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Supplementary Note 1. Panel design for targeted transcriptomics 15 

In order to establish a comprehensive targeted transcriptomics approach in the human bone marrow, we 16 
designed a panel that covers all cell types and differentiation stages of this organ. For this purpose, we 17 
used one of the individuals from the human bone marrow dataset released by the Human Cell Atlas 18 
project (Data obtained from Data Portal preview site: 19 
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79 ). We filtered 20 
out any cell for which fewer than 500 genes and more than 10% mitochondrial counts were detected. 21 
We performed unsupervised clustering and UMAP-based dimensionality reduction on the 33.000 cells 22 
that passed the quality filter. Subsequently, we annotated the cell types based on canonical markers from 23 
the human bone marrow. We obtained 17 cell types covering all the main lineages in the hematopoietic 24 
system (Figure N1a). 25 
 26 
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 27 
 28 
Figure N1. Panel design for targeted single-cell transcriptomics of the human bone marrow. Bone 29 
marrow scRNA-seq data from a healthy individual was obtained from the Human cell atlas, the data 30 
was processed and annotated. a. UMAP visualization of the whole transcriptome data highlighting the 31 
result of unsupervised clustering. b. UMAP based on the 462 gene panel selected for Abseq highlighting 32 
the clusters obtained in a. 33 
 34 
In order to identify a sparse, yet maximally informative set of marker genes, we followed the approach 35 
for target selection in targeted single-cell transcriptomics developed previously (Schraivogel et al., 36 
2020). In short, we determined the genes that were differentially expressed between cell types and used 37 
these as input to train a generalized linear model of cell type identity while applying a LASSO 38 
regularization in order to select a maximally sparse set of features. Regularization parameters were 39 
determined using 10-fold cross-validation. A total 257 genes were selected with this method. In addition 40 
to these genes, we included 83 cell cycle markers (Kowalczyk et al., 2015), 88 genes corresponding to 41 
the Abseq antibodies, and 75 genes with high variability in single-cell datasets of AML patients (Velten 42 
et al., 2018). Due to a poor representation of hematopoietic stem and progenitor cells in the cell atlas 43 
dataset, we complemented our targeted panel with 45 stem and progenitor cell markers previously 44 
identified using a similar approach (Velten et al., 2017). All selected genes and primer sequences are 45 
included in Supplementary Table 1. For primer design, a proprietary routine was followed (BD 46 
Bioscience). 47 
The selected panel allowed us to classify the cell types of the human cell atlas dataset with a 99,92% of 48 
agreement and Cohen's kappa coefficient (κ) of 0.932. Moreover, we performed unsupervised clustering 49 
and dimensionality reduction using only the selected genes for the panel (Figure N1b) and obtained a 50 
partitioning highly similar to the clustering obtained when using whole-transcriptome data, as quantified 51 
by an adjusted Rand index of 0.98. The performance of the panel was further validated by comparing 52 
whole-transcriptome and targeted Abseq data (see Supplementary Note 2). 53 

Supplementary Note 2: Whole transcriptome sequencing validates performance of the targeted 54 
panel 55 

In order to exclude that the targeted assay leads to biases in clustering or cell type annotation, we 56 
performed whole transcriptome sequencing (WTA) together with profiling of the same 97 antibodies on 57 
a sample from a healthy individual (Young3). For this, we processed 14,378 cells using the whole 58 
transcriptome protocol for the BD Rhapsody system. On average we sequenced ~60,000 reads (i.e. 7x 59 
deeper than with the targeted approach) for the RNA layer and 18,000 reads for the antibody layer per 60 
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cell. After normalizing the counts by the library size, the top 3,000 highly variable genes and all 97 61 
antibodies were used as input for the MOFA dimensionality reduction, unsupervised clustering, and 62 
UMAP calculations as described in the methods section. Thereby, 34 distinct clusters were identified 63 
(Figure N2a) Subsequently, we utilized the label transfer approach from Seurat v3 (Stuart et al., 2019) 64 
to predict the cell type identities using the targeted datasets as reference. We calculated the mutual 65 
overlap of the predicted labels with the unsupervised cluster (Figure N2b), and also projected the whole 66 
transcriptome data into the original reference space for comparison (Figure N2c, d and see also 67 
Supplementary Note 7). In the majority of cases, a 1:1 correspondence between clusters from the 68 
targeted approach and clusters from the whole transcriptome approach was observed. Some cell types 69 
were not covered in the WTA approach due to low cellular coverage. Together, these data suggest that 70 
our targeted panel resolves cell types equally well as the WTA approach at strongly reduced costs. 71 
 72 

 73 

 74 
 75 

Figure N2. Whole-transcriptome single-cell proteo-genomic sequencing. a. MOFA-UMAP 76 
visualization of the whole transcriptome dataset colored by the unsupervised clusters. b. Mutuality 77 
analysis between the unsupervised clusters from the WTA and the identities predicted from the targeted 78 
datasets. Mutual overlap is defined as the product between the % of cells from a targeted cluster that 79 
form part of a given WTA cluster, and the % of cells from a WTA cluster that form part of a given 80 
targeted cluster. A mutual overlap of 1 indicates perfect overlap.  c. Projection of the WTA samples in 81 
the healthy reference MOFA-UMAP space colored by predicted cell types d. and unsupervised clusters 82 
from a.  83 
 84 
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Supplementary Note 3: Effects of ultra-high plex antibody stainings and freeze-thaw cycles on 85 
gene expression 86 

In order to exclude that staining live, primary cells with 97 antibodies affects gene expression, we 87 
performed a control experiment. For this purpose, we used a sample from a healthy donor (Young1) and 88 
proceeded as described in the Methods section ‘Cell sorting for Abseq’. Half of the sample was then 89 
incubated with 97 Abseq antibodies, while the other half was left on ice. Finally, the BD Rhapsody 90 
protocol was performed as described (see Methods ‘Abseq surface labeling, single-cell capture and 91 
library preparation’). In order to compare both samples, only the transcriptomic information was 92 
considered. We normalized the datasets, performed unsupervised clustering, and annotated the clusters 93 
into major cell types from the bone marrow based on canonical markers (Figure N3a, b). All cell types 94 
were present in both conditions without considerable batch effects driving any type of separation. The 95 
correlation between the average expression of each gene between both samples was 0.996 (Figure N3c). 96 
To account for possible slight variations in cell type abundance, we further investigated the correlation 97 
between experiments at the level of individual cell types, and consistently found very high correlations 98 
(see Figure N3d for representative examples). Only the erythroid-specific gene HBB, and to a lesser 99 
extent HBD, were more abundantly observed in most cell types of the non-stained experiment, 100 
suggesting that there is an elevated HBB background signal in this experiment. HBB is frequently 101 
observed as ‘background’ in different single-cell RNA-seq studies (Young & Behjati, 2020). HBB 102 
represents 96% of the RNA present in red blood cells and 80% of RNA in blood extracellular vesicles 103 
(Kerkelä et al., 2019). Hence, cellular debris present in prepared samples mostly contains HBB, 104 
explaining the abundance of this specific gene in the background signal. Here, the additional washes 105 
included during the antibody staining apparently have helped to reduce the background signal. 106 
 107 
The datasets established in this study was obtained from cryopreserved bone marrow cells. To evaluate 108 
the effect of freeze-thaw cycles on gene- and surface antigen expression, we performed three control 109 
experiments with peripheral blood mononuclear cells (PBMCs). Blood was drawn, subjected to Ficoll 110 
density gradient centrifugation and PBMCs were frozen or left on ice for 6 hours; after this time interval, 111 
blood was drawn again from the same donor and subjected to Ficoll density gradient centrifugation. All 112 
three samples (PB fresh, PB on ice, PB freeze-thaw) were then processed together and living cells were 113 
FACS-sorted and stained with 97 surface antibodies before single cell capture. Globally, correlations in 114 
gene and surface antigen expression were very high (freeze-thaw vs. fresh = 0.994, freeze-thaw vs. on 115 
ice = 0.994 and fresh vs. on ice = 0.997, Figure N3j). UMAP visualization of the data revealed that cell 116 
types were unaffected by freezing except for the monocytes, showing a minor shift upon freeze-thawing 117 
(Figure N3g, h). As a result of the freeze-thaw process, monocytes upregulated the T cell costimulatory 118 
molecules CD275 (ICOS ligand) and the immediate early gene JUN, while downregulated the homing 119 
receptor CD62L (SELL), indicative of a stress response (Figure N3i). Global gene expression patterns 120 
remained unaffected. All in all, the freeze-thaw process had only a minor impact on our data. Specific 121 
changes associated with freeze-thawing (such as for monocytes) apply equally for samples that have 122 
been processed using the same pipeline. 123 
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  125 
Figure N3. Effects of ultra-high plex antibody stainings and freeze-thaw cycles on gene expression. 126 
a-e. Comparison of a healthy bone marrow sample incubated with and without Abseq antibodies. a, b. 127 
A UMAP was generated on the targeted RNA single-cell profiles. The cells from either condition (a) 128 
and the annotated cell types (b) are highlighted. c. Correlation between the average expression of every 129 
gene in each sample; top differentially expressed genes are highlighted in red. d. Correlation between 130 
the average expression of every gene in two representative cell types (cDCs and HSPCs); HBB as most 131 
differentially expressed gene is highlighted in red e. UMAP visualization colored by the HBB expression 132 
in positive and negative samples. f-j. Comparison of fresh, frozen/thawed and iced PBMC samples. f. 133 
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Overview of the experimental setup g, h. UMAPs were generated on the fresh, iced and freeze-thawed 134 
PBMC samples sequenced with the 462 RNAs and 97 ABs targets. The cells are colored by their 135 
condition (g) and cell type (h), respectively. i. Correlation between the average expression of each gene 136 
per condition. Average expression of JUN, IGKC, CD276-AB and CD62L-AB are highlighted. j. Ridge 137 
plots display the correlation coefficient of correlation between the average expression of every gene per 138 
cell type and condition. Cell types which were represented by less than 50 cells were excluded from the 139 
analysis.  140 

Supplementary Note 4: Analysis of sequencing requirements 141 

In order to establish the minimal sequencing requirements necessary to obtain an accurate cell type 142 
classification, we down-sampled the RNA and AB counts of a healthy bone marrow sample (Young1) 143 
and determined if this would yield a similar cluster structure using the same unsupervised clustering 144 
pipeline as used for the non-down-sampled datasets. For illustration, data of all nine samples with an 145 
average UMI count of 10,126 per cell (Figure 1b) were down-sampled to an average of 300 UMIs per 146 
cell (60 UMIs antibodies, 240 UMIs RNA) (Figure N4a) and subsequently a UMAP was calculated. 147 
This revealed that even much lower read numbers are sufficient to distinguish cell types and 148 
differentiation states. While the total read/UMI counts may appear low compared to whole transcriptome 149 
single-cell studies, it is in fact very deep for a targeted approach, as analyzed in detail in (Schraivogel 150 
et al., 2020). To provide a more quantitative analysis, we performed down-sampling to different depths 151 
and determined the overlap in cluster structure using the adjusted Rand index (Figure N4c). 152 
Additionally, we used label transfers from the non-down-sampled dataset on the down-sampled dataset 153 
to determine if cell types could be correctly classified. The agreement between the true labels and the 154 
learnt labels was determined using Cohen’s Kappa (Figure N4c). Both metrics showed that the RNA 155 
counts were more important for the correct cell type identification and that we reached saturation with 156 
around 70% of the RNA reads, i.e. an average read depth of 4,000 per cell. All samples were sequenced 157 
to an average of ~8,500 reads for the mRNA libraries and ~12,000 reads per cell for the antibody 158 
libraries. A more specific analysis on the benefit of profiling both surface markers and RNA for cell 159 
type annotation, e.g. in the context of T cell populations, is presented in Supplementary Note 6.  160 
 161 
We observed that some antibodies (e.g. CD18) occupy high percentages of reads whereas others are 162 
lowly represented (e.g. CD20, see Extended Data Fig. 1). The large variation in reads per antibody is 163 
not correlated with the fraction of cells positive for the antibody (e.g. both CD18 and CD20 are 164 
expressed in 19% of cells, but CD18 has 63 times more reads), indicating that it is primarily related to 165 
the abundance of the antigen on the surface, properties of the antibody, or properties of the panel. In 166 
future, unlabeled antibodies of the same clone (also referred to as cold competitors) could be included 167 
for highly represented antibodies to decrease the fraction of reads consumed by these antibodies and 168 
thereby reduce the overall sequencing requirements. The data shown in Extended Data Fig. 1 (also 169 
included in Supplementary Data 1) can be useful for selecting these antibodies in future studies. 170 
 171 
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 172 

 173 
Figure N4. Sequencing requirements. a. UMAP of the nine bone marrow samples down-sampled to 174 
an average of 300 UMIs (60 UMIs antibodies and 240 UMIs RNA). Cells are colored corresponding to 175 
Figure 1b.  b, c. Effect of down-sampling RNA or antibody reads on cell type classification by (b) 176 
unsupervised clustering  or (c) label transfer. 177 
 178 

Supplementary Note 5: Cell type annotation 179 

For cell type annotation, we used both information of the mRNA and cell surface antibody readouts. 180 
Especially for inter-connected clusters within the hematopoietic differentiation hierarchy and their 181 
branches along myeloid and lymphoid trajectories, fine gradients of surface marker expression and 182 
mRNA expression exist, which result in slight expression changes from one annotated cluster to the 183 
next. Supplementary Table 4 summarizes the surface markers and mRNAs used for annotation of the 184 
45 clusters. For additional comparisons and analysis of differential mRNA and surface marker 185 
expression between any individual cluster of choice, usage of the Abseq-App and Supplementary Data 186 
1 is highly recommended. 187 
Hematopoietic stem cells and multipotent progenitors (HSCs & MPP) are defined via surface expression 188 
of CD34, CD133 and absence/lower levels of CD38, CD45RA and Tim3 expression. HSCs can be 189 
further characterized by robust CD90 and substantial CD4 expression. On the mRNA level, HSCs and 190 
MPPs were defined by high expression of CRHBP, NPR3, MEIS1, PROM1 and THY1 (Figure N5a). 191 
Erythro-myeloid progenitors (EMP) are emanating directly from the HSC and MPP cluster, maintain 192 
CD34 expression but lack CD133, CD38, CD4, CD11a or CD45RA surface expression. They are 193 
characterized via high expression of CPA3, FCER1A, DEPTOR and TESPA1 on the mRNA level 194 
(Figure N5a).  Downstream of EMPs, early erythroid progenitors and late erythroid progenitors can be 195 
characterized by presence of CD34 and CD38 surface expression. Moreover, CD98 and CD326 start to 196 
be expressed at marked levels in early erythroid progenitors and further increase in late erythroid 197 
progenitors (Figure N5b). At the stage of the late erythroid progenitor cluster, surface expression of 198 
CD235 can be observed (Figure N5b). In addition, SOX4, APOC1, IL1B, CASP3 and SLC40A1 are 199 
highly expressed in early erythroid progenitors, whereas late erythroid progenitors highly express 200 
hemoglobins (HBB, HDD), CA1, BLVRB, AHSP and in later stages GYPA, encoding Glycophorin A. 201 
Of note, TFRC mRNA (encodes for transferrin receptor or CD71) starts to be highly expressed in EMPs 202 
and is constitutively expressed throughout erythroid differentiation. An additional erythroid cluster with 203 
enrichment in old and leukemic individuals could be observed next to late erythroid progenitors, termed 204 
aberrant erythroid cells, which was positive for CD235a, CD123, CD197 and CD90 surface and high 205 
levels of HBB, HBD, CA1, HEMGN, RHAG mRNA expression (Figure N5b). Megakaryocyte 206 
progenitors were defined by high surface expression of CD61 and CD49b and mRNA expression of 207 
PPBP, ITGA2B, PLEK, MPL, FERMT3 and SLC37A1 (Figure N5b). As shown previously, 208 
Eosinophil/Basophil progenitors showed similarities in gene expression with other cell types along the 209 
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erythroid differentiation trajectory, including high expression of CPA3 and FCER1A. Other genes 210 
specifically expressed in this cell type are CLC, HDC, PRG2. Interestingly, RNASE2 and CPA3 are 211 
also markedly expressed in Eosinophil/Basophil progenitors, but also expressed at high levels in cell 212 
clusters along the myeloid differentiation trajectory (Figure N5b). Lympho-myeloid progenitors 213 
emanate from the HSC & MPP cluster and were defined by their expression of CD34 and CD133, 214 
absence/low levels of CD38 and dim expression of CD45RA, CD49b, Tim3, CD117 and in some cells 215 
also CD10. On the transcriptomic level, cells within the Lympho-myeloid progenitor cluster expressed 216 
high levels of FLT3, SPINK2, MZB1, ITM2C and MDK (Figure N5a).  217 
Directly adjacent to the Lympho-myeloid progenitor cluster, early promyelocytes, that represent an 218 
intermediate myeloid differentiation stage can be characterized by their surface expression of CD34, 219 
CD38, CD133, CD117 and CD33 (Figure N5a and N5i). Signature genes highly expressed in the early 220 
promyelocytes cluster comprise MPO, AZU1, CPA3, RNASE3, MGST and CEBPA. Following the 221 
early promyelocytes stage, the subsequent myeloid differentiation stages are referred to as late 222 
promyelocyte and myelocyte stages. In our dataset, cells within the late promyelocyte cluster gradually 223 
lose CD34, CD133 and CD117 expression, whereas CD38 is increased and CD33 expression remains 224 
at levels comparable to the early promyelocytes stage. Late promyelocytes can be further characterized 225 
by their high transcriptomic expression of LYZ, CSTA and RNASE2, and slightly lower MPO and 226 
AZU1 expression if compared to the early promyelocytes stage (Figure N5i). Myelocytes represent the 227 
next transient myeloid differentiation stage, which lost their CD34 and CD133 surface expression, and 228 
can be clearly distinguished from late promyelocytes by the emergence of CD11b expression on their 229 
surface. Moreover, they highly express CD33 and CD11a and upregulate CD49e expression (Figure 230 
N5i). They can be further characterized by high mRNA expression of S100A8, CSTA and S100A9. 231 
Classical monocytes show overlap in their surface marker expression to myelocytes, however they 232 
express additional markers like CD14, CD61 and CD32, and express higher levels of CD13 than their 233 
progenitors (Figure N5i). On the transcriptomic level, classical monocytes highly express CD14, 234 
VCAN, CTSS and FCN1. Non-classical monocytes appear to be the terminal cluster within the myeloid 235 
differentiation trajectory and can be distinguished from non-classical monocytes by high expression of 236 
surface CD16 and CD127, as well as FCGR3A, LST1 and MS4A1 on the transcriptomic level (Figure 237 
N5i). 238 
Next to the manifold myeloid differentiation stages, plasmacytoid dendritic cell progenitors (pDC prog) 239 
and mature plasmacytoid dendritic cells (pDC), as well as both conventional dendritic cells of type 1 240 
(cDC1) and type 2 (cDC2) are mapped (Figure N5j). On their surface, pDC progenitors express CD34 241 
and CD133 and in addition high levels of CD38 and CD123. Moreover, they can be further characterized 242 
by dim expression of CD33, CD45RA and Tim3, as well as high CD98 expression. Signature genes 243 
highly expressed in pDC progenitors encompass IRF8, IL3RA, SHD and DNTT. Mature pDCs 244 
gradually lose surface CD34 expression, remain positive for CD38 and also express higher levels of 245 
CD45RA than their progenitors. Besides high CD123 expression, these cells can also be further 246 
characterized by high surface expression of CD61, CD98 and CD4 as well as dim CD10 expression. On 247 
the transcriptomic level, IRF8, IL3RA, CCDC50, CD4, TCF4 and DERL3 are highly expressed in 248 
pDCs. Conventional dendritic cells of type 1 show dim levels of CD34 and CD133 surface expression, 249 
and can be defined by high expression levels of CD33, CD11c, CD141 and Tim3. S100A10, FCER1A, 250 
HAVCR2 and CD2 showed high mRNA expression levels in cDC1 cells. The second type of 251 
conventional dendritic cells, cDC2, can be delineated by their absence of surface CD34 and CD133 252 
expression, lower CD38, CD45RA and CD141 levels than their cDC1 counterparts and high expression 253 
of CD11c, Tim3 and additionally CD1c. Transcriptionally cDC2 are similar to cDC1, however can be 254 
further separated by higher expression of FCER1A, CD1C and HLA-DQB1. 255 
Emanating from the Lympho-myeloid progenitor cluster, B cell commitment takes place, which is 256 
accompanied by gradual elevation of CD10 surface expression. Cells within the first B cell 257 
developmental stage, i.e. pre-pro B cells, express CD34 and dim levels of CD133 and CD38. CD10 258 
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expression is present, but to a significantly lower degree compared to later B cell differentiation stages. 259 
Moreover, surface markers that are gradually upregulated in later stages, like CD19, CD81, CD24 or 260 
CD9 are absent in this early differentiation stage. Pre-pro B cells and overall B cell commitment can be 261 
further characterized by high expression of MME, VPREB1, CD79A and DNTT (Figure N5c). 262 
Moreover, the transcription factor PAX5 is highly expressed at this differentiation stage (see WTA 263 
expression data in Abseq-App). After the pre-pro B cell stage, cells enter and pass sequential stages, i.e. 264 
the pro-B cell, and pre-B cell stages. Of note, our clustering splits pro-B cells and pre-B cells according 265 
to distinct cell cycle states, which cells undergo being in early and late pro-B cell or pre-B cell stages. 266 
Therefore, we labelled these clusters cycling pre-B and pro-B cells and non-cycling pre-B and pro B 267 
cells (Figure N5c). In more detail, cells forming the former cluster are in a highly proliferative state 268 
(high S-phase score, low G2/M score), whereas the latter are in a halted pre-mitotic, quiescent state, in 269 
which DNA-rearrangements known as heavy and light chain rearrangements take place. In pro-B cells, 270 
the latter state corresponds to cells that already underwent successful DJ-recombination at the Igm locus, 271 
after which the above-mentioned proliferative state is entered, finally leading to VDJ rearrangement that 272 
is accompanied by Rag2 expression (see WTA dataset in the Abseq-app). Successful heavy chain 273 
rearrangement also marks the transition into the pre-B cell stage and to the expression of the so-called 274 
pre-BCR, which corresponds to surface IgM coupled to surrogate light chains. IGHM mRNA expression 275 
is increased upon entry into pre-B cell stage, accompanied by high proliferation, which terminates as 276 
the cells enter the small pre-B cell stage in which Igk light chain rearrangement takes place. Successful 277 
completion of all BCR rearrangements and surface expression of a functional BCR renders B cell entry 278 
into the immature B cell stage. 279 
Immature B cells are thought to exit the BM and start to transit through secondary lymphoid organs, 280 
where final maturation events like isotype switching and somatic hypermutation occur. However, these 281 
processes also occur in the bone marrow in germinal center-like structures (Cariappa, Chase, Liu, 282 
Russell, & Pillai, 2007). B cells in that stage can be defined via CD9 surface expression, which is highest 283 
in immature B cells, as well as expression of CD81, and in late stages CD272, CD20, and IgD, which 284 
marks the start of isotype switching (Figure N5d). Importantly, immature B cells lack CD185 285 
expression, which plays an important role for germinal center organization and is a signature surface 286 
marker for subsequent maturation stages. CD9, CD79B, CD24 and TCL1A are highly expressed on the 287 
transcriptional level at this stage.  As expected, in late stages of the immature B cell cluster, isotype 288 
switching from IgM to IgD can be observed, marking the transition to mature naïve B cells.  Mature 289 
naïve B cells express higher levels of surface CD5 than other B cell developmental stages, and 290 
temporarily lower their CD24 surface expression. Cells at this stage also highly express IL4R and IGHD 291 
mRNAs. Non-IgG-class switched B cells succeed mature naïve B cells and this stage can be 292 
characterized by elevated surface expression of CD24, CD25, CD27, CD1c and IgD in the absence of 293 
IgG expression (Figure N5d). High expression levels of CD82, CD27, JCHAIN and CD1C mRNAs are 294 
transcriptomically characteristic for this stage. After B cells switched their isotype from IgD to IgG, 295 
high surface IgG expression and absence of IgD expression can be observed (Figure N5d). Moreover, 296 
transcriptionally class switched cells express elevated CD82, ITGB1 and ITGAM mRNAs. Adjacent to 297 
class-switched B cells, a small cluster of CD11c+ memory B cells is apparent, whose exact biological 298 
function remains elusive (Figure N5d). They have been described as putative progenitors of antibody 299 
secreting plasma cells and have also been studied in the context of autoimmune diseases (Golinski et 300 
al., 2020; Karnell et al., 2017). This cell subset is characterized by their high surface levels of CD11c, 301 
IgG, dim levels of CD279 and lack of CD185 (CXCR5). Lack of CD185 expression indicates that cells 302 
of this cluster are not present in follicular structures any longer. The final stage of B cell development 303 
is represented by plasma cells, which express high surface levels of CD38, CD27 and CD54. On the 304 
transcriptomic level, high expression of MZB1, DERL3, FKBP11 and SEC11C is observed in this 305 
cluster. 306 
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Besides B cells, CD3+ positive T cells, which passed several differentiation stages in the thymus, re-307 
locate to the bone marrow. One can generally distinguish between alpha-beta T cells and gamma-delta 308 
T cells, which describes an intrinsic difference in the respective T cell receptor (TCR) composition. 309 
Alpha-beta T cells can be further separated in CD4+ and CD8+ T cells, that are either CD45+, CD3+, 310 
TCRab+, CD4+ or CD45+, CD3+, TCRab+, CD8+ respectively. Of general note, inclusion of the 311 
surface marker information greatly aids T cell annotation, as their RNA content is low and many gene 312 
signatures are shared either between individual CD4+ and CD8+ T cell clusters or shared with other 313 
cytotoxic cells, like natural killer cells. 314 
Within the former, naïve CD4+ T cells can be further characterized by high expression of CD45RA, 315 
CD28 and CD197 (CCR7) (Figure N5e). They are devoid of surface CD95, CD279 and CD25 and 316 
further express high levels of CD4 mRNA, as well as CCR7, SELL and AIF1. Upon antigen encounter, 317 
naïve T cells give rise to memory CD4+ T cells, which is accompanied by changes in their surface 318 
proteome and transcriptome. Memory CD4+ T cells express CD28, don’t express surface CD45RA or 319 
CD197, and upregulate CD25 expression (Figure N5e). Transcriptionally, KLRB1, CCR6 and CD82 320 
expression levels are elevated in this cell cluster. Besides memory CD4+ T cells, two more CD4 positive 321 
clusters adopted a memory phenotype, but differed quite significantly to the former. We found one 322 
cluster, which we termed cytotoxic CD4+ T cells, to be highly positive for cytotoxicity-related mRNAs 323 
like GNLY, GZMA, NK7, and ADGRG1 and devoid of any CD28 expression (Figure N5e). The second 324 
cluster, CD69+ CD4+ T cells, highly expressed CD69 and CD279 on its surface, and CD81, CST7, 325 
TGFBI and HLA-DPBI mRNAs were elevated (Figure N5e).  These cells likely constitute CD4 tissue 326 
resident T cells, since both CD69 and CD279 are considered tissue resident memory T cell markers 327 
(Kumar et al., 2017). 328 
Naïve CD8+ T cells are transcriptionally highly similar to naïve CD4+ T cells, express high levels of 329 
surface CD197 and, in contrast to their CD4+ T cell counterparts, express CD314. Furthermore, naïve 330 
CD8+ T cells are lacking CD94, CD279 and CD103 surface protein expression (Figure N5f). 331 
Transcriptionally, cells within this cluster highly express CCR7, SELL, and AIF1 mRNAs. Upon 332 
antigen encounter, naïve CD8+ T cells adopt a central memory T cell phenotype, and are henceforth 333 
termed CD8+ central memory T cells, which downregulate CD45RA surface protein and lack CD197, 334 
CD103 and CD94 expression. Moreover, surface CD279 and CD81 is elevated in this cluster compared 335 
to other bone marrow CD8+ T cell subsets (Figure N5f). Targeted mRNA readouts indicated high 336 
expression of CD8A, DUSP1, CD74 and CCR5. A second memory phenotype cluster, termed CD8+ 337 
effector memory T cells, could be observed within CD8+ T cells, which showed substantial expression 338 
of surface CD45RA, CD226, and CD94 in the absence of CD103, CD279, CD27, CD28 expression 339 
(Figure N5f). Cells within this cluster express high levels of genes involved in cytotoxicity related 340 
processes. Another prominent cluster showing a memory T cell phenotype were CD8+ CD103+ tissue 341 
resident memory T cells. They can be characterized by high surface expression of CD103, CD25 and 342 
CD26 in the absence of CD45RA and CD197 expression (Figure N5f). On the transcriptional level, 343 
these cells robustly express IL7R, ITM2C and DPP4 mRNAs. 344 
Besides CD4+ and CD8+ αβ-T cells, γδ-T cells, are apparent in our dataset. Within that γδ-T cells 345 
cluster, one subset was highly positive for surface CD226, CD26, CD94 and negative for CD45RA 346 
expression (Figure N5g). In the second subset, CD26, CD226 and CD94 expression is absent or only 347 
dim, but TCR-γδ (clone B1) is highly expressed (Figure N5g). Interestingly, TCR-γδ antibody clone B1, 348 
which is present in the 97 Ab panel seems to be less efficient in γδ-T cell detection than clone 11F2, 349 
which was present in the 197 Ab panel (Extended Data Fig. 4). The anti-Vd2 TCR antibody (clone B6) 350 
uniquely labels the CD226+ CD26+ CD94+ CD45RA- subset and leaves the other subset unstained. We 351 
therefore recommend using both anti-Vd2 (B6) and anti TCR-γδ (11F2) for improved γδ-T cell 352 
detection. On the transcriptional level, KLRB1, TRDC, TRGC and DPP4 were highly expressed in this 353 
cluster. 354 
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The second CD3+ TCRαβ-negative cluster are putative natural killer T cells (NKT cells), that can be 355 
characterized by elevated CD69 and CD314 surface expression, which were accompanied by dim 356 
binding of the TCRγδ antibody (clone B1).  357 
Next to CD3+ T cells, two well-known natural killer (NK) cell clusters, namely CD56dim CD16+ and 358 
CD56bright CD16- NK cells, are present in our dataset. Both subsets are readily identified via high surface 359 
expression of CD45, CD7, CD94 and CD45RA (Figure N5h). CD56bright CD16- NK cells express higher 360 
levels of CD56 and CD335, as well as lower levels of CD16 on their surface. In contrast, CD56dim 361 
CD16+ NK cells have higher surface levels of CD16, CD127 and CD152. The latter are thought to be 362 
more cytotoxic, which is also reflected in the transcriptional differences between the two subsets. 363 
Compared to other clusters in the dataset, generally cytotoxic mRNAs are highly expressed in these two 364 
clusters. In addition, a small cluster located in proximity of HSCs and MPPs was particularly interesting, 365 
as it expressed mature NK surface markers like CD16, CD56 and CD7 as well as surface markers 366 
specific for immature progenitor cells like CD34 and CD133 ((Figure N5a and N5h). A similar 367 
phenotype was observed at the mRNA level, as these cells both expressed mature NK mRNAs like 368 
NKG7 or KLRK1 and stem and progenitor specific mRNA like CRHBP, CD34 and NPR3. We therefore 369 
named this cluster NK cell progenitor. Besides healthy hematopoietic cells, at least one mesenchymal 370 
stromal cell (MSC) cluster is present in our dataset (Figure N5k). MSC cluster 1 was characterized by 371 
high surface expression of CD10, CD13, CD26 and CD49a, which was accompanied by typical MSC 372 
gene expression like CXCL12 and SPARC. Putative MSC cluster 2 expressed antibodies found in 373 
scavenger cells like macrophages, such as CD206, CD141, CD163 and CD16, but also expressed 374 
CXCL12 suggesting a mixed composition and some degree of heterogeneity. 375 
All clusters described above were consistently identified in six healthy BM donors. In the reference 376 
AML patients (n=3, Figure 1b), we were able to determine three additional cell clusters. Some of these 377 
were either specific for individual AML samples or a mix of cells from different AML patients. 378 
Regarding the latter, the cluster annotated as immature blasts is a mixture of cells from all three patients. 379 
Cells within this cluster have heterogeneous surface phenotypes and share similarities with different 380 
healthy cell types (Figure N5l).  381 
 382 
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  386 
Figure N5. Cell type annotation. Both mRNA and surface protein expression were considered for 387 
annotation, and several exemplary plots for either mRNA or surface protein expression are shown. 388 
Cell types depicted in the UMAPs visualizations were grouped into biological subgroups. Sample size: 389 
MSC1 n=36, MSC2 n=11, others n=69970. See methods, section Data visualization for a definition of 390 
boxplot elements. 391 
 392 
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Supplementary Note 6: Inclusion of surface marker data improves cell type classification  393 

In order to determine the utility of RNA and surface marker expression for resolving cell types and cell 394 
stages, we performed UMAP visualizations using either RNA or surface marker information (Figure 395 
N6) or UMAP visualization after MOFA-UMAP multi-omic integration of RNA and surface markers 396 
(Figure 1b). Interestingly, dependent on the cell type, RNA or surface marker information were more 397 
powerful in separating cell types and cell stages (Figure N6). For example, for the HSPC compartment, 398 
RNA was superior over surface markers in resolving cell states, while B cell stages and the myeloid 399 
compartment were more efficiently separated using surface markers (Figure N6). Most importantly, the 400 
combined information of both layers provided the highest resolution not achieved by any of the 401 
individual layers alone (compare to Figure 1b).  Interestingly, NK cell progenitors, a subset that we 402 
found to contain both features of mature NK cells (surface: CD56, CD7, mRNA: NKG7, KLRK1) and 403 
hematopoietic stem and progenitor cells (surface: CD34, CD133, mRNA: CD34, CRHBP, NPR3) was 404 
grouped with the HSPC compartment when only using RNA markers and with the NK cell compartment 405 
when only using the surface markers. Only in the joined view (Figure 1b), these cells formed an 406 
independent cluster, identifying a cell population that has hitherto remained hidden. Similarly, T cell 407 
subpopulations were resolved much better when using information from both omics layers. For example, 408 
populations such as γδ-T cells and NK T cells did not form an independent group in either of the 409 
individual layers and information from both layers was required to resolve them. In addition, usage of 410 
surface markers improves the separation between cytotoxic T cells and NK cells. 411 
 412 
Our results imply that during stem cell differentiation, mRNA expression is a relatively early step in the 413 
process of commitment, compared to surface protein expression. In line with that, we and others have 414 
consistently observed lineage priming signatures in cells that surface phenotypically appear immature 415 
(see Figure 6d, Extended Data Fig. 9a, b and see also Paul et al., 2015; Velten et al., 2017). By contrast, 416 
in mature cell stages, cellular identity is firmly established and reflected both in the transcriptome, and 417 
on surface protein expression. In these mature cell types, antigen expression adds information to mRNA 418 
expression alone for three reasons: First, especially in T cells, mRNA measurements are often noisy due 419 
to the low RNA content of the cells. Second, in T cells and B cells, the annotation of cell types has 420 
historically been performed using surface antigens. Relatively similar cell states may have therefore 421 
been classified as functionally different based on the expression of a single marker, as in the case of 422 
class-switched vs. non-switched memory B cells, that mostly differ in the expression of surface 423 
immunoglobulins (IgM, IgD vs. IgG, IgA) while maintaining a very similar transcriptome. Third, a 424 
technical reason for our observations may be that the antibody panel (97 antibodies selected based on 425 
availability) can be biased towards providing higher resolution in specific cell types, whereas the mRNA 426 
panel was designed more systematically (see Supplementary Note 1). 427 
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 428 
Figure N6. Inclusion of surface marker data improves cell type classification. UMAP visualization 429 
was calculated using either only RNA, or only surface marker expression. NK progenitor cells are 430 
highlighted in red. A UMAP visualization containing the combined information of RNA and surface 431 
markers is displayed in the main Figure 1b. 432 

Supplementary Note 7: Validation of query datasets projections  433 

To project new “query” single cell RNA-seq data on the reference atlas, the reference was subset to 434 
include only cells from the healthy individuals. For every query cell, we then determined the five nearest 435 
neighbors using scmap (Kiselev, Yiu, & Hemberg, 2018). The median UMAP position and cell type 436 
label of the five neighbors was then computed. For projecting on pseudotime, the average pseudotime 437 
value of the neighbors was computed if they were part of a given trajectory, i.e. not classified NA. The 438 
high accuracy of this mapping strategy was confirmed using both the 200-antibody experiment and the 439 
whole transcriptome experiment (Supplementary Note 2); in both cases, projected cell types had the 440 
same marker gene expression pattern as the cell types used in the original annotation.  441 
 442 
For a more quantitative analysis, we evaluated the effectivity of this approach by projecting the healthy 443 
reference against itself. For a randomly selected set of cells, we showed that cells consistently projected 444 
very close to their original location (Figure N7a); the only exception were cells falling into the very 445 
heterogeneous and small class of MSC2. We then calculated the precision of the projection as the 446 
proportion of correctly assigned cell type labels (Figure N7b). This showed that for most cell types the 447 
projection and mapping of the cell type had a precision higher than 0.8, with just a few populations 448 
having a lower precision, likely due to projection to a very similar cell state (Figure N7c).  449 
 450 
The entire workflow of projection on the reference, differential expression testing and estimation of 451 
inter-patient variability is available at https://git.embl.de/triana/nrn 452 
 453 

https://git.embl.de/triana/nrn


 17 

 454 
Figure N7. Evaluation of self-projection on the healthy reference. a. Precision of the cell type 455 
assignment base on the projection of the healthy reference against itself using scMAP. b. UMAP 456 
projection of one cell of each cell type (red) against the whole reference (gray) and the connection 457 
between the original coordinate and the projected one (blue). c. Distribution of the cell type projection 458 
in representative cell types with low assigment precision.  459 
 460 

Supplementary Note 8: Smart-seq2 validation 461 

To validate markers identified in Figure 2 and 3, and gating panels described in Figure 6, we performed 462 
two experiments that couple FACS-based indexing of surface markers to single-cell RNAseq (“index 463 
scRNAseq”). For this purpose, we used Smart-seq2 and successfully sequenced 630 single cells that 464 
were stained with the data-defined classification panel established in Figure 6, and 330 single cells that 465 
were stained with a semi-automated panel aiming at resolving the erythro-myeloid differentiation of 466 
HSCs. The semi-automated panel included the backbone from the classification panel, but additionally 467 
contained the well-known erythroid priming marker CD71 (encoded by TFRC), the newly identified 468 
erythroid commitment marker CD326 (Figure 3), the eosinophil-basophil progenitor marker FcER1A, 469 
as well as CD49b, a marker highly expressed in megakaryocyte progenitors.  Additionally, we included 470 
1035 cells from a previously published HSPCs dataset (Velten et al., 2017) with indexed single-cell 471 
RNAseq using the classical Doulatov gating scheme (Doulatov et al., 2010) into the analysis. To 472 
visualize our data, we performed dimensional reduction by Principal Components Analysis (PCA) and 473 
UMAP. We identified groups of similar cells using Shared Nearest Neighbor (SNN) clustering followed 474 
by data integration using canonical correlation analysis and mutual nearest neighbors as implemented 475 
in Seurat v3. A UMAP representation of the integrated dataset demonstrated a successful data 476 
integration (Figure N8a). Unsupervised clustering revealed the presence of multiple cell subpopulations 477 
adequately representing HSPC differentiation (Figure N8b). For all clusters we identified markers 478 
defined as those with the highest classification power as measured by the area under the receiver 479 
operating characteristics curve (AUC). The top five markers per cell type are shown in Figure N8d. Cell 480 
type labels (Figure N8c) were determined using the same marker genes as for the main Abseq data set 481 
(see Supplementary Table 4 and Supplementary Note 5). 482 
 483 
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 484 
Figure N8. Annotation of the Smart-seq2 dataset. a-c. UMAP visualization of different “index 485 
scRNAseq” datasets colored by surface markers recorded (“indexed”) in the experiment (a) (Data-486 
defined: Surface markers from data-defined panel from Figure 6; Semi-automated: Markers defined in 487 
the text above; DOULATOV: Markers from Velten et al., 2017), unsupervised clustering (b) and cell 488 
type annotation (c). d. Heatmap of top marker genes for each cluster/cell type. 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 



 19 

References  509 

Cariappa, A., Chase, C., Liu, H., Russell, P., & Pillai, S. (2007). Naive recirculating B cells mature 510 
simultaneously in the spleen and bone marrow. Blood, 109(6), 2339–2345. 511 
https://doi.org/10.1182/blood-2006-05-021089 512 

Doulatov, S., Notta, F., Eppert, K., Nguyen, L. T., Ohashi, P. S., & Dick, J. E. (2010). Revised map of 513 
the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early 514 
lymphoid development. Nature Immunology, 11(7), 585–593. https://doi.org/10.1038/ni.1889 515 

Golinski, M. L., Demeules, M., Derambure, C., Riou, G., Maho-Vaillant, M., Boyer, O., … Calbo, S. 516 
(2020). CD11c+ B Cells Are Mainly Memory Cells, Precursors of Antibody Secreting Cells in 517 
Healthy Donors. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.00032 518 

Karnell, J. L., Kumar, V., Wang, J., Wang, S., Voynova, E., & Ettinger, R. (2017, November 1). Role 519 
of CD11c+ T-bet+ B cells in human health and disease. Cellular Immunology, Vol. 321, pp. 40–520 
45. https://doi.org/10.1016/j.cellimm.2017.05.008 521 

Kerkelä, E., Lahtela, J., Larjo, A., Impola, U., Mäenpää, L., & Mattila, P. (2019). Exploring 522 
transcriptomic landscapes in red blood cells, in their extracellular vesicles and on a single-cell 523 
level. https://doi.org/10.21203/rs.2.14503/v1 524 

Kiselev, V. Y., Yiu, A., & Hemberg, M. (2018). Scmap: Projection of single-cell RNA-seq data across 525 
data sets. Nature Methods, 15(5), 359–362. https://doi.org/10.1038/nmeth.4644 526 

Kowalczyk, M. S., Tirosh, I., Heckl, D., Rao, T. N., Dixit, A., Haas, B. J., … Regev, A. (2015). 527 
Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of 528 
hematopoietic stem cells. Genome Research, 25(12), 1860–1872. 529 
https://doi.org/10.1101/gr.192237.115 530 

Kumar, B. V., Ma, W., Miron, M., Granot, T., Guyer, R. S., Carpenter, D. J., … Farber, D. L. (2017). 531 
Human Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and Functional 532 
Signatures in Lymphoid and Mucosal Sites. Cell Reports, 20(12), 2921–2934. 533 
https://doi.org/10.1016/j.celrep.2017.08.078 534 

Paul, F., Arkin, Y., Giladi, A., Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., … Amit, I. (2015). 535 
Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell, 163(7), 536 
1663–1677. https://doi.org/10.1016/j.cell.2015.11.013 537 

Schraivogel, D., Gschwind, A. R., Milbank, J. H., Leonce, D. R., Jakob, P., Mathur, L., … Steinmetz, 538 
L. M. (2020). Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nature 539 
Methods, 17(6), 629–635. https://doi.org/10.1038/s41592-020-0837-5 540 

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W. M., … Satija, R. (2019). 541 
Comprehensive Integration of Single-Cell Data. Cell, 177(7), 1888-1902.e21. 542 
https://doi.org/10.1016/j.cell.2019.05.031 543 

Velten, L., Haas, S. F., Raffel, S., Blaszkiewicz, S., Islam, S., Hennig, B. P., … Steinmetz, L. M. 544 
(2017). Human haematopoietic stem cell lineage commitment is a continuous process. Nature 545 
Cell Biology, 19(4), 271–281. https://doi.org/10.1038/ncb3493 546 

Velten, L., Story, B. A., Hernandez-Malmierca, P., Milbank, J., Paulsen, M., Lutz, C., … Steinmetz, 547 
L. M. (2018, December 21). MutaSeq reveals the transcriptomic consequences of clonal 548 
evolution in acute myeloid leukemia. BioRxiv, p. 500108. https://doi.org/10.1101/500108 549 

Young, M. D., & Behjati, S. (2020). SoupX removes ambient RNA contamination from droplet-based 550 
single-cell RNA sequencing data. GigaScience, 9(12). 551 
https://doi.org/10.1093/gigascience/giaa151 552 

 553 
 554 


	SpringerNature_NatImmun_1059_ESM.pdf
	Supplementary Note 1. Panel design for targeted transcriptomics
	Supplementary Note 2: Whole transcriptome sequencing validates performance of the targeted panel
	Supplementary Note 3: Effects of ultra-high plex antibody stainings and freeze-thaw cycles on gene expression
	Supplementary Note 4: Analysis of sequencing requirements
	Supplementary Note 5: Cell type annotation
	Supplementary Note 6: Inclusion of surface marker data improves cell type classification
	Supplementary Note 7: Validation of query datasets projections
	Supplementary Note 8: Smart-seq2 validation
	References




