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ScienceDirect
Advances in hard-ware and soft-ware for electron cryo-

microscopy and tomography have provided unprecedented

structural insights into large protein complexes in bacterial

membranes. Tomographic volumes of native complexes in situ,

combined with other structural and functional data, reveal

functionally important conformational changes. Here, we

review recent progress in elucidating the structure and

mechanism of dual-membrane-spanning nanomachines

involved in bacterial motility, adhesion, pathogenesis and

biofilm formation, including the type IV pilus assembly

machinery and the type III and VI secretions systems. We

highlight how these new structural data shed light on the

assembly and action of such machines and discuss future

directions for more detailed mechanistic understanding of

these massive, fascinating complexes.
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Introduction
A distinctive feature of all Gram-negative bacteria is that

they have two membranes — a relatively porous outer

membrane and an impermeable cytoplasmic membrane.

Sandwiched between them is the densely crowded peri-

plasm and shape-determining peptidoglycan layer. Bac-

teria have evolved highly specialized protein machineries

that span both membranes, enabling complex functions,

such as cell movement [1] and molecular targeting, in-

cluding protein secretion and DNA uptake [2]. Patho-

genic and symbiotic Gram-negative bacteria interact with

other cells by secreting effector proteins across both

bacterial membranes, into the extracellular matrix or
www.sciencedirect.com 
directly into host cells [3]. The mechanistic complexity

of these nanomachines is achieved by assembling multi-

ple copies of more than 20 different proteins, including

both soluble and membrane-anchored subunits as struc-

tural and regulatory elements [4]. Understanding their

molecular mechanism requires a combination of structur-

al biology with genetic tools and functional studies. Some

of the most pertinent questions are: how do dual-mem-

brane spanning nanomachines assemble in order to per-

form their biological function? What is their mode of

action? How is communication between different sub-

units regulated and controlled?

Recent advances in single-particle electron cryo-micros-

copy (cryo-EM) have made it possible to determine

structures of isolated proteins or complexes at near-atom-

ic resolution [5]. However, a major technical challenge

associated with studies of large multi-component mem-

brane protein complexes is the difficulty of purifying

them in an intact state. Electron cryo-tomography

(cryo-ET) enables large protein complexes inside cells

to be observed in 3D at a resolution of several nan-

ometers, by tilting a sample through a series of increments

[6,7]. The resolution may be further improved by sub-

tomogram averaging (StA), whereby multiple copies of

the same protein or protein complex are mutually aligned

and added together (Figure 1). This can yield sub-nano-

meter resolution, sufficient to distinguish protein

domains [8] or even secondary structure [9�]. Integration

of higher-resolution information obtained by single parti-

cle cryo-EM or X-ray crystallography into the StA density

maps provides detailed mechanistic understanding at the

level of the entire complex [8,10,11]. In addition, trapping

of specific physiological states or computational classifi-

cation of different protein subsets can yield intermediates

of assembly and function. Here, we review recent excit-

ing insights into structure and dynamics of the type IV pili

(T4P) assembly machinery, and of the type III and VI

secretion systems (T3SS/T6SS) in bacteria [3], obtained

by cryo-EM and cryo-ET.

Requirements for in situ structural analysis
Several technical aspects need to be considered for struc-

tural determination of bacterial membrane protein com-

plexes in situ. Firstly, sample thickness places a strict limit

on the quality of tomographic volumes. In practice this

means a maximum thickness of 400–500 nm. It is possible

to reduce cell thickness by optimizing culture conditions

[12], genetically engineering thin cells or small minicells

[13], or by physical sectioning of the frozen bacteria with a
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Workflow for structure determination of protein complexes in situ by cryo-ET and StA. (1) Top panel: bacterial cells embedded in a layer of

amorphous ice are imaged in the electron microscope. Incremental tilts of the sample yield a series of projections from different viewing angles.

The mutual orientations of the bacterium (brown) and the macromolecular complex of interest (red) vary depending on the projection angle.

Bottom panel: a 08 tilt projection image of a T. thermophilus cell pole. Scale bar, 100 nm. (2) Top panel: a three-dimensional tomogram is

reconstructed from the two-dimensional image series by computational back-projection. Multiple sub-tomograms containing the molecule of

interest are identified and computationally cropped out of the tomogram for StA. Bottom panel: a slice through a reconstructed tomogram of the

cell shown in step (1). Closed T4P (pilus retracted) complexes seen in the periplasm are boxed. Scale bar, 100 nm. (3) Top panel: noisy sub-

tomograms with anisotropic resolution are extracted from the full volume. Bottom panel: a series of extracted sub-tomograms containing the

closed state of the T4P machinery. Scale bar, 50 nm. (4) Left panel: particles are aligned, averaged and classified to recover the structure of the

initial object. Right panel: sub-tomogram average of the T4P machinery in the closed state [41]. Scale bar, 10 nm. (5) Structures are placed back

into three-dimensional space in order to visualize their distribution in the native-like context. The closed state of the T4P machinery (red) is shown

at the cell pole, localized between the inner membrane (yellow) and outer membrane (transparent brown).
diamond knife [14] or a focused ion beam [15]. Secondly,

cryo-EM has benefitted greatly from direct electron detec-

tor cameras [16] and phase plates [17], generating high

quality data in a high-throughput and automated manner.

Thirdly, an inherent problem with cryo-ET is the ‘missing

wedge’ of information, resulting in resolution anisotropy in

the direction of the electron beam [18]. The missing wedge

results from the current physical inability to rotate the

sample in the microscope by a full 1808. Effects of uneven

sampling are alleviated or eliminated by averaging particles

in different orientations by StA [19]. Fourthly, large mem-

brane protein complexes are often flexible, resulting in

variable low-resolution maps. Conformational flexibility

may be reduced biochemically, for example by cross-link-

ing [20], or genetically, by introduction of stabilizing

mutations or truncations, which carry the disadvantage

of compromising the native state of the complex. Alterna-

tively, computational methods of classification can be used

to quantify and account for flexibility [21]. Finally, a

prerequisite for both classification and high resolution is
Current Opinion in Structural Biology 2016, 39:1–7 
the collection of very large particles data sets. Parallel and

GPU-enhanced software, and thorough image analysis

helps to obtain unbiased structures and structural inter-

mediates [21–24].

Bacterial type IV pilus assembly machinery
The type IV pilus is a surface-exposed filamentous protein

polymer that is several mm long, anchored to cells of

evolutionarily divergent Gram-negative and Gram-posi-

tive bacteria [25]. In Gram-negative bacteria, the assembly

machinery forms a multimeric dual-membrane-spanning

protein supercomplex [26]. T4P play an important role in

cell motility, enabling cells to adhere to and move along

surfaces, form colonies and biofilms [1], and can even act as

nanowires carrying electrical current [27]. Pathogenic pro-

teobacteria, such as Pseudomonas aeruginosa and Neisseria
meningitidis, use T4P to mediate adhesion to host cells prior

to infection [28,29]. The machinery that assembles T4P is

also implicated in DNA uptake, which is critical for lateral

gene transfer and adaptive evolution [2]. The T4P is
www.sciencedirect.com
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related to both the archaeal equivalent (the archaellum)

[30], and the bacterial type II secretion system (T2SS) [31],

which in some bacteria secretes proteins and toxins into the

extracellular environment.

The composition of pili varies between species, but they

are predominantly formed of an oligomer of the major

pilin protein (PilA in Pseudomonas and Thermus, PilE in

Neisseria) plus a few copies of different minor pilins [32].

X-ray structures of several major pilins have been

reported [32], demonstrating a conserved fold and a

characteristic ‘lollipop’ shape. A pseudo-atomic model

of a filamentous pilus from Neisseria gonorrhoeae was built

by docking X-ray structures of pilin subunits into a cryo-

EM map of isolated pili, which were �6 nm wide with a

narrow central channel of �1 nm [33]. Studies of multi-

ple species, including N. meningitidis [34] and Thermus
thermophilus [2], have shown that pre-pilins mature by

the action of a peptidase (PilD), then assemble at the

inner membrane by a AAA-ATPase (PilF) with the help

of additional proteins, including PilM, PilN and PilO.

The pilus is directed across the outer membrane through

the pore of a large multimeric �1 MDa secretin protein

(PilQ), which in Thermus is formed by a membrane-

embedded cone-like structure with a series of 6 stacked

rings in the periplasm [35]. Bacterial T4P are unique in

that they can be rapidly retracted through the action of a

cytoplasmic AAA-ATPase (PilT). Retraction results in

forces of 100 pN per single motor [36], making the T4P

machinery the most powerful molecular machine stud-

ied to date. It is this combined action of assembly,

surface adherence and then retraction that enables cells

to move in a jerky fashion, referred to as ‘twitching’

[37,38].

Whilst there have been numerous structural studies of the

bacterial flagellar motor and associated motility [39,40],

very little was known about the in situ structure and

supramolecular assembly of a twitching machinery until

recently. Using cryo-ET of whole bacterial cells, Gold

and colleagues investigated the intact T4P machinery of

T. thermophilus in situ [41��] (Figures 1 and 2a). In order to

render the cells thin enough for reliable particle identifi-

cation and StA, the sample was treated with EDTA,

which revealed large transmembrane T4P complexes

bridging both membranes at the cell poles [41��]. By

analysis of different conformational states, the structure

of the machinery was determined in the closed (pilus

retracted) and open (pilus assembled) conformation. Evi-

dently, the PilQ secretin is extremely dynamic and under-

goes a large 30 Å shift of periplasmic N-terminal domains

and widening of the central pore on channel opening to

make way for the assembled pilus (Figure 2a). The

diameter of the pilus was narrower than previously

reported [33] suggesting that different forms may exist.

Additional protein density was visible in the cytoplasm in

the open state of the complex only. It follows that the
www.sciencedirect.com 
ATPases (PilF/PilT) required for pilus assembly and

retraction may contribute to this density.

A prerequisite for complete understanding of the assem-

bly and dynamics of the various protein components in

the T4P machinery is the assignment of specific densities

within the electron density maps, and determination of

complete high-resolution structural information. X-ray

structures are available for a few proteins, their homo-

logues or small fragments [42–49]. Identification of these

proteins within the supercomplex will require a combi-

nation of genetic manipulation and/or protein labeling

[50,51] with functional studies and further structural

determination. Fitting high-resolution structures into

their corresponding density in cryo-ET maps will provide

important future insights into the composition and func-

tionality of these highly dynamic and versatile molecular

machines.

Bacterial type III secretion systems
The type III secretion system (T3SS or injectisome) is a

machinery that is commonly used to deliver bacterial

effectors from the cytoplasm directly into the cytosol of

a target cell [52,53] in an ATP-dependent manner. The

T3SS is composed of a basal body spanning the bacterial

periplasm (StcC, SctD and SctJ according to the unified

nomenclature [54]), a hollow needle extending into the

extracellular space (SctF) and a cytoplasmic part contain-

ing the T3S export apparatus (SctV, SctR, SctS and SctT),

a sorting platform (SctQ, SctL and SctK) [55] and an

ATPase SctN (Figure 2b). The cytoplasmic part of the

T3SS is evolutionarily related to its counterpart from the

bacterial flagellar motor, responsible for assembly and

secretion [56]. The ATPase SctN is structurally similar

to both F-type and V-type ATPases [57] and is thought to

be responsible for detachment of chaperones and unfold-

ing the exported substrate [58]. Intact injectisomes were

recently observed by cryo-ET inside native Yersinia enter-
ocolitica [59], Salmonella enterica [60] and Shigella flexneri
[59,61��]. In all cases the best resolution was obtained

with bacterial minicells, which were shown to have active

T3SS in Salmonella [62]. The periplasmic component of

Yersinia injectisomes varied in length by �20%, suggest-

ing that its flexibility may be important for the secretion

process. The 27 Å resolution structure of the S. flexneri
injectisome by Hu and colleagues [61��] allowed unam-

biguous localization of the basal body. The proteins of the

sorting platform that were poorly resolved in previous

structures were clearly visible: hexameric SctN is axially

aligned to the C-ring, composed of SctQ, by six radial

spokes of SctL [61��]. Such positioning allows transport of

partially unfolded proteins from SctN to the pore in the

export apparatus protein SctV [61��] and further through

the needle to the host cell.

Recent fluorescent studies in Yersinia demonstrating turn-

over of SctQ suggest that the T3SS is a highly dynamic
Current Opinion in Structural Biology 2016, 39:1–7
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Figure 2
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Cross section models of dual-membrane-spanning bacterial protein machines in the inactive and active state. (a) The T4P machinery, based on

the in situ structure from T. thermophilus. The PilQ secretin (blue) is shown embedded in the outer membrane and extends to the centre of the

periplasm and peptidoglycan layer (grey line). Two gates enclose a periplasmic vestibule, which open on pilus assembly (green). Additional protein

densities, of which the identities are currently unclear, are seen to associate with PilQ to build the entire machinery (C1, P1, P2) as previously

assigned [41]. Protein densities P1 and P2 (yellow) form rings, which are likely attached to PilQ by linker domains (orange) that are not resolved in

the sub-tomogram average. Protein C1 (grey) may be comprised of the soluble part of inner membrane anchored proteins M1 (dark blue), such as

PilC, PilN or PilO, which are thought to form part of the inner membrane assembly platform for pilus biogenesis [2,44,45]. A large cytoplasmic

protein density C2 (red) is visible in the open state only. Candidate proteins include PilM and the ATPases PilF and PilT1/2. (b) Model of the T3SS

based on the in situ structure of the complex from Chlamydia trachomatis: the basal body consisting of SctC (blue), SctD and SctJ (green)

contracts during secretion. The needle, composed of SctF (green) extends into the extracellular space, reaching the host cell membrane with the

needle tip (top, orange). The extracellular plate (red) is Chlamydia – specific and not observed in other studies of T3SS; peptidoglycan layer (grey

line) is observed in most of T3SS-containing bacteria, but not in C. trachomatis. Upon activation, the cytoplasmic density of the sorting platform,

which aligns the SctN ATPase and the export apparatus, becomes more ordered. (c) Model for T6SS secretion. Left: T6SS in a resting state

contains a periplasm-spanning part comprised of TssJ, TssL and TssM [76], an inner tube made of the Hcp protein containing effectors (yellow)

and an extended sheath made of VipA/VipB (purple). Prompted by an as yet unknown trigger, the sheath contracts to release the Hcp tube into

the host cell. The following steps are disassembly of the contracted sheath by a ClpV ATPase and re-building of a new T6SS.
machine [63]. This turnover rate was faster for secreting

injectisomes and required the ATPase SctN for stabiliza-

tion in the non-secreting state [63]. Finally, upon activa-

tion of secretion, assembly of new injectisomes occurs

close to the existing ones [64]. Nans and colleagues

visualized large conformational changes associated with

activation of injectisomes of Chlamydia trachomatis during

host membrane contact with the cultured human cells

[65��]. The periplasmic basal body contracted by 4–5 nm

leading to an extension of the needle outside the bacteria
Current Opinion in Structural Biology 2016, 39:1–7 
reaching the host-cell membrane (Figure 2b). In the

secreting state the sorting platform was significantly bet-

ter defined on the cytoplasmic side, suggesting that

ordering of the sorting platform is related to the

‘pump-like’ contraction of the basal body.

A combination of higher-resolution structures in

both secreting and non-secreting states with computa-

tional analysis [59,66,67] and genetic manipulation will

advance mechanistic understanding of injectisomes and
www.sciencedirect.com
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how secretion is regulated. However, there is as yet no

obvious model system. The injectisome from S. flexneri
has already been visualized in direct contact with a red

blood cell [61��] and its proteins are easy to modify,

providing an opportunity to genetically dissect the

machinery and mechanism. Data collection for struc-

tural analysis will be challenging due to the limited

number of injectisomes per S. flexneri minicell. Chla-
mydia on the other hand, whilst more difficult to modify

genetically, are naturally small, contain numerous injec-

tisomes and may be imaged inside thin human cells

[65��,68]. In the future it may be possible to analyze

structural changes associated to T3S in situ based on a

combination of model systems.

Bacterial type VI secretion systems
Pathogenic bacteria, such as Vibrio cholerae and P. aerugi-
nosa, use the T6SS to kill both eukaryotic and prokaryotic

cells [69]. 25% of all Gram-negative bacteria have at least

one T6SS gene cluster [70]. Based on remote sequence

similarity to the tailed bacteriophage T4 [71], the T6SS is

described as an inverted phage located inside the bacterial

cytoplasm (Figure 2c). It contains a baseplate spanning the

two bacterial membranes, followed by a long inner tube

covered by an outer sheath. Analogous to phages, the

energy for a single secretion ‘shot’ has been suggested

to be stored in the conformational energy of the sheath. An

unknown trigger causes the energy to be converted into

mechanical motion [71]. Basler and colleagues revealed

dynamics of the V. cholerae T6SS by combining fluores-

cence microscopy and cryo-ET. The sheath polymerizes at

the cytoplasmic membrane, forming �1 mm filled tubes.

Upon contraction, the length of the sheath decreases

roughly twofold, the radius increases and the tube appears

empty, suggesting that the contents of the inner tube are

released to the outside of the cell [72].

Structures of entire T6SS in situ are not yet available, due to

the large thickness of cells that typically contain this

system. However, important structural insights have been

gained by single-particle cryo-EM. Atomic structures of

native contracted sheaths purified from V. cholerae [73�] and

Francisella tularensis [74�] demonstrated a high degree of

similarity between the inner domains of the T6SS and

bacteriophage sheaths, while the outer domains were more

divergent. The interaction between sheath subunits is

organized in a 6-start helix, by a network of tightly inter-

acting beta strands; in both cases this network was shown to

be critical for assembly and contraction of the T6SS. Using

cryo-EM, Ge et al. [75] revealed the contraction mecha-

nism of R-type pyocins, which share high similarity to the

inner domains of the both T6SS and phage sheaths; this

data may be used to model the conformational changes

occurring during sheath contraction. Remaining questions

include a mechanistic understanding of effector packing

into the T6SS, details of selective recycling of contracted

sheaths and conformational changes occurring in the
www.sciencedirect.com 
periplasmic baseplate related to effector secretion. Finally,

the membrane-spanning core complex composed of TssJ,

TssL and TssM from pathogenic E. coli revealed by

negative stain EM was shown to be five-fold symmetric

[76], raising the question of how it can be attached to a

sheath with C6 symmetry. In situ structural approaches may

shed light on these questions, however, again this depends

on a good model system. The classical model systems V.
cholerae and P. aeruginosa are thicker than 500–700 nm,

limiting high-resolution cryo-ET.

In a recent StA structure of the Myxococcus xanthus type

IVa pilus machinery [77], the locations of individual

proteins were identified in the complex, leading to a

working model for mechanism of action.

Future directions
In situ structural analysis is now one of the key tools to

study the structure and function of large membrane

complexes in a close-to-native state. Combining this

approach with high-resolution structures that result from

the wider use of advanced instrumentation and genetic

and biochemical manipulations such as gene knock-outs

[5] and electron-dense labeling [50,51] will aid in the

identification of individual components in density maps.

In particular, structural analysis in defined functional

states will help to understand the conformational changes

associated with function. Supportive biochemical func-

tional studies, fluorescence imaging and molecular simu-

lations should then enable a complete mechanistic

understanding of action. We describe how observation

of large multimeric complexes in situ is extremely infor-

mative and may promote application of similar method-

ology to study other dynamic membrane protein systems.

Note added in proof
In a recent StA structure of the Myxococcus xanthus type

IVa pilus machinery [77], the locations of individual

proteins were identified in the complex, leading to a

working model for mechanism of action.
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