*** TEST ***
Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

In aged primary T cells, mitochondrial stress contributes to telomere attrition measured by a novel imaging flow cytometry assay

[thumbnail of Original Article]
Preview
PDF (Original Article) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB
[thumbnail of Supporting Information] Other (Supporting Information)
1MB

Item Type:Article
Title:In aged primary T cells, mitochondrial stress contributes to telomere attrition measured by a novel imaging flow cytometry assay
Creators Name:Sanderson, S.L. and Simon, A.K.
Abstract:The decline of the immune system with age known as immune senescence contributes to inefficient pathogen clearance and is a key risk factor for many aged-related diseases. However, reversing or halting immune aging requires more knowledge about the cell biology of senescence in immune cells. Telomere shortening, low autophagy and mitochondrial dysfunction have been shown to underpin cell senescence. While autophagy has been found to control mitochondrial damage, no link has been made to telomere attrition. In contrast, mitochondrial stress can contribute to telomere attrition and vice versa. Whereas this link has been investigated in fibroblasts or cell lines, it is unclear whether this link exists in primary cells such as human lymphocytes and whether autophagy contributes to it. As traditional methods for measuring telomere length are low throughput or unsuitable for the analysis of cell subtypes within a mixed population of primary cells, we have developed a novel sensitive flow-FISH assay using the imaging flow cytometer. Using this assay, we show a correlation between age and increased mitochondrial reactive oxygen species in CD8 T-cell subsets, but not with autophagy. Telomere shortening within the CD8 subset could be prevented in vitro by treatment with a ROS scavenger. Our novel assay is a sensitive assay to measure relative telomere length in primary cells and has revealed ROS as a contributing factor to the decline in telomere length.
Keywords:Autophagy, ImageStream, Lymphocytes, Mitochondria, Reactive Oxygen Species, Telomere, T Cells
Source:Aging Cell
ISSN:1474-9726
Publisher:Wiley
Volume:16
Number:6
Page Range:1234-1243
Date:December 2017
Official Publication:https://doi.org/10.1111/acel.12640
PubMed:View item in PubMed

Repository Staff Only: item control page

Downloads

Downloads per month over past year

Open Access
MDC Library