has the highest score. (c)

Correlations between candidate proteins and isopentyl adenine are shown after independently performing IEX and

SEC. Among all proteins, the ribosome has the highest score. (d) The experimental verification of the interactions

between the ribosome and isopentenyl adenine: In the in vitro transcription system, luciferase was used as reported

protein. Ribosome activity was measured by calculating the ratio of luciferase/non-specific protein.

https://doi.org/10.1371/journal.pone.0254429.g005
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Methods

Cell growth, lysis and size exclusion chromatography

Cells were grown as previously described by Kastritis et al. [15]. Chaetomium thermophilum
was obtained from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DMSZ No.:

1495). In brief, 2 l Chaetomium thermophilum var. thermophilum were grown in LB medium,

50˚C and 10% CO2. 25 g cells were collected and lysed by freeze-grinding in liquid nitrogen in

lysis buffer (100 mM HEPES pH 7.4, 95 mM NaCl, 5 mM KCl, 5% glycerol, 1 mM MgCl2, 0.5

mM EDTA, 1 mM DTT, 10 μg/ml DNAse, pefabloc 2 mM, E-64 2 μM, Bestatin 10 μM, Aproti-

nin 0.3 μM, Leupeptin 1 μM, pepstatin A 1.45 μM). The lysate was centrifuged at 100,000g for

45min to remove cell debris and concentrated with a 100 kDa Amicon Ultra centrifugal filter.

0.5 ml concentrated lysate (approximately 30 mg/ml) was separated by a Biosep SEC-S4000

(7.8 mm x 600 mm) size exclusion column in 100 mM HEPES pH 7.4, 95 mM NaCl, 5 mM

KCl, 1 mM MgCl2. The fractions were collected from 10.5mL to 18mL, with 0.25 ml per frac-

tion. For every sample, the cell lysate was separated in three separate SEC runs. The corre-

sponding fractions were pooled to get a final volume of 0.75 ml per fraction.

Untargeted protein identification by mass spectrometry

40 μl of each fraction were subjected to a tryptic in-solution digest as previously described

[24,25]. 2 μl of 20% SDS were added to avoid precipitation of proteins during the reduction

and alkylation of proteins. Proteins were reduced by the addition of 1 μl of 200 mM DTT in

200 mM Hepes/NaOH pH 8.5 following incubation for 30 min at 56˚C. Subsequently, 2 μl of

400 mM chloroacetamide in 200 mM Hepes/NaOH, pH 8.5 were added and samples were

incubated for 30 min at 25˚C before excess chloroacetamide was quenched by the addition of

2 μl of 200 mM DTT in Hepes/NaOH, pH 8.5. For the in-solution digest, the reduced and

alkylated samples were subjected to the Single-Pot Solid-Phase-enhanced Sample Preparation

(SP3) protocol [24,25]. To this end, 2 μl of Sera-Mag Beads, and 5 μl of 10% formic acid (v/v)

were added. Acetonitrile (ACN) was added to achieve a final ACN percentage of 50%. Samples

were incubated for 8 min before beads were captured on a magnetic rack. Beads were washed

twice with 200 μl 70% ethanol and once with 200 μl ACN. Beads were resuspended in 10 μl of

0.8 μg of sequencing grade modified trypsin in 10 μl 100 mM Hepes/NaOH, pH 8.5 following

overnight incubation at 37˚C. Peptides were subjected to a reverse phase clean-up step and

analyzed by LC-MS/MS on a Q Exactive Plus.

Samples were analyzed with liquid chromatography coupled to tandem mass spectrometry.

Peptides were separated using an UltiMate 3000 RSLC nano-LC system equipped with a trap-

ping cartridge and an analytical column. Solvent A was 0.1% formic acid in LC-MS grade

water and solvent B was 0.1% formic acid in LC-MS grade acetonitrile. After loading the pep-

tides onto the trapping cartridge (30 μl/min of solvent A for 3 min), elution was performed

with a constant flow of 0.3 μL/min using 90 min analysis time (with a 2–28% B elution, fol-

lowed by an increase to 40% B,80% B washing step and re-equilibration to initial conditions).

The LC system was directly coupled to a Q Exactive Plus mass spectrometer using a Nanos-

pray-Flex ion source and a Pico-Tip Emitter 360 μm OD x 20 μm ID; 10 μm tip. The mass

spectrometer was operated in positive ion mode with a spray voltage of 2.3 kV and a capillary

temperature of 275˚C. Full scan MS spectra with a mass range of 350–1400 m/z were acquired

in profile mode using a resolution of 70,000 [maximum fill time of 100 ms or a maximum of

3e6 ions (automatic gain control, AGC)]. Fragmentation was triggered for the top 20 peaks

with charge 2 to 4 on the MS scan (data-dependent acquisition) with a 20 s dynamic exclusion

window (normalized collision energy was 26). Precursors were isolated with 1.7 m/z and MS/
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MS spectra were acquired in profile mode with a resolution of 17,500 (maximum fill time of 50

ms or an AGC target of 1e5 ions). For the data analysis, the MS raw data were analyzed by

MaxQuant 1.6.1 [26]. Chaetomium thermophilum proteomes sequences were downloaded

from Uniprot with Proteome ID UP000008066. The MS data were searched against Chaeto-
mium thermophilum proteomes sequences plus common contaminants sequence provided by

MaxQuant. The default setting of MaxQuant was used with modification oxidation and acetyl

(protein N-term). A false-discovery rate (FDR) cutoff of 1% was used for protein identifica-

tion, and iBAQ intensity was used for label-free protein quantitation. When calculating iBAQ

intensity, the maximum detector peak intensities of the peptide elution profile were used as

the peptide intensity. Then, all identified peptide intensities were added and normalized by the

total number of identified peptides.

Metabolite extraction and untargeted mass spectrometry

10 μl 250 ppm 13C-creatinine was added into 650 μl fractions as spike-in control. Then, metha-

nol was added up to a final concentration to 80%. The sample was centrifugated at 14,000 g for

20 min, then the supernatant was collected and concentrated with a speed vacuum concentra-

tor to get 200 μl final volume.

LC-MS/MS analysis was performed on a Vanquish UHPLC system coupled to a Q-Exactive

plus HRMS in both ESI positive and negative mode. The separation of metabolites was carried

out on Xbridge Amide (100 X 2.1 mm; 2.6 uM) at a flow rate of 0.3 ml/min and maintained at

40˚C. The mobile phase consisted of solvent A (7.5 mM Ammonium acetate with 0.05%

NH4OH) and solvent B (acetonitrile). The UHPLC system was run in gradient mode as

follows: 0 min, 85% B; 2 min, 85% B; 12 min, 10% B; 14 min, 10% B; 14.1 min 85% B; 16min

85% B.

Metabolites were detected with HRMS full scan at the mass resolving power R = 70000 in

the mass range of 60–900 m/z. The data-dependent tandem (MS/MS) mass scans were

obtained along with full scans using higher energy collisional dissociation (HCD) of normal-

ized collision energies of 10, 20 and 40 units which were at the mass resolving power

R = 17500. The MS parameters in the Tune software were set as follows: spray voltage of 4 kV

(for negative mode 3.5 kV), sheath gas 30 and auxiliary gas 5 units, S-Lens 65 eV, capillary

temperature 320˚C and vaporization temperature of auxiliary gas was 300˚C. Data was

acquired in full scan mode and data dependent tandem mass spectra (MS/MS) for top 10 most

intense precursors ions.

Data analysis for untargeted metabolite mass spectrometry

The MS raw file was converted to mzML file by MSConvert [27] and MS features were

extracted from mzML files by XCMS [28]. The charge of the MS features was determined by

comparing the isotopic peaks; features with charge> 1 were discarded. The feature’s intensi-

ties across different runs were normalized by spike-in intensities and smoothed across differ-

ent fractions by the median filter (window size: three fractions).

A feature is considered only if it is found in both replicates. Furthermore, we required

intensity profiles of the feature across all the fractions to have a Pearson correlation greater

than 0.5 between the two replicates. As a final filtering step, we determined the signal-to-noise

ratio of features as follows: the maximum value of the smoothened intensity profile was con-

sidered as “signal.” We applied another smoothing step (median filter, window size: six frac-

tions) and took the minimum value as “noise”. Metabolites with signal-to-noise ratio above

five were selected.
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Metabolite identification for the metabolite mass spectrometry

Metabolite MS/MS spectra were searched against public databases (GNPS [29], Metlin [30],

MassBank [31]) and an internal spectral database [32]. The weighted matching score was used

to calculate the match between reference spectrum and experimental spectrum, using an FDR

cutoff of 10% was for metabolite identification.

Sirius 4 [13] and SF-Matching [12] were used for in silico identification: spectra corre-

sponding to the features selected above were searched against a combined database containing

all molecules from KEGG, HMDB, ChEBI, and ChEMBL, plus all possible dipeptides, tripep-

tides, and tetrapeptides. To improve identification accuracy, an identified metabolite was con-

sidered as valid only when it was the consensus result of Sirius 4 and SF-Matching.

Metabolite analysis

For the metabolite classification, we converted the molecular structure into InChI key and

used the ClassyFire website (http://classyfire.wishartlab.com) [33] to assign the metabolites to

classes. The metabolite’s LogP was calculated by the Crippen approach in rdkit packages [34].

The approximate concentration of metabolites was retrieved from the Yeast Metabolome

Database (YMDB) [18]. We excluded the condition “YEB media with 0.5 mM glucose” as its

distribution of concentrations differed from all other reported conditions.

Protein–metabolite interaction prediction

As last three fractions contain many protein and metabolites, to get high confidence protein-

metabolite interactions, we use the data from the first 27 fractions. We calculated two separate

scores for protein–metabolite pairs, based on their correlation and based on the protein’s

abundance. For the correlation score, first, the intensities of protein and metabolite across all

fractions were calculated and smoothed between fractions by a median filter (window size: 3

fractions). Then, Pearson correlations between all identified proteins and metabolites were cal-

culated and protein–metabolite pairs with correlation greater than 0.5 were selected. From

correlations of these 10,251 protein–metabolite pairs, we derived the empirical distribution

function (EDF). The correlation score of a single protein–metabolite pair is the value of the

EDF at the pair’s correlation. To calculate the abundance score for a given protein–metabolite

pair, we determined the fraction which had the highest intensity of this compound. Then, the

protein intensity in this fraction was calculated, and the empirical distribution function was

determined based on the intensities of all proteins across all fractions.

In order to calculate a weighted combination of the two scores, for all possible protein-

metabolite pairs, we log-transformed both scores (using the natural logarithm). Then, all the

known protein-metabolite interactions from the Brenda database [22] were treated as the posi-

tive interactions. The Fisher’s linear discriminant analysis was preformed to find a combina-

tion of weights to maximize the distances between the positive and negative interactions. The

final protein-metabolite interaction scores were calculated by the weights, and the top 10%

scores were selected as the high confidence predictions. As first few fractions contain lipid

from micelles during cell lysis, we removed the interactions containing lipids which mainly

eluted in the first five fractions, which results in 461 protein-metabolites interactions.

Two-step chromatography

The Chaetomium cell lysate was separated by ion-exchange chromatography first. A 5 mL

HiTrap Q XL column (GE) was first equilibrated with buffer A (25 mM pH 7.4 Hepes, 23.75

mM NaCl, 2.5% Glycerol, 2.5 mM KCl, 0.5 mM MgCl2). After injection of the sample, the
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column was washed with the buffer A. Then, bound proteins were eluted with buffer A con-

taining a NaCl gradient (from 25 mM Cl- to 1 M Cl-). Four fractions were collected in total.

The second chromatographic step was performed using the size exclusion chromatography

described above. To enrich for isopentenyl adenine, we collected only the first ten fractions

were collected, which contain most of the compound. These ten SEC fractions were pooled

and analyzed with proteomics and metabolomics as described above.

In vitro translation assay

Isopentenyl adenine (Sigma) and Transcend™ biotinylated lysine tRNA (Promega) were added

into the in vitro translation wheat germ systems (Promega). The mixed reaction system was

incubated at 27˚C for 1 or 2 hours. The synthesized proteins were biotinylated, and then sepa-

rated and detected by Western blot. The HRP-conjugated streptavidin (Sigma) chemilumines-

cent detection system was used to visualize the biotinylated proteins.

Supporting information

S1 Fig. Venn diagram of the number of identified metabolites from different methods.

(PDF)

S2 Fig. Comparison of theoretical and observed molecular polarity.

(PDF)

S3 Fig. Distribution of metabolite concentrations in S. cerevisiae. The red line shows the

distribution all metabolites in the Yeast Metabolome Database. Blue bars show the concentra-

tion of metabolites that we could identify in our experiments.

(PDF)

S4 Fig. The identified metabolites across different fractions. (a) The m/z profile of identified

metabolites. (b) The retention time profile of identified metabolites. (c) The LogP profile of

identified metabolites.

(PDF)

S5 Fig. Probability of tripeptides originating from the proteasome itself. All possible tripep-

tides were searched against the whole proteome to compute the probability of the peptide orig-

inating from proteasome. If the identified tripeptides were the result of digestion or

degradation of the proteasome itself, then we would expect them to be enriched among higher

probabilities. This, however, was not the case.

(PDF)

S6 Fig. Isopentenyl adenine can increase the ribosome’s activity in vitro. (a) Western blot of

four replicates experiments. (b) Quantification of western blot results. The intensity of each

band was determined by Image Lab Software from Bio-Rad. The relative ribosomal activity is

calculated by dividing the intensity of luciferase band to the intensity of the non-specific band,

then normalized by the control which does not contain Isopentenyl adenine. A point from

experiment 1, 1 μM isopentenyl adenine, is removed due to the failure of Western blot experi-

ment. For experiments 2 to 4 (which have at least three data points), we evaluated whether

there is a significant increase in ribosome activity using a one-tailed one-sample t-test between

the treatment conditions and the untreated control. This resulted in p-values of 0.0006, 0.072,

and 0.0163, respectively (raw data in S3 Table). A clearly monotonic dose response could be

observed in all three experiments with 60 minutes incubation time.

(PDF)
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(XLSX)

S2 Table. Proposed protein–chemical interactions. For all proposed interactions, the table

contains: Metabolite (identified by name, InChI key, and InChI), protein community (using

protein identifiers), interaction score, and whether the interaction is known according to the

Brenda database.

(XLSX)

S3 Table. Western blot quantification. This table contains the raw intensity measurements

for S6 Fig.

(XLSX)

S1 Raw images. Raw images for Western blots. This file contains the raw images for S6 Fig.
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