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EDITORIAL SUMMARY This protocol describes novoSpaRc, a computational pipeline for de novo 
reconstruction of spatial gene expression from single-cell RNA sequencing with the potential to 
incorporate spatial atlas data to improve the reconstruction.   
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Abstract 
Single-cell RNA-sequencing technologies have revolutionized modern biomedical sciences. A 
fundamental challenge is to incorporate spatial information to study tissue organization and 
spatial gene expression patterns. Here, we describe a detailed protocol for using novoSpaRc, 
a computational framework that probabilistically assigns cells to tissue locations. At the core 
of this framework lies a structural correspondence hypothesis, that cells in physical proximity 
share similar gene expression profiles. Given scRNA-seq data, novoSpaRc spatially 
reconstructs tissues based on this hypothesis, and optionally, by including a reference atlas 
of marker genes to improve reconstruction. We describe the novoSpaRc algorithm, and its 
implementation in an open-source Python package (github.com/rajewsky-lab/novosparc). 
NovoSpaRc maps a scRNA-seq dataset of 10,000 cells onto 1,000 locations in under 5 minutes. 
We describe results obtained using novoSpaRc to reconstruct the mouse organ of Corti de 
novo based on the structural correspondence assumption, the human osteosarcoma cultured 
cells based on marker gene information, and provide a step-by-step guide to Drosophila 
embryo reconstruction in the Procedure to demonstrate how these two strategies can be 
combined. 
 

Introduction 
The emergence of single-cell RNA sequencing (scRNA-seq) technologies during the 

past decade has transformed the biomedical sciences 1,2. High-throughput methods have 
enabled the simultaneous profiling of tens of thousands of cellular transcriptomes stemming 
from the same tissue 3,4, and have been successfully employed throughout multiple 
discoveries, such as to dissect tissue heterogeneity 5,6, to identify rare cell populations 5,7,8, 
and to investigate cell states 5,9 and cell differentiation processes 10,11 among others. 

Most scRNA-seq methods, however, require dissociation of the tissue, which results 
in the loss of spatial information. The physical context of the cells is vital for the understanding 
of biological functions at the global collective scale, such as spatial gene expression patterns 
12–15, the organization of cell types in space 8,16,17, as well as heterogeneous responses to 
perturbations or drug responses throughout diseased tissues 18. At the local level, spatial 
information is critical to thoroughly study cell-cell interactions and individual cellular states 
19. 

A growing number of experimental techniques that preserve spatial information have 
been developed over the past few years to bridge this gap20. While these techniques are 
generally still at least partially limited in throughput14,16,17,21,22 spatial resolution23 and 
commercially available solutions are often costly and do not offer single-cell resolution 24–26, 
experimental techniques are constantly diversifying, advancing and improving27. However, 
there is an urgent need to decipher spatial information from the vast single-cell data that 
already exists. Furthermore, there is a need to leverage the expanding set of high-quality 
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spatial transcriptomic experiments as complementary information for scRNA-seq data and 
learn how to efficiently integrate these two sources of information.  

The challenge of reconstructing spatial gene expression from single-cell data is tackled 
by multiple computational techniques that require the existence of a spatial atlas of marker 
genes to be used as a reference guide. Such reference atlas is generally only feasible for 
stereotypical tissues with robust, relatively simple spatial expression patterns (which can 
repeat across multiple subunits within the tissue), such as liver lobules, the intestinal 
epithelium, and some embryos at early developmental stages. In addition, such reference 
atlas may not be straightforward to construct 28–32. Recently, we presented novoSpaRc33, a 
new computational approach that can spatially reconstruct gene expression without the need 
of a reference atlas, while being able to incorporate it and enhance performance if such an 
atlas exists. 

NovoSpaRc is based on the hypothesis that physically neighboring cells share similar 
transcriptional profiles, so that gene expression, on average, does not change abruptly but in 
a continuous manner for a substantial subset of genes. We formulated this hypothesis within 
the framework of optimal transport34,35 (OT), which allows us to probabilistically assign single 
cells to tissue locations by interpolating between the continuity assumption and other types 
of prior experimental data, such as the spatial expression of a subset of marker genes (or a 
reference atlas), the local density of cells in the tissue, and the technical quality of read 
measurements extracted from single cells. In this manuscript, we provide detailed guidelines 
for using novoSpaRc to recover the spatial organization of cells and genes in their tissue-of-
origin based on single-cell data. 

  



 

4 

Overview of the algorithm and workflow 
The main objective of novoSpaRc is to probabilistically map single cells onto the tissue’s 
physical structure, and infer gene expression patterns across the tissue. To do that, 
novoSpaRc requires a gene expression matrix and a target space (coordinates of the physical 
space). Atlas expression, that is, spatial expression of a subset of genes over the tissue, is an 
additional optional input. Using these inputs, novoSpaRc computes three cost matrices, which 
together allow us to interpolate between minimizing the deviation of a certain mapping from 
a structural correspondence assumption between distances of cells in gene expression and 
physical space, and from a potentially available reference atlas. NovoSpaRc outputs a 
transport matrix, a probabilistic mapping of cells onto the target space locations, using the 
OT framework, and computes the inferred spatial gene expression over the target space.  
 
The workflow is schematically represented in Fig. 1 along a detailed description below of each 
of these steps, the inputs and outputs of novoSpaRc, and optional validations and follow-up 
analyses. 
 
 
 
 

 
 

 

  



 

5 

Input cells and locations descriptions to construct Tissue object (Steps 1-6) 

Cell expression 

The main input to the novoSpaRc algorithm is a gene expression matrix that captures single-
cell gene expression levels within a population of cells. Cell-by-gene matrices where each 
entry is the count of RNA molecules retrieved from scRNA-seq are a typical input. However, 
outputs of other experimental procedures that quantify gene expression levels can be 
integrated as well, such as using RNA quantization through amplification rounds36(Fig. 2), 
fluorescent imaging14,16,17(Fig. 3), or other sequencing techniques 23,37,38(demonstrated for 
Slide-seq data in33). 
 
Preprocessing of the gene expression matrix can be minimal, such as the standard library-
normalization scheme of cell-count normalization and log transformation for scRNA-seq data 
39. Since scRNA-seq protocols suffer from low capture probabilities and expression 
representation is redundant and extensive in dimensions (e.g. ~20K genes), using a 
meaningful low-dimensional representation of expression such as a highly variable set of 
genes or a latent representation of expression (e.g. PCA) can drastically enhance the quality 
and runtime of reconstruction.  

Target space 

A target space is a set of coordinates corresponding to the physical locations across the tissue 
onto which novoSpaRc maps the single cells. The set of locations can span any 1D, 2D, or 3D 
structure corresponding either to the explicit tissue structure or a representation that 
captures the structure’s inherent spatial symmetries. For optimal reconstruction results, the 
shape of the target space should resemble the shape (or underlying symmetries) of the tissue-
of-origin, as the inherent coordinate relationships will be used for the spatial reconstruction. 
Note that while a faithful representation of the tissue-of-origin shape or symmetries is ideal, 
simpler target spaces or ones that only capture local structures and symmetries of the tissue 
are many times sufficient. 
 
There are two ways to create the target space if no prior reference is available. The most 
straightforward way is to use novoSpaRc’s internal functions and create a basic shape target 
space, e.g. rectangle, circle, sphere, prism, etc. If we are interested in reconstructing spatial 
variability along a single axis, for example, such as that corresponding to a one-dimensional 
gradient of oxygen or morphogenes in the biological system, we should use a linear target 
space. For example, in the organ of Corti, a 2D spiral organ essential for hearing, gene 
expression within cell subpopulations mainly varies along a 1D apex-to-base axis. By 
constructing a corresponding 1D target space, we illustrate novoSpaRc expression 
reconstruction along this axis (Fig. 2). Additionally, a target space can be created from 
experimental measurements. Representative images can be processed to determine cell 
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locations (along with their corresponding information for gene expression). This is illustrated 
in the expression reconstruction of human osteosarcoma cultured cells where cell locations 
are deduced from microscope imaging obtained using MERFISH (Fig. 3). A 3-dimensional 
analogue of this case is illustrated in the reconstruction of the Drosophila embryo described 
in the Procedure Section. 

(Optional) atlas expression 

A reference atlas is an optional input, carrying information about the expression levels of a 
subset of genes across the target space. Such a reference atlas can be incorporated into 
novoSpaRc and increase the reconstruction quality by essentially restricting the space of 
possible reconstruction solutions to those that are consistent with the atlas, or by spatially 
regulating the mapping process. The reference atlas can guide the selection of the target 
space. For example, if marker gene expression is measured using in situ imaging at single-cell 
resolution, then we can set the target locations at the cells’ centroid locations. To account for 
atlas information at lower resolution, such as retrieved experimentally from bulk sequencing 
of sectioned tissue 40–42, or from computational local aggregation of nearby cells due to low 
signal23, spatial expression of genes is binned and integrated (e.g. averaged) in order to 
provide expression over the set of target locations.  
 
In general, there are no special requirements or restrictions regarding the data format, 
number of genes, and experimental method used to construct the reference atlas. However, 
reconstruction is likely to benefit from a reference atlas quantifying the expression of spatially 
informative genes. 
 
Given the target space locations, cellular gene expression, and optionally the reference atlas 
of spatial expression, we construct a Tissue object, the main object of the novoSpaRc package. 

Compute cost matrices (Steps 7-8) 
Having the normalized gene expression matrix and the target space at our disposal, and 
potentially a reference atlas, we continue with computing the cost matrices that are needed 
for performing the spatial reconstruction. 

Computing the cell-cell and location-location cost matrices 

The cell-cell cost matrix summarizes the distances between cells in gene expression space, 
and the location-location cost matrix summarizes the physical distances between locations in 
the target space. The assumption at the heart of novoSpaRc states that there is a 
correspondence between the structure of locations in physical space and the structure of cells 
in gene expression space potentially along a low-dimensional nonlinear manifold. More 
concretely, it implies that there is a correspondence between pairwise distances of locations 
in physical space and cells in gene expression space. To capture distances along low-
dimensional structures, we construct k-Nearest Neighbors (kNN) graphs (based on Euclidean 
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distances) in physical space and in gene expression space. The corresponding cost matrices 
are comprised of pairwise distances between cells and locations, computed as the shortest 
paths along the corresponding kNN graphs. These cost matrices would be used to capture the 
essence of the structural correspondence assumption, that is, the averaged transcriptional 
similarity among physically proximal cells.  

Computing the reference atlas cost matrix 

If a reference atlas is available for a subset of genes, the corresponding cost matrix captures 
the discrepancy between the expression of these genes in each cell and in each location of 
the target space. Specifically, we compute the Euclidean distance across the subset of genes 
composing the reference atlas between the cells and locations. 

Compute optimal transport of cells to locations and predict expression over 
target space (Step 9) 

Setting marginal distributions 

Here we set the marginal distributions for both the cells and locations. By default, novoSpaRc 
initializes the marginal distributions to be uniform. This means that the total spatial mapping 
probability associated with each cell is the same, and the total mapping probability associated 
with each location is the same. In cases where non-uniform mapping is desired, where prior 
biological knowledge exists for the physical density of cells, or varying technical quality of 
cells, this can be readily incorporated at this step. 

Setting the alpha parameter 

The alpha parameter is used to interpolate between two modes of reconstruction: (1) a de 
novo spatial reconstruction (! = 0), based only on the underlying structural correspondence 
assumption, and (2) a reconstruction based only on the information provided by the reference 
atlas for the spatial expression of a set of marker genes (! = 1). Intermediate values take into 
account both objectives during the reconstruction. Values closer to ! = 1 reflect higher 
confidence in the reference atlas. For example, a reference atlas corresponding to a single-
cell expression sample of high quality, and composed of a large number of marker genes, 
would be expected to generate highly-informative cell-to-location distances, as shown for the 
MERFISH data (Fig. 3). Values closer to ! = 0 reflect higher confidence in the structural 
correspondence assumption, and when spatial smoothness in gene expression is expected, 
for example due to gradients of oxygen or nutrients, or due to physical progression of the 
cells, such as in the case of the crypt-to-villus axis in the intestinal epithelium12,33.  

Computing the transport matrix 

NovoSpaRc then computes a locally-optimal transport matrix that probabilistically assigns 
single cells to locations through the extended framework of optimal transport as described 
below. 
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Predicting expression over target space 

Given single-cell gene expression (as input) and the transport matrix (assigning each of 
these cells a probability distribution over tissue locations), we can compute the resulting full 
gene expression expected at each of the locations in the tissue-of-origin. Both the optimal 
mapping of cells to locations and the predicted expression can be fetched after 
reconstruction.  

Validation of results and follow-up analyses (Steps 10-14) 

Expression cross-validation 

If available, high spatial correlation between the expression of genes from the reference atlas 
and their predicted expression indicates successful reconstruction, and therefore can be used 
to cross-validate the reconstruction (see Fig. 3b). Based on such quantitative evaluation, the 
algorithm’s parameters (such as !) can be tuned and selected. In addition, displaying genes 
that are expected to be spatially informative (see below) can assist in qualitatively evaluating 
the reconstruction (as displayed in Step 10 in the Procedure Section). 

Localized probabilistic mapping 

With novoSpaRc, we recover a probabilistic mapping of cells over locations in the tissue-of-
origin (as opposed to a discrete one-to-one mapping), which has several advantages: (1) 
probabilistic mapping tends to be more robust in cases where the data is noisy and sparse, as 
in scRNA-seq data, and naturally expresses uncertainty when there is not enough information 
to pinpoint the exact location of a cell; (2) When locations correspond to an experimentally-
acquired reference atlas, it is possible for information of cellular gene expression to be 
distributed over multiple locations, due to the experimental setup (e.g. a cell’s expression 
may be splitted between adjacent beads in Slide-seq23,27); (3) probabilistic mapping is 
computationally advantageous in the context of entropically regularized optimal transport 
(see Mathematical Formulation of novoSparc section). Yet, in general we expect a biologically-
meaningful mapping to reflect a relatively localized mapping of each of the cells in physical 
space (see Step 11 in the Procedure Section). 

Self-consistency validation 

While novoSpaRc probabilistically assigns single cells to tissue locations, the algorithm itself 
is deterministic in the sense that given a certain input and an initialization of the transport 
matrix, the algorithm will always converge on the same solution. Varying mildly the transport 
matrix initialization, the input by subsampling the cells or changing the gene selection, and 
the algorithm parameters, can aid in assessing the robustness of the reconstruction and 
optimizing parameter selection (as shown in Step 12 in the Procedure Section). 
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Verify and identify spatially informative genes 

Identifying spatially informative genes, or genes whose expression varies in a meaningful, 
non-random, pattern across the tissue, is a complex task since meaningful spatial expression 
patterns can be of diverse forms. Here we use a measure for global spatial auto-correlation, 
Moran’s I, to rank genes as spatially informative. The Moran’s I score for a gene with spatial 
expression %, within a user-defined neighborhood & specifying the relation between location 
pairs ', ) in &!"  (we set k-nearest neighboring locations to be the neighborhood of each 
location with equal contribution) is expressed as follows: 

! = !
"
∑ $!%!"$"	
!"
∑ $!$	
!

, 

where *! = (%! − %̄), %̄ is the mean expression, /	is the number of locations, and 1 = ∑ &!"
	
!" . 

We compute the Moran’s I score and its corresponding one-tailed p-value under normality 
assumption. A gene whose expression is significantly correlated among neighboring tissue 
locations (e.g. constant expression over a large region), is considered to be a spatially 
informative gene. Step 13 in the Procedure Section demonstrates differences in Moran’s I 
values for genes considered to be spatially informative (genes assayed for a reference atlas) 
and spatially disordered genes. 

Find dominating spatial archetypes 

To discover the major gene expression patterns over a tissue, we hierarchically cluster the 
predicted expression of spatially informative genes and extract the averaged spatial 
expression of main branches within the reconstructed tree, yielding a set of differential and 
dominant pattern schemes (as shown in Step 14 in the Procedure Section). 
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Mathematical formulation of novoSpaRc 

NovoSpaRc attempts to find a transport matrix 3 ∈ 5$!"##,$#$!, or probabilistic mapping 
between 6 cells and / locations. To enforce assignment of all cells over all locations, we are 
looking for a transport matrix constrained by the marginal cell and location distributions, 
7&'(( ∈ [0,1])×+, 7(,& ∈ [0,1]+×-, 
 

3∗ 	= 	 :;</'6/∈1%!"##,%#$! 	(1 − !)	5
2-,,34(3) 	+ !	553(52(3)	– ?@(3) , 

 
where 5$!"##,$#$! = {3	|3 ∈ [0,1])×-, 31 = 7&'(( , 13 = 7(,& 	}, 17&'(( = 1, 7(,&1 = 1. Here, 
without any additional prior knowledge, we assume uniform marginal distributions for the 
cells and locations, that is  (7&'(()! = 1/6, (7(,&)" = 1//, for cell ' and location ).  
 
We seek to find such 3 that minimizes the objective composed of the following three terms 
described below. 
 
The first term is related to the structural correspondence assumption, aiming to minimize the 
Gromov-Wasserstein discrepancy43,44 between pairwise distances of cells in gene expression 
space, E	'6$ ∈ F7)×), and pairwise distances of locations in physical space, E	$482 ∈ F	7-×-, 
weighted by the transport matrix:  
 

52-,,34(3) = ∑ GHE!"
'6$, E9(

$482I3!93"( 		
&'((2	!,"	(,&53!,)2	9,(		 , 

 
where G is a loss function. Here, we use the quadratic loss 	G(:, J) = +

: (|: − J|)
:. The 

pairwise distances between cells, E	'6$, and locations, E	$482are computed as the shortest 
path distances over the respective kNN graphs constructed over the cells in gene expression 
space and locations in physical space based on Euclidean distance. 
 
The second term is related to a potentially available reference atlas, aiming to minimize the 
discrepancy between the reconstructed spatial gene expression and the spatial expression 
registered by the atlas for the subset of genes it contains, 
 

553(52(3) = ∑ E!9
'6$,$4823!9	

&'((	!	(,&53!,)	9	 , 
 

where we use the Euclidean norm to quantify the discrepancy between the expression levels 
of genes in each of the locations (according to the atlas) and their expression in the set of 
single cells, given by E	'6$,$482 ∈ F7)×-.  
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The algorithm is also compatible for adjusted measures of cell-to-cell expression distances, 
E	'6$, physical location distances, E	$482, and atlas-based, cell-to-location discrepancy, 
E	'6$,$482. 
 
The last term is an entropic regularization term that promotes a disperse mapping,  
 

@(3) = −∑ 3!9 KL< (3!9)	
&'((	!	(,&53!,)	9	 , 

 
The coefficient !	controls the interpolation between the structural correspondence objective 
(52-,,34) and the reference atlas discrepancy objective (553(52). ? sets the weight of the 
entropy regularization. Higher ? values drive the solution towards a higher-entropy 3 (e.g. for 
uniform marginal distributions, when this term dominates the objective, we would expect to 
converge onto a nearly-uniform 3), while lower ? values result in more localized 3.  
 
Using this setup, a (locally) optimal mapping, 3, can be derived with alternating iterations of 
projected exponential gradient descent, by minimizing the overall objective and using 
Kullback-Leibler (KL) projection to constrain the solution to the subspace of transport 
matrices, 5$!"##,$#$!. The integration of the entropy term reduces this process to efficient 
iterations of Sinkhorn’s fixed point algorithm33. 
 
After obtaining an optimal mapping 3∗ (tissue.gw), the spatial gene expression matrix M ∈
F;×-, or the expression of each gene for each location in the target space (tissue.sdge), can 
be recovered by multiplying M = N/3∗, for the original gene expression matrix N ∈ F)×;.  
 
For further mathematical details and full description of the algorithmic approach for 
computing the novoSpaRc transport matrix, please refer to 33. 
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Comparison of novoSpaRc to existing baselines 

Two seminal papers29,45 proposed the first computational approaches, scoring the 
correspondence of cells to locations according to their agreement with a coupled reference 
atlas and using these scores to infer spatial gene expression. This methodology has been 
deployed and extended in various biological contexts (e.g.12,30–33,36,46–48). 
 
In contrast to these methods, novoSpaRc can utilize the geometric structure of cells in gene 
expression space compared to the structure of locations of the target space, which relaxes 
the strong dependency on a reference atlas, yet enables its integration when it is available. 
Additionally, the novoSpaRc framework is rich in interpretable parameters, such as the 
effective neighborhood size and cell densities, and therefore, they can often be estimated 
and leveraged as priors through analysis of the data.  
 
After novoSpaRc was published, additional spatial reconstruction methods were proposed 
which integrate priors including cell density32, and  ligand-receptor communication49,50.  
 
A detailed comparison of several spatial reconstruction methods is presented in Table 1. 

Limitations of novoSpaRc 
Recovering gene expression over a tissue from a cell by gene matrix, with or without using 
prior information, is challenging. In fact, there are many parameters that limit the success of 
any spatial reconstruction method, such as the intrinsic stochasticity of expression, the 
reproducibility of spatial gene expression across multiple tissues of the same type, 
experimental noise, and the correspondence between scRNA-seq data and a reference atlas. 
Beyond the quality of expression information, when there is no “anchor” to break symmetries 
of the target space (like a reference atlas), global transformations have to be considered for 
any de novo reconstruction. While novoSpaRc’s flexibility and probabilistic nature mediate 
such difficulties, they still pose a challenge that is shared across most spatial reconstruction 
methods.  
 
Specifically concerning novoSpaRc’s assumptions, the structural correspondence assumption 
can reconstruct a tissue’s spatial expression solely from individual cells’ expression besides 
complementing an existing reference atlas. Transcription driven by spatial signals, such as 
metabolites gradients, and long-range cell-to-cell communication, as well as the absence of 
cell migration, can boost this assumption as these increase local expression similarities. 
However, components of expression that result from processes detached from the physical 
space, spatial combination of multiple cell types, and disorder such as that associated with 
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cancerous conditions, challenge this assumption. Additional steps including conducting 
separate reconstructions for cells of distinguished cell types (e.g. handling subpopulations of 
the organ of Corti separately, Fig. 2b-c), accounting for specific spatially informative genes 
(e.g. using apex-base differentially expressed genes to recover organization in the organ of 
Corti, Fig. 2d), averaging expression (e.g. cerebellum Slide-seq beads aggregation33), and 
collapsing the physical space to capture inherent expression symmetries (e.g. liver lobule33), 
can also increase the correspondence between physical and expression distances. 
  
When a reference atlas is used for reconstruction, the quality of reconstruction depends on 
the quality of the reference atlas, and the level of correspondence between it and the single-
cell data. 

Applications of novoSpaRc 
We previously applied novoSpaRc to a variety of tissues, including the mammalian liver, 
intestinal epithelium, whole-kidney, and sections of brain cerebellum, as well as Drosophila 
and zebrafish embryos 33. Here, we describe how novoSpaRc successfully reconstructs two 
additional tissues: (i) the base-to-apex organization of the organ of Corti47 de novo, using the 
structural correspondence assumption, and (ii) the spatial locations of osteosarcoma cultured 
cells14 by using only marker gene information, as the signal of local expression similarity is 
expected to be weak. Notebooks for reconstructing both examples are available in the github 
repository. We additionally describe in a step-by-step fashion how to interpolate between the 
structural correspondence assumption and marker gene information by reconstructing the 
Drosophila embryo30,51 and use whole-kidney scRNA-seq dataset52 to benchmark the runtime 
of novoSpaRc (Fig. 4). 

De novo spatial reconstruction of the organ of corti 
The organ of Corti, the receptor organ for hearing, contains multiple layers of cell types, 
extending spirally from base to apex (Fig. 2a). In47 the organ of Corti is first dissected into 
apical and basal halves providing a ground truth of the spatial membership of the cells, 
followed by dissociation to individual cells and quantitative reverse transcription polymerase 
chain reaction (qRT-PCR) for measuring RNA expression levels of 192 genes. Using the 
resulting gene expression matrix, we map these cells to a finer linear grid without a reference 
atlas (de novo). We find that cells that originated from either the apex or the base were 
mapped towards opposite ends of the linear target space (shown in Fig. 2b for outer hair cells 
(OHC)). In addition, the mapping recapitulates the monotonic expression gradient of genes 
known to be zonated towards either the base or the apex (Fig. 2c). These results suggest a 
correspondence between the reconstructed linear grid and the original base-apex axis. 
Moreover, for each of the cell types in the data, we manage to recover gradual mapping 
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towards opposite ends for apex- and base-originating cells with de novo reconstruction using 
their differentially expressed genes (Fig. 2d).  

Reconstruction of spatially disordered expression in cultured osteosarcoma cells 
To show how novoSpaRc can be used to reconstruct spatially disorganized expression, we 
examine a dataset of osteosarcoma cells that were cultured and assayed using a multiplexed 
imaging method, MERFISH 14 (Fig. 3a). For direct comparison to a ground-truth spatial gene 
expression, we synthetically dissociate the original spatially-informed MERFISH data to 
individual cells and use novoSpaRc to infer their original locations. Unlike a tissue, physically 
proximal cells are not generally expected to exhibit transcriptional similarity. Nevertheless, 
employing novoSpaRc and using a few randomly selected marker genes as a reference atlas, 
we manage to reconstruct spatial gene expression for all genes (Fig. 3b). We visualize the 
increase in the quality of reconstruction as more marker genes are employed, with the 
recovery of microenvironments, marked with fibroblast growth factor, FGF18 (Fig. 3c). 

Step-by-step spatial reconstruction of the Drosophila embryo  
In the procedure we describe the steps used for reconstructing the spatial organization of the 
Drosophila embryo given scRNA-seq data30.  The available reference atlas for the Drosophila 
embryo encompasses the expression of 84 transcription factors measured in 3,039 cells using 
FISH (http://www.cb.uu.se/~cris/BDTNP_Imaging.html)51. Throughout the Procedure section, 
we analyze our underlying assumptions using the extensive reference atlas, discuss the 
selection of key parameters, evaluate the reconstruction, and discuss potential extensions of 
the analysis. 
 
 
 

  



 

15 

Materials 

Equipment 

Software 

● Python version 3.5 or later and the standard Python installation package, pip 
(https://pip.pypa.io/en/stable/installing/) 

● NovoSpaRc package (https://pypi.org/project/novosparc/) 

Hardware 

● 32- or 64- bit computer running Linux, Windows or Mac OS X  
● >= 4GB of RAM 
● Internet connection is required for downloading and installing novoSpaRc from PyPi 

Data 

● A single-cell gene expression matrix is needed as input for novoSpaRc.  
● A target space defining the locations within the tissue and atlas gene expression 

describing expression of certain genes over the target space are optional.  

Example data 

In the procedure we go through reconstruction of Drosophila embryo scRNA-seq expression 
30. As a reference atlas, we use the previously constructed Drosophila embryo where 
expression of 84 transcription factors was quantitatively registered for individual cells based 
on FISH imaging (http://www.cb.uu.se/~cris/BDTNP_Imaging.html)51. A tutorial demonstrating 
the use of novoSpaRc to reconstruct single-cell gene expression of the Drosophila scRNA-seq 
dataset is available at: 
https://github.com/rajewsky-
lab/novosparc/blob/master/reconstruct_drosophila_embryo_tutorial.ipynb 

Equipment Setup 

Installation 

To install novoSpaRc, run: 
 

pip install novosparc 

 
Pip retrieves the latest novoSpaRc version from PyPy, as well as the various dependencies 
that are required. To avoid issues with package dependencies, we recommend the use of an 
isolated Python environment. This can be accomplished via conda 
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(https://docs.conda.io/en/latest/) or pipenv (https://github.com/pypa/pipenv) combined 
with virtualenv (https://pypi.org/project/virtualenv/ ) for an isolated python environment. 

Imports 

Import novoSpaRc along with other packages, and their abbreviations used in this tutorial: 

# imports 
import novosparc 
 
import os 
import numpy as np 
import pandas as pd 
import scanpy as sc 
import matplotlib.pyplot as plt 
import altair as alt 
from scipy.spatial.distance import cdist, squareform, pdist 
from scipy.stats import ks_2samp 
from scipy.stats import pearsonr 
 
import random 
random.seed(0) 
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Procedure 
 
 
 
Input cells and locations descriptions to construct Tissue object Timing: 1 second 

1. Read gene expression data. 
Here, we use Drosophila embryo scRNA-seq expression data30 to demonstrate the 
reconstruction process. Start by reading the data into Scanpy’s 53 AnnData format (see 
https://anndata.readthedocs.io/en/stable/anndata.AnnData.html for details):  
 

# reading expression data to scanpy AnnData (cells x genes) 
data_dir = 'novosparc/datasets/drosophila_scRNAseq/' 
data_path = os.path.join(data_dir, 'dge_normalized.txt') 
dataset = sc.read(data_path).T 
gene_names = dataset.var.index.tolist() 
 
num_cells, num_genes = dataset.shape # 1297 cells x 8924 genes 

 
2. Preprocess data. 
In this example, the data is saved after preprocessing. In case of an unprocessed count 
matrix, however, standard39, or data-tailored preprocessing is recommended. Since 
novoSpaRc reads the dataset as a Scanpy AnnData object, we can apply standardized 
preprocessing steps. For example: 

 

# preprocess 
sc.pp.normalize_per_cell(dataset) 
sc.pp.log1p(dataset) 

 
After preprocessing, it is worth observing the data size before proceeding. Potentially, 
we can subsample the number of cells to shorten runtimes and to assess robustness 
of reconstruction by using different subsets of cells: 

 

# optional: subset cells 
num_cells = 1000 
sc.pp.subsample(dataset, n_obs=num_cells) 

 
3. (Optional) Generate low dimensional representation of the data. 

To reduce the noise, capture meaningful expression distances between cells and 
reduce runtimes, it is advisable to decrease the dimension of gene expression data. 
This can be done by subsetting the gene expression matrix for highly variable genes or 
using PCA representation. An order of hundreds (~500-1,000) of highly variable genes, 
or tens (~50) of PCs are usually a good choice for our runs.  
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# optional: generating a lower representation of expression 
dge_rep = None # a representation of cells gene expression 
sc.pp.highly_variable_genes(dataset) 
is_var_gene = dataset.var['highly_variable'] 
var_genes = list(is_var_gene.index[is_var_gene]) 
 
# alternative A: variable expressed genes representation 
dge_rep = dataset.to_df()[var_genes] 
 
# alternative B: pca representation 
n_comps = 50 
sc.pp.pca(dataset, n_comps=n_comps) 
dge_rep = pd.DataFrame(dataset.obsm['X_pca']) 

 
4. Create a target space.  

We provide three alternatives for determining the locations of the target space, 
depending on the existing knowledge about the shape of the tissue (Fig. 5a-c). 

 
A. Using a reference atlas  

i. If a reference atlas is used, then the target space consists of its set locations 
(Fig. 5a). Here we use the previously constructed virtual Drosophila embryo 
where expression of 84 transcription factors was quantitatively registered for 
individual cells from FISH imaging 
(http://www.cb.uu.se/~cris/BDTNP_Imaging.html). Load available target space 
as follows: 

 

# alternative A: target space available apriori 
atlas_dir = 'novosparc/datasets/bdtnp/' 
target_space_path = os.path.join(atlas_dir, 'geometry.txt') 
locations = pd.read_csv(target_space_path, sep=' ') 
num_locations = 3039 
locations = locations[:num_locations][['xcoord', 'zcoord']].values 

 
B.  Using a prior shape without exact locations  

i. In cases where we know the general shape of the tissue but we are missing 
specific locations of the cells, the target space can be generated from a binary 
image (Fig. 5b). Coordinates of every black pixel within the input image are set 
as a target location. To decrease the resolution of spatial expression, we can 
also subsample the locations of the target space (e.g. here 3039 locations are 
sampled). Generate locations from a binary image as follows: 
 

# alternative B: prior shape without exact locations 
tissue_path = 'novosparc/datasets/tissue_example.png' 
locations = novosparc.gm.create_target_space_from_image(tissue_path) 
locations = locations[np.random.choice(locations.shape[0], num_locations), :] 
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C. No prior knowledge of the target space  

i. NovoSpaRc can create a target space by setting locations on certain basic 
shapes. Current supported shapes include filled circle, 2D torus projection, 
rectangular grid, sphere, and torus. Grids can be populated with equidistant or 
randomly drawn points. Generate a circle filled with equidistant grid as the 
target space as follows (Fig. 5c): 

 

# alternative C: no prior knowledge of target space 
locations = novosparc.gm.construct_circle(num_locations=num_locations) 

 
Setting target space dimension and collapsing symmetries: although tissues are 
generally 3D objects (or 2D for a monolayer of cells), there is often a lower dimension 
subspace that dominates the expression variation. Therefore, to characterize the 
expression across a tissue, we sometimes prefer to construct a target space of lower 
dimension. In addition, we may want to collapse symmetrical regions. Here, for 
example, the Drosophila embryo is represented by a 2D projection, and instead of 
inferring the spatial expression of both sides of the embryo, we make use of the 
bilateral symmetry and map cells to a single side. 
 
Setting num_locations: the number of locations to map cells to, num_locations, sets 
the location density of the tissue. While the number of locations should be upper 
bound by the number of cells, to increase the robustness of the reconstruction and to 
identify low-resolution spatial patterns, we often choose a smaller num_locations 
value (for example, to identify 1-dimensional monotonic gene expression gradients it 
may be sufficient to set num_locations to be in the order of 10, as shown for the 
reconstruction of the liver lobule and intestinal epithelium33).  

 
5. (Optional) Read atlas expression. 

Available reference marker genes can be used to achieve a better reconstruction (Fig. 
6). We deploy here the measurements of 84 transcription factors reported from FISH 
imaging (http://www.cb.uu.se/~cris/BDTNP_Imaging.html) (Fig. 6a). Read the atlas into 
a Scanpy AnnData object (atlas), where columns correspond to the reference atlas 
genes and rows to positions of the target space locations. If the loaded atlas locations 
were subset in Step 4, we select the same locations (or rows) here: 
 

# reading reference atlas 
atlas_path = os.path.join(atlas_dir, 'dge.txt') 
atlas = sc.read(atlas_path) 
atlas_genes = atlas.var.index.tolist() 
atlas.obsm['spatial'] = locations 
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pl_genes = ['sna', 'ken', 'eve'] 
novosparc.pl.embedding(atlas, pl_genes) 

 
Expression can also be potentially inferred over a configured target space from images 
or from previously binned spatial expression, for instance, using interpolation tools 
(e.g. using scipy.interpolate package).  
 
If an atlas is provided, then one can test to what extent the structural correspondence 
assumption holds over the atlas genes. A proxy for this test is to examine if the 
expression distances versus their physical distances indeed exhibit an increasing 
monotonic relationship (code below, Fig. 7a), and that this monotonicity persists when 
comparing the expression and location cost values (as computed in Steps 7-8 and 
shown in33).  
 

# tip: visualizing loc-loc expression distances vs their physical distances 
novosparc.pl.plot_exp_loc_dists(atlas.X, locations) 

 
Optionally, examine how "spatially informative" the marker genes are, use Moran’s I 
measure for spatial auto-correlation as follows (Fig. 7b): 
 

# tip: testing how spatially informative are the atlas’ marker genes 
mI, pvals = novosparc.an.get_moran_pvals(atlas.X, locations) 
df = pd.DataFrame({'moransI': mI, 'pval': pvals}, index=atlas_genes) 
 
gene_max_mI = df['moransI'].idxmax() 
gene_min_mI = df['moransI'].idxmin() 
 
 
novosparc.pl.embedding(atlas, [gene_max_mI, gene_min_mI]) 

 
6. Construct a Tissue object. 

So far, we constructed the input for the spatial reconstruction. Next, initialize a Tissue 
object with the cell expression dataset in the form of a Scanpy AnnData object and the 
target space locations as a two-dimensional numpy ndarray of shape num_locations x 
dimensions (in case the tissue is one-dimensional, locations should still be two-
dimensional): 
 

# construct Tissue object 
tissue = novosparc.cm.Tissue(dataset=dataset, locations=locations) 

 
Compute cost matrices Timing: 5 seconds 
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7. Set parameters for cost matrices. 
The OT framework interpolates between two objectives, optimizing structural 
correspondence and minimizing atlas-based discrepancy. 
 
First set the parameters for each objective. For the structural correspondence 
(smoothness) objective, set the number of neighbors to use for constructing the kNN 
graphs over cells and locations.  
 
If using the atlas (linear) objective, then novoSpaRc requires a two-dimensional numpy 
ndarray, atlas_matrix, of shape num_locations x num_markers, and a one-dimensional 
numpy array of the corresponding indices of the marker genes in the expression 
matrix, markers_to_use: 
 

# params for smooth cost 
num_neighbors_s = num_neighbors_t = 5 
 
# params for linear cost 
markers = list(set(atlas_genes).intersection(gene_names)) 
num_markers = len(markers) 
atlas_matrix = atlas.to_df()[markers].values 
markers_idx = pd.DataFrame({'markers_idx': np.arange(num_genes)},            
                            index=gene_names) 
markers_to_use = np.concatenate(markers_idx.loc[markers].values) 

 
Setting num_neighbors_s, num_neighbors_t: Assume there is an expression “niche”, 
or a microenvironment, around a cell where expression differences within the niche 
are subtle. Then, num_neighbors_s, the number of neighbors to consider for the cell 
nearest neighbor graph should correspond to the cell radius of this niche. Therefore, 
we often choose num_neighbors_s to be the number of immediate neighbors in space, 
depending on the grid’s dimensionality (e.g. for 1D, ~2 neighbors, for 2D, ~5-8 
neighbors). The optimal num_neighbors_t value can be tuned depending on the overall 
number of cells, level of noise, and the dimensionality of the grid the cells are mapped 
to. Empirically, we found that num_neighbors_t values between 3-15 yield robust 
spatial embeddings. 
 

8. Compute cost matrices. 
We provide several options for computing the cost matrices: 

A. Handle both objectives together 
i. If we wish to use all data (e.g. all genes, cells and locations) and compute the 
corresponding cost matrices, then run: 
 

# alternative A: setup both assumptions  
tissue.setup_reconstruction(atlas_matrix=atlas_matrix, 
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                            markers_to_use=markers_to_use,  
                            num_neighbors_s=num_neighbors_s,  
                            num_neighbors_t=num_neighbors_t) 

 
B. Handle each objective separately 

i. Each of the corresponding cost matrices should be set separately if: (1) we 
want to use a lower dimensional representation of expression for the 
structural correspondence objective, such as the PCA representation of the 
expression matrix (saved in dge_rep as a numpy array of shape num_cells x 
n_comps), or (2) we use only one of the objectives. Set the corresponding cost 
matrices as follows:  
 

# alternative B: handling each assumption separately 
tissue.setup_smooth_costs(dge_rep=dge_rep) 
tissue.setup_linear_cost(markers_to_use, atlas_matrix) 

 
C. Directly set cost matrices 

i. There are cases where the default procedure for deriving a cost matrix is less 
suitable. For example, when there are very few cells or locations, we may want 
to skip the kNN graph construction in order to preserve the complete distance 
information. In that case, we can compute and feed the cost matrices to the 
Tissue object directly as numpy arrays of shapes (num_cells x 
num_locations), (num_cells x num_cells), (num_locations x 

num_locations), for markers_cost, exp_cost, loc_cost, respectively. 
Normalize all cost matrices (e.g. divide by the maximum value) and, for 
locations and expression cost matrices also center the distances (e.g. subtract 
the mean) for comparable scaling: 

 

# alternative C: directly set cost matrices. 
tissue.costs[‘markers’] = markers_cost 
tissue.costs[‘expression’] = exp_cost 
tissue.costs[‘locations’] = loc_cost 

 
CRITICAL STEP It is best to examine all cost matrices (e.g. using 
plt.imshow(tissue.costs[‘expression’])) to ensure that the matrices are non-
uniform and do not have non-finite values (e.g. nan, or inf), otherwise troubleshooting 
is required. 
 
?Troubleshooting 

 
Compute optimal transport of cells to locations and predicted expression over target space 
Timing: 10 seconds 
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9. Compute OT of cells to locations with a given alpha parameter: 

 

# compute optimal transport of cells to locations 
alpha_linear = 0.8 
epsilon = 5e-3 
tissue.reconstruct(alpha_linear=alpha_linear, epsilon=epsilon) 

 
Setting alpha_linear: alpha_linear parameter (!) controls the contribution of the 
reference atlas relative to the structural correspondence objective. alpha_linear=0 
means that no prior information is available and de novo reconstruction is performed. 
alpha_linear=1 amounts to only using the marker gene information for the 
reconstruction. Here we run with alpha_linear=0.8 as the atlas contains many 
spatially informative genes.  
 
Setting epsilon: The epsilon parameter is associated with the entropic 
regularization term. A low epsilon results in a more localized mapping and a higher 
epsilon with a higher-entropy (approaching a uniform) mapping. Setting a relatively 
low epsilon (e.g. epsilon = 5e-3) is often necessary to achieve differential expression 
across positions. However, choosing an epsilon that is too low can lead to numerical 
errors (see Troubleshooting). For convenience, running the computation with 
argument search_epsilon=True automatically attempts reconstruction with a greater 
epsilon if numerical errors are observed. 
 
Setting marginal distributions: By default, marginal distributions are set as uniform 
over cells and locations. For cases where we would like to assign different probabilities 
to different cells (e.g.  the marginal probability of a cell is proportional to its sequenced 
reads, expressing our confidence in individual cells’ expression measurements), or to 
different locations (e.g. reflecting varying cellular density), it is also possible to 
manually set the marginal probability distributions of cells, p_expression, and of 
locations, p_locations. For example, we can adjust the marginal distribution over 
locations to reflect a denser cell composition near the center of the tissue (Fig. 5d): 
 

# adjust location marginals gradual cell density from the tissue’s center 
rdist = novosparc.gm.prob_dist_from_center(locations) 
 
atlas.obs['Alternative location marginals'] = rdist 
novosparc.pl.embedding(atlas, ['Alternative location marginals']) 
 
tissue.reconstruct(alpha_linear=alpha_linear, epsilon=epsilon, p_locations=rdist) 
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Once computed, the transport matrix is available in Tissue’s object field tissue.gw 
(numpy ndarray of dimensions num_cells x num_locations), and the predicted 
expression in tissue.sdge (numpy ndarray shaped as num_genes x num_locations). 
 
?Troubleshooting 
 

Validation of results and follow-up analyses Timing: 45 seconds 
 

10. Validate predicted expression over target space. 
tissue.sdge captures the predicted gene expression over the target space locations. 
Visualize the inferred expression by constructing a Scanpy object for the predicted 
spatial expression (Fig. 6b): 
 

# reconstructed expression of individual genes 
sdge = tissue.sdge 
dataset_reconst = sc.AnnData(pd.DataFrame(sdge.T, columns=gene_names)) 
dataset_reconst.obsm['spatial'] = locations 
 
novosparc.pl.embedding(dataset_reconst, pl_genes) 

 
An inherent feature of de novo reconstruction, not restricted to the novoSpaRc 
algorithm, is that the orientation of the reconstructed virtual tissue is arbitrary up to 
global transformations (reflections, rotations and translations), relative to the 
respective axes of symmetry of the target space (see more detailed discussion in33).  
 
Any information regarding the spatial expression of a subset of genes, whether it is 
location-specific or general lower-resolution information of where, or in what patterns 
a gene is expressed, can help validate the results of the reconstruction. 
Retrospectively, we can visually assess the validity of the reconstruction by plotting 
the reconstructed spatial expression of a gene and compare it to the information at 
hand, and, if applicable, quantify the correlation between the original and predicted 
expression.  
 
Moreover, to cross-validate our reconstruction, we can measure expression 
correlation while varying individual, or multiple parameters, such as the selected 
expression representation (e.g. highly variable genes, or PCs), num_locations, 
num_neighbors_s, num_neighbors_t, epsilon and alpha_linear. For example, we probe 
the choice of alpha_linear when less marker genes are available, using 40 random 
markers (Fig. 8a):  

 

# cross-validation with atlas 
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repeats = 10 
num_markerss = [40] 
alpha_linears = np.arange(0.5, 1.0001, 0.1) 
 
df_corr_atlas, df_corr_repeats = novosparc.an.correlation_random_markers(tissue,  
                                              with_atlas=True, 
                                              with_repeats=False, 
                                              alpha_linears=alpha_linears, 
                                              epsilons=[epsilon], 
                                              num_markerss=num_markerss, 
                                              repeats=repeats) 
 
tit='Correlation with atlas' 
alt.Chart(df_corr_atlas, title=tit).mark_boxplot().encode(x='alpha_linear:Q',  
                                         y='Pearson correlation:Q') 

 
?Troubleshooting 
 

11. Validate localized mapping of individual cells. 
The mapping of cells to locations is available in the matrix tissue.gw (Fig. 9a). The 
dimensions of the numpy ndarray are num_cells x num_locations, and each entry 
represents the relative probability that a cell is mapped to a specific spatial position. 
Cells can be spread across multiple locations, and the spatial expression pattern is 
computed as a weighted average of cellular expression. Validate mapping of cells as 
follows: 

 

# probability of individual cells belonging to each location 
gw = tissue.gw 
ngw = (gw.T / gw.sum(1)).T 
cell_idx = [1, 12] 
cell_prb_cols = ['cell %d' % i for i in cell_idx] 
dataset_reconst.obs = pd.DataFrame(ngw.T[:, cell_idx], columns=cell_prb_cols) 
 
novosparc.pl.embedding(dataset_reconst, cell_prb_cols) 

 
To overview how localized the transport matrix is, one can examine the distribution 
(over all cells) of the entropy of the transportation of individual cells (ent_T) and 
statistically compare it (e.g. using Kolmogorov–Smirnov test (KS)) with randomized 
transportations (e.g. with random mapping, ent_T_rproj, Fig. 9b). If cells are 
uniformly mapped across locations, see the Troubleshooting section. Evaluate the 
entropy distribution as follows: 

 

# evaluate entropy of transportation 
ent_T, ent_T_unif, ent_T_rproj, ent_T_shuf = 
novosparc.pl.plot_transport_entropy_dist(tissue_with_markers) 
 
ks_2samp(ent_T, ent_T_rproj) # KstestResult(statistic=1.0, pvalue=0) 
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?Troubleshooting 

 
12. Self-consistency analysis. 

As the optimal transport framework converges to a local optimum, it is useful to 
examine the robustness of the results. Self-consistency analysis without a reference 
atlas can be done by performing multiple reconstruction runs with random 
initialization (setting random_ini=True in tissue.reconstruct), subsampling cells used 
for reconstruction, or adding external noise or induced sparsity to the expression 
matrix. If we are using a reference atlas for reconstruction as here, it is also possible 
to vary the reference atlas genes used for reconstruction. Set with_repeats=True in 
novosparc.an.correlation_random_markers (Step 10) to quantify the stability of 
alpha_linear values (Fig. 8b).  

 
13. Verify and identify spatially informative genes. 

Compare Moran’s I values using tissue.calculate_spatially_informative_genes  for 
genes that are expected to be spatially informative (for example, marker genes 
denoted by  atlas_genes, are often chosen to be assayed because they are spatially 
informative), and non-informative (e.g. cell-cycle-related genes, cyc_genes) as shown 
in Fig. 10. Once computed, tissue.spatially_informative_genes holds a pandas 
DataFrame with the following columns:  genes, mI, pval, corresponding to each of 
the genes’ name, Moran’s I value and its corresponding one-tailed p-value computed 
under normality assumption using permuted locations (the size of neighborhood used 
can be set using n_neighbors), respectively: 

 

# verify spatially informative genes 
cyc_genes = [g for g in gene_names if g.startswith('Cyc')] 
mI_genes = cyc_genes + atlas_genes 
 
tissue.calculate_spatially_informative_genes(mI_genes) 
genes_with_scores = tissue.spatially_informative_genes 
 
genes_with_scores.index = genes_with_scores['genes'] 
 
gene_groups = {'Atlas': atlas_genes, 'Cell-cycle': cyc_genes} 
novosparc.pl.plot_morans_dists(genes_with_scores, gene_groups) 
 
gene_max_mI = genes_with_scores['genes'].iloc[0] 
gene_min_mI = genes_with_scores['genes'].iloc[-1] 
 
novosparc.pl.embedding(dataset_reconst, [gene_max_mI, gene_min_mI) 

 
Furthermore, using this code, we can also identify novel spatially informative genes. 
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14. Extract archetypes. 
Beyond examining the recovered spatial expression of individual genes, we can further 
cluster the spatial expression profiles to num_clusters archetypes to capture 
prototypical expression patterns and identify spatial gene expression programs of 
spatially informative genes (e.g. extracting archetypes for the inferred spatial 
expression of atlas marker genes, Fig. 11). The spatial expression archetypes (numpy 
ndarray of num_clusters x num_locations), the cluster assignment for each gene, 
clusters (numpy ndarray of length num_genes), and the correlation of the gene and 
its chosen archetype, gene_corrs (also numpy ndarray of length num_genes), are 
computed using novosparc.rc.find_spatial_archetypes: 
 

# extracting archetypes 
num_clusters = 10 
atlas_indices = pd.DataFrame(np.arange(num_genes), 
index=gene_names)[0].loc[atlas_genes].values 
 
archetypes, clusters, gene_corrs = 
novosparc.rc.find_spatial_archetypes(num_clusters, sdge[atlas_indices,:]) 
 
arch_cols = ['archetype %d'% i for i in np.arange(num_clusters)] 
dataset_reconst.obs = pd.DataFrame(index=dataset_reconst.obs.index) 
df = pd.DataFrame(archetypes.T, columns=arch_cols) 
dataset_reconst.obs = pd.concat((dataset_reconst.obs, df), 1) 
 
novosparc.pl.embedding(dataset_reconst, arch_cols) 
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Troubleshooting 

Troubleshooting advice can be found in Table 2. 

Timing 
Total runtime for the example given in the Procedure is under 1.5 minutes: 
 
Equipment setup, novoSpaRc installation via pip: 10 seconds 
Steps 1-6, Input cells and locations descriptions to construct Tissue object: 1 second 
Steps 7-8, Compute cost matrices: 5 seconds 
Step 9, Compute optimal transport of cells to locations and predicted expression over target 
space: 10 seconds 
Steps 10-14, Validation of results and follow-up analyses: 45 seconds 
 
Since runtimes of the setup and reconstruction steps depend on the numbers of cells, 
locations and genes that are used for reconstruction, we benchmarked the scalability of 
novoSpaRc on an extensive (~40K cells) dataset of whole-kidney scRNA-seq52 (Fig 4). All 
runtime calculations are done on a workstation with Intel(R) Core(TM) i7-9800X CPU @ 
3.80GHz and 64 GB RAM.  

Anticipated results 
The results in the Procedure Section highlight the prerequisites, validity checks, integration 
and benefits of the structural correspondence objective and the reference atlas objective in 
the novoSpaRc framework. Specifically, beyond describing conventional steps that are 
relevant for any reconstruction (e.g. preparation steps 1-4), we leverage the extensive 
reference atlas to evaluate the structural correspondence assumption and find that gene 
expression of nearby cells (e.g. within a radius of ~40 cells) is expected to be more similar 
than expression of cells that are farther away (Fig. 7a). We additionally evaluated the spatial 
auto-correlation scores of the genes composing the reference atlas (Fig. 7b).  
 
Based on our analysis, we chose alpha_linear, the parameter used to interpolate between 
the two objectives, to lean towards the reference atlas objective. The atlas here holds 
information for a large number of spatially informative genes (84 transcription factors). In 
such a case, a maximal alpha_linear value is often favored. However, in many scenarios the 
reference atlas at hand is less informative, resulting in a tradeoff between using a larger 
alpha_linear value, leading to reconstructed spatial expression which is more in agreement 
with the expression of the reference atlas (Fig. 8a), and using a smaller alpha_linear value, 
biasing the reconstructed spatial expression towards smoother solutions (consistent with the 
structural correspondence assumption) (Fig. 8b).  
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We further evaluate the reconstruction by ensuring that the embedding of single cells is 
relatively localized within the tissue (Fig. 9), and that the spatial expression of marker genes 
given by the reference atlas is correlated to their inferred spatial expression by novoSpaRc 
(Fig. 6). Finally, hierarchical clustering of spatial expression patterns into spatial archetypes 
can generate more robust, interpretable spatial signatures (Fig. 11).   
 
The basic outputs of spatial reconstruction using novoSpaRc are summarized in Table 3. 

Data availability 
All data analyzed within this protocol are publicly available. The osteosarcoma dataset14 (Fig. 
3) and the organ of Corti data47 (Fig. 2) can be downloaded from the accompanying 
supplementary files of their corresponding manuscripts. The Drosophila embryo scRNA-seq 
data 30 used in the Procedure Section was acquired from the GEO database with accession 
number GSE95025, and the reference BDTNP dataset can be downloaded directly from the 
BDTNP webpage 51,54. The whole-kidney dataset 52 used for benchmarking runtimes (Fig. 4) is 
available in the GEO database with accession number GSE107585. 

Code availability 
NovoSpaRc is available as a Python package at https://pypi.org/project/novosparc/, and its 
source code is available on GitHub (https://github.com/rajewsky-lab/novosparc) and on 
Zenodo55.  
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Figure 1: Schematic representation of the novoSpaRc algorithm. a, Preparation of inputs for 
novoSpaRc’s Tissue object – constructing a target space and reading gene expression 
datasets. If a reference atlas is used, then the target space corresponds to its locations. b, 
Computation of cost matrices including physical distances between locations and expression 
distances between cells, both computed as the shortest path in k-Nearest Neighbors (kNN) 
graphs. If a reference atlas is used, then an additional cost matrix of atlas correspondence 
captures the expression discrepancy between locations and cells according to the reference 
atlas. c, Computing the optimal transportation of cells to locations (tissue.gw) given a 
parameter ! interpolating between the structural correspondence and atlas correspondence 
objectives. The predicted expression of genes over locations (tissue.sdge) is then computed 
by matrix multiplication of cellular gene expression and their probabilistic mapping to 
locations (tissue.gw). The output probabilistic embedding and the predicted spatial gene 
expression can be fetched from the Tissue object.  

Figure 2: NovoSpaRc successfully reconstructs de novo the organ of Corti. a, Illustration of 
the organ of Corti where regions of distinct cell types, including outer hair cell (OHC), spirally 
span the base-to-apex axis of the cochlea. b, De novo mapping OHCs (based on single-cell data 
in 47) to a 1D grid (x-axis), correctly places cells of differing original base/apex membership 
(blue/orange respectively), with high probability (y-axis) at opposite sides of the grid. c, Genes 
known to be zonated towards either the base or the apex in OHC cells 47 are successfully 
reconstructed as such, without a reference atlas. The expression level of each gene is 
normalized to its maximum value. d, Base/apex membership values are recapitulated at 
opposite ends with de novo mapping for each of the organ of Corti cell types using their 
differentially expressed genes. Cell-type abbreviations: Greater Epithelial Ridge (GER), Inner 
Border Cell (IBC), Inner Hair Cell (IHC), Inner Phalangeal Cell (IPH), Inner Pillar Cell (IPC), Outer 
Pillar Cell (OPC), Deiters’ Cell row 1-2 (DC12), and Deiters’ Cell row 3 (DC3). For (b,d) 
membership values are normalized to the maximum layer mean. Error bars represent the 
standard error.  

 
Figure 3: Spatial reconstruction of osteosarcoma cultured cells using marker gene 
information. a, Cellular microenvironments 14 in cultured osteosarcoma cells visualized using 
FGF18 gene expression level as captured with MERFISH technology14. b, The quality of 
reconstruction, computed by the median Pearson correlation between the original gene 
expression and spatial expression reconstructed by novoSpaRc, improves with the number of 
marker genes and reaches saturation using 4 marker genes. The results are averaged over 20 
different combinations of marker genes. Centre line: median; box limits: q1 and q3 quantiles; 
whiskers: extend to [q1 - 1.5 * IQR, q3 + 1.5 * IQR] with IQR (interquartile range) = q3-q1; 
dots: outside the defined range. c, Spatial reconstruction of FGF18 gene expression using 
(1,2,4) marker genes. 2 random markers are sufficient to recover the FGF18 
microenvironment signatures. 
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Figure 4: Computing times of the setup and reconstruction steps. NovoSpaRc’s runtimes on 
a whole-kidney dataset52 for de novo reconstruction with varying numbers of cells and 
locations. 840 highly variable genes are used for the reconstruction. a, Setup consists of 
computing expression and location cost matrices (Steps 7-8). b, Reconstruction computes 
the optimal transport of cells to locations (Step 9).  
 
Figure 5: Configure target space. When constructing a target space (Step 4) we can set the 
locations to be, a, read from a file when available, b, sampled from a binary image given a 
certain shape, or, c, set on a regular grid within one of a few preset shapes such as an oval 
(locations can then be visualized with plt.scatter(locations[:,0], locations[:,1], s=1)). 
d, When running tissue.reconstruction (Step 9), we can incorporate more information 
regarding locations in the target space, such as non-uniform marginal probability 
distribution over locations (here, corresponding to denser cell concentration near the center 
of the tissue).   
 
Figure 6: Spatial expression based on reference atlas and novoSpaRc reconstruction. a, 
Visualizing spatial gene expression patterns of three genes (sna, ken, eve) based on the 
Drosophila embryo BDTNP reference atlas51, and b, their reconstruction by novoSpaRc from 
scRNA-seq data (available in tissue.sdge). Corresponding Pearson correlation values are 
indicated. 
 

Figure 7: Structural correspondence and Moran’s I score for the Drosophila reference 
atlas. a, Assessing the structural correspondence assumption in the Drosophila reference 
atlas51 by plotting the pairwise Euclidean distances between cells in terms of their gene 
expression vs. their physical locations. Centre line: median; box limits: q1 and q3 quantiles; 
whiskers: extend to [q1 - 1.5 * IQR, q3 + 1.5 * IQR] with IQR (interquartile range) = q3-q1; 
dots: outside the defined range. b, Visualizing the spatial expression of reference atlas genes 
sna, zen2 with maximal (left) and minimal (right) spatial auto-correlation (Moran’s I) score, 
respectively. Mean Moran’s I score for reference atlas genes = 0.88. 
 
Figure 8: Cross-validation and self-consistency for selecting alpha-linear. Assessing 
alpha_linear parameter by measuring a, the correlation between novoSpaRc reconstruction 
of the Drosophila embryo and the corresponding reference atlas, and b, the average 
correlation within a group of novoSpaRc’s reconstructions. For each reconstruction, 40 
marker genes are randomly chosen out of the full 84 marker gene atlas. Centre line: median; 
box limits: q1 and q3 quantiles; whiskers: extend to [q1 - 1.5 * IQR, q3 + 1.5 * IQR] with IQR 
(interquartile range) = q3-q1. 
 
Figure 9: Inspecting cell-to-location optimal transport values. a, Visualization of the 
mapping probability distribution over locations (normalized rows tissue.gw matrix) for two 
representative cells, as inferred by novoSpaRc. b, To statistically assess how concentrated 
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the inferred spatial embedding is, we compare the distributions of the entropy values of (i) 
the inferred transport matrix by novoSpaRc (blue), (ii) random transport matrix (yellow), (iii) 
outer product of the marginal cell and location probabilities (this is a uniform distribution 
when the marginals are uniform, green), and (iv) inferred transport matrix by novoSpaRc 
when the reference atlas is shuffled (each gene is shuffled independently over locations, 
red). 
 
Figure 10: Analysis of spatially informative genes. Post-reconstruction, we can analyze the 
spatial auto-correlation score for different gene groups. a, Genes composing the BDTNP 
reference atlas (such as b, left, ImpE2) are found to be highly spatially informative (average 
Moran’s I values of gene group = 0.85), whereas genes related to the cell-cycle (genes of 
‘cyc’ prefix) have a lower average Moran’s I value (0.59), as their expression is disorganized 
over the tissue (such as b, right, CycK). 
 
Figure 11: Extracting spatial archetypes. Clustering the spatial expression of spatially 
informative genes to discover spatial archetypes can generate an effective analysis and 
summary of global spatial expression patterns, which can help in identifying tissue 
functions, cellular division of labor, and underlying mechanisms of regulation of processes. 
We show here three distinct archetypes discovered by clustering the inferred spatial 
expression of the Drosophila embryo (genes used for clustering were restricted to those 
included in the BDTNP reference atlas).   
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Table 1: Comparison of spatial reconstruction methods. 
 

 Seurat45  DistMap3

0 
novoSpaRc33 Perler31 Tangram32 CSOmap49 

Spatial mapping with reference atlas ✔  ✔  ✔ ✔ ✔ ⤬ 

Probabilistic mapping of cells to 
locations 

✔ ✔ ✔ ✔ ✔ ✔ 

Spatial mapping de novo ⤬ ⤬ ✔ ⤬ ⤬  ✔ 

Does not require predetermined shape ✔  ✔  ⤬ ✔ ✔ ✔ 

Incorporates the structural 
correspondence assumption 

⤬  ⤬  ✔ ⤬ ⤬ ⤬ 

Reference atlas can have continuous 
values  

⤬ ⤬ ✔ ✔ ✔ - 

Does not require data imputation ⤬  ✔  ✔ ✔ ✔ - 

Does not require a threshold for 
binarizing expression 

 ✔  ⤬  ✔ ✔ ✔ - 

Requires ligand-receptor 
communication reference 

 ⤬  ⤬  ⤬  ⤬  ⤬ ✔ 

Accounts for cell density prior  ⤬  ⤬ ✔  ⤬ ✔ ✔ 

Programming language R R Python Python Python Matlab 
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Table 2: Troubleshooting. 
 

Step Problem Possible Reason Solution 

8 Uniform cost matrix 
or non-finite  values 
(nan, inf, -inf) in 
cost matrix 

Self-set cost 
matrices or non-
finite value in input 
descriptions 

If using novoSpaRc 
cost matrix 
computation, check 
inputs - cell, location 
and atlas 
descriptions for 
uniform description 
and mal values. 
 

9  Numerical errors Epsilon is too low Examine tissue.gw 
to see if it is uniform 
and run with 
verbose=True to see 
if this happens in the 
early iterations. If 
either of these are 
true, try running 
tissue.reconstruct 
with a higher epsilon 

10  No differential 
spatial expression 
pattern is detected 
when visualizing 
different genes 

NovoSpaRc resulted 
in a uniform 
mapping 

Check tissue.gw 
and if it is uniform 
(or even almost 
uniform), examine 
Troubleshooting for 
Step 11 

10  Low correlation of 
true and predicted 
expression for many 
genes after de novo 
reconstruction 

Reconstruction has 
to be rotated or 
reflected 

When using de novo 
reconstruction, 
orientation is 
arbitrary up to global 
transformations 
(reflections, 
rotations and 
translations), 
relative to the 
respective axes of 
symmetry of the 
target space. 
Visualize side-by-
side the original and 
predicted expression 
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