
ARTICLE OPEN

Identification of novel genes whose expression in adipose
tissue affects body fat mass and distribution: an RNA-Seq and
Mendelian Randomization study
Stefan Konigorski 1,2,3✉, Jürgen Janke2, Giannino Patone4, Manuela M. Bergmann5, Christoph Lippert 1,3, Norbert Hübner4,6,7,
Rudolf Kaaks8, Heiner Boeing5 and Tobias Pischon 2,6,7,9,10✉

© The Author(s) 2022

Many studies have shown that abdominal adiposity is more strongly related to health risks than peripheral adiposity. However, the
underlying pathways are still poorly understood. In this cross-sectional study using data from RNA-sequencing experiments and
whole-body MRI scans of 200 participants in the EPIC-Potsdam cohort, our aim was to identify novel genes whose gene expression
in subcutaneous adipose tissue has an effect on body fat mass (BFM) and body fat distribution (BFD). The analysis identified 625
genes associated with adiposity, of which 531 encode a known protein and 487 are novel candidate genes for obesity. Enrichment
analyses indicated that BFM-associated genes were characterized by their higher than expected involvement in cellular, regulatory
and immune system processes, and BFD-associated genes by their involvement in cellular, metabolic, and regulatory processes.
Mendelian Randomization analyses suggested that the gene expression of 69 genes was causally related to BFM and BFD. Six genes
were replicated in UK Biobank. In this study, we identified novel genes for BFM and BFD that are BFM- and BFD-specific, involved in
different molecular processes, and whose up-/downregulated gene expression may causally contribute to obesity.
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INTRODUCTION
Obesity is an established risk factor for many chronic diseases and
for premature death. Numerous studies have shown that
abdominal adiposity is more strongly related to health risks than
peripheral adiposity [1]. In line with this observation is evidence
that visceral adipose tissue (VAT, which is the major compartment
that determines abdominal adiposity) is metabolically more active
than subcutaneous adipose tissue (SAT, which is the major
determinant of peripheral adiposity). SAT might even have
protective effects [2].
Previous authors estimated a heritability between 40% and 90%

for obesity, expressed as body mass index (BMI) or absolute fat
mass [3, 4], and slightly lower heritability between 15% and 60%
for body fat distribution, expressed as waist to hip ratio (WHR) or
various other ratios of fat mass in different body compartments
[5–7]. These estimates have partly come out of large genetic
association studies with obesity traits, which have identified many
associated genetic loci, again with a higher number of identified
loci associated with fat mass compared to fat distribution [7–10].
However, for many of those loci and genes, it is unclear how they
affect obesity and particularly body fat distribution. In addition,
their functional attributes are poorly understood. There are a few

studies in humans that have investigated the association of genes
with obesity on the transcriptomic or proteomic level [11–20].
Campbell et al. [11], Armenise et al. [15], Day et al. [16] and Kerr
et al. [17] investigated the association between weight loss and
gene expression in adipose tissue as well as in whole blood. The
most often implicated pathways were inflammatory pathways
[12, 17–20] and lipid as well as glucose pathways [12, 17, 19], with
evidence that they are upregulated and changed in obesity. These
changes might in turn be part of the role of obesity in cancer
[11, 12]. Other studies based on RNA-sequencing of subcutaneous
adipose tissue focused on identifying eQTLs which was followed-
up by colocalization analyses with GWAS hits for cardiometabolic
traits [14] or investigated cellular heterogeneity of gene expres-
sion in adipose tissue [13]. Little is known about whether gene
expression in SAT affects body fat distribution, and if different
genes are implicated in body fat mass and body fat distribution.
Such knowledge may help to gain information about biological
processes contributing to adiposity and body fat distribution as
major determinants of health risks.
In this study, our aim was therefore to identify and to

characterize novel genes whose gene expression in SAT is
associated with obesity traits of body fat mass and body fat
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distribution. We performed cross-sectional analyses of ribonucleic
acid (RNA)-sequencing experiments from abdominal SAT biopsies
and whole-body magnetic resonance imaging (MRI) scans on 200
participants in the EPIC Potsdam study. SAT mass and the ratio of
SAT and total adipose tissue (TAT) were obtained from whole-
body MRI scans as measures of fat mass and fat distribution. In the
analysis, we first investigated the association of gene expression
with SAT and SAT/TAT. For the association tests, we used a
recently developed method based on joint copula models [21] to
improve power of association tests with multiple phenotypes. We
followed-up the results with a gene ontology term enrichment
analysis which indicated that SAT-associated genes were char-
acterized by their higher than expected involvement in cellular,
regulatory and immune system processes, and SAT/TAT-asso-
ciated genes by their involvement in cellular, metabolic, and
regulatory processes. Mendelian Randomization (MR) analyses
confirmed that these novel genes are specific for body fat mass or
body fat distribution, i.e. implicating different molecular processes,
and suggested that the up-regulation or downregulation of the
gene expression may causally contribute to obesity. Finally, we
replicated the results using UK Biobank data, where we imputed
AT gene expression based on exome sequencing data and
weights learned in the analysis of the EPIC Potsdam study.

METHODS
Study population
This study was conducted in a sub–cohort of EPIC Potsdam within the
large European Prospective Investigation into Cancer and Nutrition (EPIC)
study [22]. EPIC Potsdam is an ongoing cohort study among 27,548
persons aged 35–65 at recruitment between 1994–1998 from the general
population of the city of Potsdam and surrounding area in Germany [22].
From 2010 to 2013, a random sample of 1472 participants was re–invited
to the study center of whom 816 agreed to participate [23, 24].
MRI scans were obtained to assess body compartments from 594

participants on a separate visit [25]. Based on automated segmentation
algorithms of the MRI scans [26, 27], for the analysis in this manuscript, SAT
mass (fat mass in subcutaneous adipose tissue) was extracted as a measure
of absolute fat mass, and the ratio of SAT and total adipose tissue (TAT)
mass, SAT/TAT, as a measure of body fat distribution [28].
Subcutaneous adipose tissue biopsies were taken from 278 participants

with sufficient material extracted from 200 participants [28]. The total RNA
was extracted for RNA-sequencing (RNA-Seq). Single nucleotide variants
(SNVs) were called from the RNA-Seq data for the 200 participants. For 160
of the participants, MRI measurements were available, which therefore
constituted the sample for this study. In comparison to the full
EPIC–Potsdam cohort as well as to the 816 participants of the substudy,
these 160 probands were very similar regarding their age and sex
distribution, disease prevalence, and anthropometric measures (data not
shown). Sex was set to equal the assessed gender.
For a replication analysis of the associated genes, we used UK Biobank

data (www.ukbiobank.ac.uk). The UK Biobank is a prospective cohort study
encompassing data of about 500,000 participants (40–69 years of age at
baseline) from Great Britain [29], including whole-exome sequencing data
of about 49,960 participants at the time of analysis [30] and MRI scans of
about 10,000 participants [31]. In the replication, we analyzed the subset of
unrelated (i.e. excluding one person of each pair with greater than 3rd-
degree relatedness) white British participants (based on self-report and
their genetic principal components), which yielded a sample size of
n= 4904.

Assessment of gene expression in subcutaneous adipose
tissue
The multiplexed probes were sequenced on the Illumina HiSeq 2000
platform. After the sequencing, the reads were aligned to hg38
(GRCh38.78) using TopHat2 version 2.0.12 [32] and Bowtie 2 version
2.0.6.0 [33] and quality-controlled. In order to obtain gene expression
measures, the aligned reads were counted using htseq-count [34] and
trimmed mean of M values (TMM)-normalized transcripts per million (TPM)
counts were obtained. [35, 36] Finally, the normalized read counts were
quality-controlled and low-expressed genes (expressed in less than 25% or

the participants) were filtered, which yielded 30,917 genes for the main
analysis.

Assessment of genetic variation
In order to investigate genetic variants, SNVs (in coding regions) were
called from the RNA-Seq reads using the mpileup tool of bcftools version
1.9 [37] and further quality-controlled, trimmed and imputed. For the
complete-case analysis in the sample of n= 160, 4,776,233 autosomal
biallelic non-monomorphic quality-controlled SNVs were available.
See Supplementary Text for more details regarding the study popula-

tion, pre-processing of the RNA-seq data, quality control steps, and details
on genetic variation processing.

Statistical analysis
All analyses were performed in R 3.6.3 [38]. SAT mass was log-transformed
for all analyses to yield a normally-distributed measure. The Yeo-Johnson
transformation [39] was used to remove skewness and yield normally-
distributed gene expression measures (based on the TMM-normalized TPM
counts) for all analyses described in the following. SAT/TAT was not
transformed.
In the first part of the analysis, the SAT gene expression of each of the

30,917 genes was tested for its association with SAT and SAT/TAT
separately, in copula models [21, 40, 41] of the joint distribution of SAT and
SAT/TAT conditional on the respective gene expression and the covariates
age, sex, smoking status, physical activity and education. Copula functions
can be used as a flexible tool to model the joint distribution of multiple
outcomes, here SAT and SAT/TAT. By modeling the dependence of SAT
and SAT/TAT, which had dependence Kendall’s τ= 0.36, the power of the
association tests can be increased. In more detail, the joint distribution F of
SAT and SAT/TAT was constructed using the copula function Cψ,
F SAT; SAT=TATjxð Þ ¼ Cψ F1 SATjxð Þ; F2 SAT=TATjxð Þð Þ, with marginal models

SAT ¼ γ0 þ γ1x1 þ γ2x2 þ γ3x3 þ γ4x4 þ γ5x5 þ βjgj þ ε (1)

SAT=TAT ¼ γ00 þ γ01x1 þ γ02x2 þ γ03x3 þ γ04x4 þ γ05x5 þ β0j gj þ ε0 (2)

and the 2-parameter copula function Cψðu1; u2; ¼ up;φ; θÞ ¼
f½Pp

l¼1 ðu�φ
l � 1Þθ�1=θ þ 1g�1=φ with 0 ≤ u1,u2 ≤ 1 and ψ ¼

ðφ; θÞT ;φ> 0; θ � 1: Here, F1 and F2 are the marginal distributions of SAT
and SAT/TAT and x ¼ ðx1; x2; x3; x4; x5; gjÞT includes the gene expression gj
and covariates x1 ¼ x5 sex, age, smoking, physical activity, education. Hence, in
the marginal models, parameter estimates of βj and β0j can be interpreted
analogously to linear regression models and quantify the change in SAT or
SAT/TAT for a 1 unit increase in gene expression, given the covariates. The
copula models were fitted sequentially for the gene expression of each gene
gj, j ¼ 1; ¼ ; 30; 917, and the large-sample Wald test statistics were computed
to test the null hypotheses H0j : βj ¼ 0 (vs. HAj : βj ≠ 0) and H0j : β

0
j ¼ 0 (vs.

HAj : β
0
j ≠ 0) using the cjamp function in the CJAMP (copula-based joint analysis

of multiple phenotypes) R package [42].
Next, the obesity-associated genes identified in the above analyses were

characterized regarding their functional properties, performing a gene
ontology (GO)-term enrichment analysis in order to identify which gene
ontology terms are enriched (under-/overrepresented) in the obesity-
associated genes compared to all 30,917 analyzed genes. For details see
the Supplementary Text.
In the subsequent analyses, the focus was restricted to the autosomal

obesity-associated genes, and it was investigated how many of the
associated genes have been found to be associated with obesity or body
fat distribution in previous studies. For this, the NCBI gene database
(accessed at https://www.ncbi.nlm.nih.gov/gene on July 25, 2020) was
searched for genes associated with “obesity”, and all entries were extracted
filtering for humans. Furthermore, the GWAS Catalog [10] (accessed at
https://www.ebi.ac.uk/gwas/ on July 25, 2020) was searched for Experi-
mental Factor Ontology (EFO) traits “obesity”, “fat body mass”, “body mass
index”, “body composition measurement“, “body fat distribution”, “BMI-
adjusted waist-hip ratio”, “visceral:subcutaneous adipose tissue ratio” and
“visceral:total adipose tissue ratio”, and all SNVs (associations) with a
p value <10−5 for all relevant reported traits and child traits were extracted
by restricting the results to main overall effects (i.e. ignoring interaction
effects, subgroup analyses, and proxy traits such as protein levels of
obesity as traits), and restricting to body fat distribution traits of the trunk/
abdomen (i.e. ignoring e.g. leg fat distribution). Finally, we queried the
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AstraZeneca PheWAS Portal (accessed at https://azphewas.com on June
25, 2022) which is based on a recent phenome-wide association study [43]
of 18,762 genes and 2,108,983 SNVs using exome-sequencing data in UK
Biobank. We extracted genes that were associated (i.e. had a p value <0.05/
18,762 in any of the 11 performed collapsing gene-level tests, or contained
a SNV with p value <0.05/2,108,983 in genotypic variant-level association
tests) with BMI, waist circumference, whole body fat mass, abdominal SAT
mass or VAT mass. For all lists, gene symbols were extracted and in order
to match this list with the list of the genes associated with SAT and SAT/
TAT in our study, gene symbols were extracted from the Ensembl
identifiers (ID) using the biological DataBase network (accessed at https://
biodbnet-abcc.ncifcrf.gov/db/db2db.php on July 25, 2020). Next, we
investigated for each of the identified genes whether they encode a
known protein, also by using the biological DataBase network––in more
detail, by inputting the Ensembl ID of the genes and outputting the
encoded UniProt protein name.
Next, we investigated the causal role of the identified genes in obesity.

To this aim, we performed a Mendelian randomization (MR) study to
investigate the association of genetically-determined gene expression with
SAT mass and SAT/TAT. For this, all SNVs were included in the MR analysis
that (i) have been identified as single-tissue cis expression quantitative trait
loci (eQTLs) for SAT gene expression in Genotype-Tissue Expression
(GTEx) version 8 for that respective gene (obtained from https://
www.gtexportal.org/home/datasets), (ii) were not associated with any
confounder of the gene expression–SAT, gene expression–SAT/TAT
association, i.e. not associated with covariates sex, age, smoking, physical
activity, education (tested using Wald tests of the regression coefficients in
linear regression models or Fisher’s exact tests, with statistical significance
threshold 0.001), (iii) were not associated with SAT and SAT/TAT,
respectively, conditional on the expression of the respective gene and
confounders sex, age, smoking, physical activity, education (tested in Wald
tests of the regression coefficients in linear regression models, with
statistical significance threshold 0.001), and (iv) with further filtering by
excluding one SNV of each SNV pair with Spearman correlation greater
than 0.9 (or smaller than −0.9). The analysis was performed using the
mr_ivw function in the Mendelian Randomization R package [44], with the
“weights =’delta’” option, psi being set to the sample correlation between
gene expression and obesity measure, otherwise default settings and using
the “correl=TRUE” option, which computes the inverse-variance weighted
method (IVW) and allows to incorporate multiple correlated SNVs.
For a replication of the causally associated genes, we used UK Biobank

data. Based on the filtered SNVs that were used in the Mendelian
Randomization analysis, and their weights from a multiple linear regression
model predicting the respective gene expression of the gene in the EPIC-
Potsdam data, we imputed SAT gene expression based on the whole-
exome sequencing data in the UK Biobank data. Then, we tested the
association of this imputed genetically-determined SAT gene expression
with abdominal SAT (aSAT) mass and aSAT/(aSAT+VAT) from MRI scans, in
a linear regression model adjusting for age, sex, smoking and education.

RESULTS
Description of the participants’ characteristics
The characteristics of the study population from the EPIC Potsdam
study are shown in Table 1. There were slightly more women than
men, and participants constituted an older and predominantly
healthy sample from the general population.

Screen of associations between gene expression and obesity
In the first part of the analysis, the SAT gene expression of each of
the quality-controlled 30,917 genes was tested for its association
with SAT and SAT/TAT separately. The transcriptome-wide
association analysis using C-JAMP identified 441 genes associated
with SAT mass and 225 associated with SAT/TAT after a respective
Bonferroni-correction for multiple testing of the 30,917 genes, i.e.
with a respective p value cutoff of 0.05/30,917. Of these genes, 41
overlapped so that in total, 625 genes were identified to be
associated with adiposity (see Table 2). For sensitivity checks,
standard univariate regression models were computed of the
respective marginal models. The results showed that there was a
large overlap of the associated genes identified in the copula
analysis and the regression analysis, also with similar ranking (see

Figure S1). The copula-based analysis identified more associated
genes as compared to standard linear regression of the marginal
models (410 with respect to SAT and 121 genes with respect to
SAT/TAT).

Characterization of the identified adiposity-associated genes
Of the 625 identified adiposity-associated genes (400 for SAT only,
184 for SAT/TAT only, 41 for both), 607 are autosomal genes and
18 are sex-chromosomal genes. Of the 607 autosomal genes, only
38 were associated with both SAT mass as well as SAT/TAT. In all
further analyses described below, we focused on the 607
autosomal genes. In order to identify known and novel genes,
the NCBI gene database, GWAS Catalog and AstraZeneca PheWAS
Portal were searched which yielded 1962 genes, SNPs in 2509
genes, and as well as 23 genes and SNPs in 562 genes,
respectively, for in total 4460 known genes associated with
obesity and body composition. Of the 607 obesity-associated
genes in our study, 120 have been found to be associated with
adiposity in previous studies, such as the LEP gene encoding the
adipokine leptin and several cytokines of the interleukin and
tumor-necrosis-factor alpha families [45, 46]. Regarding a first
functional characterization of the 607 genes, 531 encode a known
protein. An overview of these numbers is given in Table 2.
Gene ontology (GO) term enrichment analyses indicated that

the identified adiposity-associated genes are overrepresented in
metabolic, cellular, regulatory and immune system processes, and
that there are differences between those genes associated with
body fat mass and those associated with body fat distribution. In
more detail, there were 15 GO terms that were overrepresented in
the 441 genes associated with SAT compared to the full pool of
30,917 genes, and 36 GO terms that were overrepresented in the
225 genes associated with SAT/TAT compared to the full pool of
30,917 genes. While the genes associated with body fat mass are
mainly overrepresented in cellular, regulatory and immune system
processes, those genes associated with body fat distribution are
mainly overrepresented with cellular, metabolic, and regulatory
processes (see Table 3 and Tables S1–S4). For example, there were
35 GO terms related to metabolic processes overrepresented in
the genes associated with SAT/TAT, but no GO term related to
metabolic processes overrepresented or underrepresented in the
genes associated with SAT.

Causal gene expression effects on obesity
Next, we investigated the causal role of the identified genes in
obesity in more detail. To this aim, we performed a MR study to
investigate the association of genetically-determined gene
expression with SAT mass and SAT/TAT. The stringent filtering
steps as described in the Methods section allowed to perform a
MR analysis of 261 (of the 430) genes for SAT and of 122 (of the
215) genes for SAT/TAT, which each contained at least one single
nucleotide variant (SNV) after the filtering steps. In the analysis, on
average 12 and 9 SNVs were included per gene for SAT mass and
SAT/TAT, respectively, (min=1, max=97 for SAT and min=1,
max=38 for SAT/TAT). They explained on average 10% variance of
the respective gene expression for SAT and 7% variance of the
respective gene expression for SAT/TAT.
In the MR analyses, the genetically-determined gene expression

of 53 genes was associated with SAT mass and of 16 genes with
SAT/TAT, supporting a causal effect of gene expression on
adiposity for these genes. Both sets of genes were non-
overlapping. They explained on average 20% variance of the
respective gene expression for SAT and 15% variance of
the respective gene expression for SAT/TAT. Of these 69 genes,
57 are novel genes for obesity (i.e. have not been reported to be
associated with adiposity in the NCBI database and GWAS
Catalog), and 46 are novel and encode a known protein. An
overview of these numbers is given in Table 4 and an overview of
the p-values and results for all genes in Tables S5, S6.
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Replication of causally associated genes in UK Biobank
Finally, we used data generated from the participants of the UK
Biobank for replication of the results. See Table S7 for
characteristics of the study population containing n= 4904

participants. We were able to investigate 38 of the 53 genes for
SAT mass and 10 of the 16 genes for SAT/TAT (see Table 4), with at
least one SNV being available in the quality-filtered whole-exome
sequencing data in the UK Biobank. For these genes, the SNVs
explained on average 7% variance for SAT mass and 4% variance
for SAT/TAT. Using the weights from the analysis of the EPIC-
Potsdam dataset, the computed genetically-determined SAT gene
expression score in UK Biobank of 5 genes was associated with
SAT mass and of 1 gene was associated with aSAT/(aSAT+VAT).
These 6 genes are DBNDD1, PTPRU, ERAP1, ANKDD1A and
LINC02798 for SAT and MCC1 for aSAT/(aSAT+VAT), see Table 5
for an overview of these final genes with their functional
annotation.

DISCUSSION
In this study, we identified 487 novel candidate genes for
adiposity and 120 genes that have previously been found to be
related to adiposity. The MR analysis indicates that for 69 genes,
there is evidence for a causal role of their gene expression in
adiposity. Importantly, 57 of these 69 genes––46 genes for body
fat mass and 11 genes for body fat distribution––have not been
established as adiposity genes in previous studies, and are
interesting novel candidate genes whose gene expression may
causally affect adiposity. Six genes were confirmed in stringent
replication analysis using UK Biobank data.
Investigating these genes in follow-up studies can provide

novel evidence of the molecular correlates and pathways under-
lying both abdominal adiposity as well as peripheral adiposity, and
provide a fine-grained view on the different obesity traits that
altogether constitute an established risk factor for many chronic
diseases and for premature death. Interestingly, the results of our
study provide ample view that body fat mass and body fat
distribution are distinct phenotypes with distinct molecular
correlates and underlying pathways. This was observed in the
results of the transcriptomic association analysis, where 441 genes
were associated with SAT, 225 genes were associated with SAT/
TAT, and only 41 of these genes were overlapping. All subsequent
follow-up analyses including the MR analysis fortified this
separation further and revealed non-overlapping sets of genes.
In addition to these separate sets of associated genes, the GO-
term enrichment analyses provided further evidence. Their results
indicated that SAT-associated genes were characterized by their

Table 2. Overview of the number of genes associated with only SAT, only SAT/TAT, with both SAT and SAT/TAT, and their total sum, in the analysis of
30,917 genes in the study population from the EPIC-Potsdam substudy (n=160).

Description SAT only SAT/TAT only SAT and SAT/TAT Total

Associated genesa 400 184 41 625

Associated autosomal genesa 392 177 38 607

Associated autosomal genes that are knownb 69 38 13 120

Associated autosomal genes that are novelb 323 139 25 487

Associated autosomal genes which encode known proteinc 338 158 35 531
aafter Bonferroni-correction for multiple testing of the 30,917 genes.
bOverlap with genes that have been associated with obesity and body fat distribution in previous studies on the molecular or genetic level. These lists have
extracted on July 25, 2020 from the (i) NCBI gene database (https://www.ncbi.nlm.nih.gov/gene) by searching and extracting all associated with “obesity” in
humans, and (ii) GWAS Catalog (https://www.ebi.ac.uk/gwas/), where all SNVs (associations) with a p value <10−5 for all relevant reported traits and child traits
were extracted when searching for EFO (Experimental Factor Ontology) traits “obesity”, “fat body mass”, “body mass index”, “body composition measurement“,
“body fat distribution”, “BMI-adjusted waist-hip ratio”, “visceral:subcutaneous adipose tissue ratio” and “visceral:total adipose tissue ratio”, and restricting the
results to main overall effects (i.e. ignoring interaction effects, subgroup analyses, and proxy traits such as protein levels of obesity as traits), and restricting to
body fat distribution traits of the trunk/abdomen (i.e. ignoring e.g. leg fat distribution). (iii) Further, the AstraZeneca PheWAS Portal was accessed at https://
azphewas.com on June 25, 2022 and genes were extracted that were associated with BMI, waist circumference, whole body fat mass, abdominal SAT mass or
VATmass in gene-level or variant level association tests. (i) yielded 1962 genes, (ii) SNVs in 2509 genes, and (iii) 23 genes and SNPs in 562 genes, which yields in
total 4460 known candidate genes for obesity and body composition.
cWhether each gene encodes a known protein was checked using the UniProt annotation from https://biodbnet-abcc.ncifcrf.gov/db/db2db.php, queried on
July 25, 2020.

Table 1. Sex-stratified characteristics of the study population from the
EPIC-Potsdam substudy (n=160).

Characteristics Women Men

Sample size 88 72

Age, years 62.7 (8.4) 66.9 (8.3)

Smoking, %

Never 54.5 29.2

Former 31.8 55.6

Current 13.6 15.3

CPAI, %

Inactive 8.0 8.3

Moderately inactive 26.1 29.1

Moderately active 35.2 33.3

Active 30.7 29.2

Vocational training, %

No vocational training/ vocational
training

40.9 34.7

Technical college 26.1 11.1

University 31.8 54.2

Myocardial infarction, % 0 1.4

Stroke, % 0 0

Heart failure, % 0 0

Diabetes, % 2.3 11.1

BMI, kg/m2 27.8 (4.3) 28.1 (3.9)

SAT, kg* 20.1 (5.2) 14.8 (4.3)

TAT, kg* 23.7 (5.4) 21.0 (5.9)

Values are relative frequencies, mean and SD, or *median and median
absolute deviation.
CPAI Cambridge physical activity index, BMI body mass index, AT adipose
tissue, SAT subcutaneous AT, TAT total AT.
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higher than expected involvement in cellular, regulatory and
immune system processes, and SAT/TAT-associated genes by their
involvement in cellular, metabolic, and regulatory processes.
We investigated the causal role of the identified genes in

obesity regarding the question whether they affect obesity
causally, e.g. through an upregulation or downregulation of their
gene expression which contributes to a metabolic imbalance
which in turn contributes to obesity. The results of the Mendelian
Randomization analysis suggest a causal effect of gene expression
of 53 genes on SAT mass and of 16 genes on SAT/TAT. The

replication analyses of these results in the UK Biobank provide
support for a causal role of the gene expression of six genes on
adiposity: DBNDD1, PTPRU, ERAP1, ANKDD1A and LINC02798 for
body fat mass and MCC1 for body fat distribution. All these genes
have not been listed in neither the NCBI database nor the GWAS
Catalog as being associated with adiposity and are novel
candidate genes. Only the ERAP1 gene has recently been
associated in rare-variant association studies with BMI and body
fat mass [43]. Further, all genes except for the Long Intergenic
Non-Protein Coding RNA 2798 (LINC02798) have known proteins
that could be further candidate biomarkers of interest. Regarding
DBNDD1 (Dysbindin Domain Containing 1), there is evidence of its
involvement in gluco-metabolic pathways [47] and through its
function of binding dystrobrevin, a protein involved in intracellular
processes in muscle tissue, has also some evidence for an
involvement in type 2 diabetes [48]. PTPRU (Protein Tyrosine
Phosphatase Receptor Type U) encodes a protein of the protein
tyrosine phosphatase (PTP) family, and is a key regulator of cell
communication through regulating cellular phosphotyrosine
levels. The PTP family is involved, among others, in different
metabolic pathways [49] and regulatory processes of cancer and
diabetes [50]. Another candidate of interest for follow-up
investigations is ERAP1, which encodes the endoplasmic reticulum
aminopeptidase 1 and is involved in MHC class I antigen
processing, hence immune processes [51], as well as in peptide
catabolic processes and type 1 diabetes [52]. ANKDD1A (Ankyrin
Repeat And Death Domain Containing 1 A) is a functional tumor
suppressor gene and involved in signal transduction [53]. Similarly
to MCC1 (Methylcrotonoyl-CoA Carboxylase 1), the involvement of
ANKDD1A in metabolic and catabolic processes is still unclear. In
addition to these genes and proteins, further interesting genes
identified by the MR analyses but that could not be investigated in
the UK Biobank replication are, for example, CD44, PLCXD3, ANG,
GPR39 and GALNT10 [54].
Our study has some limitations. First, the analyses of the EPIC-

Potsdam and UK Biobank cohorts were based on comparably

Table 4. Overview of the number of genes associated with only SAT, only SAT/TAT, with both SAT and SAT/TAT, and their total sum, in Mendelian
Randomization and replication analyses, of the 607 autosomal genes associated with SAT and/or with SAT/TAT (see Table 2) in the study population
from the EPIC-Potsdam substudy (n= 160).

Description SAT only SAT/TAT only SAT and SAT/TAT Total

Associated autosomal genesa 392 177 38 607

Associated autosomal genes that were investigated in MR analysisb 234 95 27 356

Associated autosomal genes identified to be causalc 53 16 0 69

Associated autosomal genes identified to be causal and novelc,d 46 11 0 57

Associated autosomal genes identified to be causal, novel, and to encode a known proteinc,d,e 36 10 0 46

Associated autosomal genes identified to be causal that were investigated in the UK Biobank
replication analysis

38 10 0 48

Associated autosomal genes identified to be causal that were confirmed in the UK Biobank
replication analysis

5 1 0 6

AT adipose tissue, MR Mendelian Randomization, SAT subcutaneous AT, TAT total AT.
aafter Bonferroni-correction for multiple testing of the 30,917 genes.
bi.e. number of genes for which valid instruments were available to perform a MR analysis.
cTo test whether the identified associations are causal, MR analysis were performed predicting SAT and SAT/TAT by genetically determined gene expression.
dOverlap with genes that have been associated with obesity and body fat distribution in previous studies on the molecular or genetic level. These lists have
extracted on July 25, 2020 from the (i) NCBI gene database (https://www.ncbi.nlm.nih.gov/gene) by searching and extracting all associated with “obesity” in
humans, and (ii) GWAS Catalog (https://www.ebi.ac.uk/gwas/), where all single nucleotide variant (SNV) associations with a p value <10−5 for all relevant
reported traits and child traits were extracted when searching for EFO (Experimental Factor Ontology) traits “obesity”, “fat body mass”, “body mass index”, “body
composition measurement“, “body fat distribution”, “BMI-adjusted waist-hip ratio”, “visceral:subcutaneous adipose tissue ratio” and “visceral:total adipose tissue
ratio”, and restricting the results to main overall effects (i.e. ignoring interaction effects, subgroup analyses, and proxy traits such as protein levels of obesity as
traits), and restricting to body fat distribution traits of the trunk/abdomen (i.e. ignoring e.g. leg fat distribution). (iii) Further, the AstraZeneca PheWAS Portal
was accessed at https://azphewas.com on June 25, 2022 and genes were extracted that were associated with BMI, waist circumference, whole body fat mass,
abdominal SAT mass or VAT mass in gene-level or variant level association tests. (i) yielded 1962 genes, (ii) SNVs in 2509 genes, and (iii) 23 genes and SNPs in
562 genes, which yields in total 4460 known candidate genes for obesity and body composition.
eWhether each gene encodes a known protein was checked using the UniProt annotation from https://biodbnet-abcc.ncifcrf.gov/db/db2db.php, queried on
July 25, 2020.

Table 3. Summary of the results of the GO term enrichment analysis
in the study population from the EPIC-Potsdam substudy (n=160).

GO terms SAT SAT/TAT

Metabolic process 0 35

Cellular process 7 27

Immune system process 4 1

Localization 7 1

Locomotion 0 1

Response to stimulus 2 0

Biological regulation 1 0

Cell proliferation 1 0

There were 15 Gene Ontology (GO) terms that were (statistically
significantly after multiple testing correction for all 6287 analyzed GO
terms) overrepresented in the 441 genes associated with SAT compared to
the full pool of 30,917 genes, and 36 GO terms that were (statistically
significantly after multiple testing correction for all 6287 analyzed GO
terms) overrepresented in the 225 genes associated with SAT/TAT
compared to the full pool of 30,917 genes, using Fisher’s exact test. In
this summary table, the number of highest-level parent GO terms of these
overrepresented 15 (left panel) and 36 (right panel) GO terms is shown. For
the full results of all 15 and 36 GO terms, see Tables S3, S4.

S. Konigorski et al.

1131

European Journal of Human Genetics (2024) 32:1127 – 1135

https://www.ncbi.nlm.nih.gov/gene
https://www.ebi.ac.uk/gwas/
https://azphewas.com
https://biodbnet-abcc.ncifcrf.gov/db/db2db.php


Ta
bl
e
5.

R
es
u
lt
s
an

d
an

n
o
ta
ti
o
n
s
fo
r
th
e
5
au

to
so
m
al
g
en

es
as
so
ci
at
ed

w
it
h
SA

T
m
as
s
an

d
1
au

to
so
m
al
g
en

e
as
so
ci
at
ed

w
it
h
SA

T/
TA
T
in

th
e
M
en

d
el
ia
n
R
an

d
o
m
iz
at
io
n
an

al
ys
is
th
at

w
er
e
re
p
lic
at
ed

in
th
e
U
K
B
io
b
an

k
an

al
ys
is
.

G
en

e
in
fo
rm

at
io
n

G
en

e
ex

p
re
ss
io
n
an

al
ys
is

M
en

d
el
ia
n
R
an

d
om

iz
at
io
n
an

al
ys
is

R
ep

lic
at
io
n
an

al
ys
is

Tr
ai
t

En
se
m
b
l

G
en

e
C
h
r

St
ar
t

En
d

N
ov

el
Pr
ot
ei
n

b
et
a

SE
p
va

lu
e

n
o_

va
r

R
2

p
va

lu
e

n
o_

va
r

R
2

p
va

lu
e

SA
T

EN
SG

00
00

00
03

24
9

D
BN

D
D
1

16
90

00
48

65
90

02
01

28
Y
ES

D
ys
b
in
d
in

d
o
m
ai
n
-

co
n
ta
in
in
g
p
ro
te
in

1
0,
30

0,
06

2,
79

×
10

−
7

33
3

0,
87

5,
31

×
10

−
4

11
0,
15

1
3,
13

×
10

−
3

SA
T

EN
SG

00
00

00
60

65
6

PT
PR

U
1

29
23

65
16

29
32

68
13

Y
ES

R
ec
ep

to
r-
ty
p
e
ty
ro
si
n
e-

p
ro
te
in

p
h
o
sp
h
at
as
e
U

0,
34

0,
06

4,
97

×
10

−
8

39
0,
03

5,
05

×
10

−
3

1
0,
01

2
2,
63

×
10

−
4

SA
T

EN
SG

00
00

01
64

30
7

ER
A
P1

5
96

76
08

10
96

80
81

00
N
O

En
d
o
p
la
sm

ic
re
ti
cu

lu
m

am
in
o
p
ep

ti
d
as
e
1

0,
36

0,
07

8,
37

×
10

−
7

36
8

0,
88

6,
26

×
10

−
1
1

15
0,
34

9
3,
70

×
10

−
2

SA
T

EN
SG

00
00

01
66

83
9

A
N
KD

D
1A

15
64

91
19

02
64

95
87

00
Y
ES

A
n
ky
ri
n
re
p
ea
t
an

d
d
ea
th

d
o
m
ai
n
-c
o
n
ta
in
in
g

p
ro
te
in

1
A

0,
37

0,
06

8,
39

×
10

−
1
1

12
8

0,
29

1,
09

×
10

−
2

6
0,
07

7
2,
37

×
10

−
2

SA
T

EN
SG

00
00

02
27

08
2

LI
N
C0

27
98

1
12

13
96

75
4

12
14

63
12

9
Y
ES

--
0,
32

0,
06

5,
82

×
10

−
7

25
0

0,
57

4,
38

×
10

−
6

1
0,
00

1
2,
63

×
10

−
4

SA
T/

TA
T

EN
SG

00
00

00
78

07
0

M
CC

C1
3

18
30

15
21

8
18

31
16

07
5

Y
ES

M
et
h
yl
cr
o
to
n
o
yl
-C
o
A

ca
rb
o
xy
la
se

su
b
u
n
it
al
p
h
a,

m
it
o
ch

o
n
d
ri
al

0,
27

0,
05

1,
02

×
10

−
7

16
4

0,
30

2,
85

×
10

−
2

2
0,
03

7
4,
16

×
10

−
2

Sh
o
w
n
ar
e
th
e
En

se
m
b
lI
D
o
f
th
e
g
en

e
(“
En

se
m
b
l”
),
th
e
g
en

e
sy
m
b
o
l(
“G

en
e”
),
th
e
g
en

o
m
ic
p
o
si
ti
o
n
in

fo
rm

o
f
th
e
ch

ro
m
o
so
m
e
n
u
m
b
er

(“
C
h
r”
)a

s
w
el
la
s
th
e
st
ar
t
(“
St
ar
t”
)a

n
d
en

d
(“
En

d
”)
p
o
si
ti
o
n
in

b
as
e
p
ai
rs

o
f
th
e
g
en

e;
w
h
et
h
er

th
e
g
en

e
is
kn

o
w
n
to

b
e
as
so
ci
at
ed

w
it
h
o
b
es
it
y
(b
as
ed

o
n
th
e
N
C
B
Ig

en
e,
G
W
A
S
C
at
al
o
g
an

d
A
st
ra
Z
en

ec
a
Ph

eW
A
S
Po

rt
al
d
at
ab

as
es
),
th
e
co

rr
es
p
o
n
d
in
g
p
ro
te
in

en
co

d
ed

b
y
th
e
g
en

e
if
it
is

kn
o
w
n
(f
ro
m

U
n
iP
ro
t)
;a
n
d
re
su
lt
s
o
f
th
e
st
at
is
ti
ca
la
n
al
ys
es
:t
h
e
es
ti
m
at
es

o
f
th
e
ef
fe
ct

si
ze

(“
b
et
a”
;e
st
im

at
e
o
f
b
et
a_
ji
n
th
e
m
ar
g
in
al
m
o
d
el

o
f
C
-J
A
M
P
in

Eq
.(
1)
,o

r
(2
)r
es
p
ec
ti
ve
ly
,i
n
th
e
m
ai
n
te
xt
)
it
s
st
an

d
ar
d

er
ro
r
es
ti
m
at
es

(“
SE

”)
an

d
p
va
lu
e
(“
p
va
lu
e”
)
fr
o
m

th
e
C
-J
A
M
P
as
so
ci
at
io
n
an

al
ys
is
o
f
SA

T
an

d
SA

T/
TA

T
co

n
d
it
io
n
al

o
n
th
e
g
en

e
ex
p
re
ss
io
n
an

d
co

va
ri
at
es
;t
h
e
re
su
lt
s
fr
o
m

th
e
M
en

d
el
ia
n
ra
n
d
o
m
iz
at
io
n
(M

R
)

an
al
ys
is
in

fo
rm

o
f
th
e
n
u
m
b
er

o
f
SN

V
s
in

th
e
g
en

e
th
at

w
er
e
in
co

rp
o
ra
te
d
in

th
e
M
R
an

al
ys
is
(“
n
o
_v
ar
”)
,t
h
e
ex
p
la
in
ed

va
ri
an

ce
o
f
th
e
g
en

e
ex
p
re
ss
io
n
b
as
ed

o
n
a
m
u
lt
ip
le

lin
ea
r
re
g
re
ss
io
n
m
o
d
el

co
n
ta
in
in
g

th
es
e
SN

V
s
(“
R
2
”)
,a
n
d
th
e
p
va
lu
e
fr
o
m

th
e
in
ve
rs
e-
va
ri
an

ce
w
ei
g
h
te
d
M
R
m
et
h
o
d
(“
p
va
lu
e”
);
as

w
el
la
s
th
e
re
su
lt
s
o
f
th
e
re
p
lic
at
io
n
an

al
ys
is
in

fo
rm

o
f
th
e
n
u
m
b
er

o
fS

N
V
s
in

th
e
g
en

e
th
at

w
er
e
in
co

rp
o
ra
te
d
in

th
e
M
R
an

al
ys
is
(“
n
o
_v
ar
”)
,t
h
e
ex
p
la
in
ed

va
ri
an

ce
o
f
th
e
g
en

e
ex
p
re
ss
io
n
b
as
ed

o
n
a
m
u
lt
ip
le

lin
ea
r
re
g
re
ss
io
n
m
o
d
el

co
n
ta
in
in
g
th
es
e
SN

V
s
(“
R
2
”)
,a
n
d
th
e
p
va
lu
e
fr
o
m

th
e
lin

ea
r
re
g
re
ss
io
n
an

al
ys
is
(“
p
va
lu
e”
).

Th
e
fo
llo

w
in
g
g
en

e
o
n
to
lo
g
y
te
rm

s
o
f
th
e
B
io
lo
g
ic
al

Pr
o
ce
ss

(B
P)

o
n
to
lo
g
y
ar
e
as
so
ci
at
ed

w
it
h
ea
ch

o
f
th
e
g
en

es
,o

b
ta
in
ed

u
si
n
g
th
e
an

n
FU

N
.o
rg
()
fu
n
ct
io
n
in

th
e
to
p
G
O

R
p
ac
ka
g
e:

D
BN

D
D
1:

--
PT
PR

U
:p

ro
te
in

d
ep

h
o
sp
h
o
ry
la
ti
o
n
;c
el
l
ad

h
es
io
n
;t
ra
n
sm

em
b
ra
n
e
re
ce
p
to
r
p
ro
te
in

ty
ro
si
n
e
p
h
o
sp
h
at
as
e
si
g
n
al
in
g
p
at
h
w
ay
;n

eg
at
iv
e
re
g
u
la
ti
o
n
o
f
ce
ll
p
ro
lif
er
at
io
n
;c
el
l
d
iff
er
en

ti
at
io
n
;n

eg
at
iv
e
re
g
u
la
ti
o
n
o
f

ce
ll
m
ig
ra
ti
o
n
;a
n
im

al
o
rg
an

re
g
en

er
at
io
n
;h

o
m
o
ty
p
ic
ce
ll-
ce
ll
ad

h
es
io
n
;p

ro
te
in

lo
ca
liz
at
io
n
to

ce
ll
su
rf
ac
e;
p
ep

ti
d
yl
-t
yr
o
si
n
e
d
ep

h
o
sp
h
o
ry
la
ti
o
n
;r
es
p
o
n
se

to
g
lu
co

co
rt
ic
o
id
;n

eg
at
iv
e
re
g
u
la
ti
o
n
o
fc
an

o
n
ic
al
W
n
t

si
g
n
al
in
g
p
at
h
w
ay
;p

o
si
ti
ve

re
g
u
la
ti
o
n
o
f
ce
ll-
ce
ll
ad

h
es
io
n
m
ed

ia
te
d
b
y
ca
d
h
er
in

ER
A
P1
:a
n
g
io
g
en

es
is
;a
d
ap

ti
ve

im
m
u
n
e
re
sp
o
n
se
;a
n
ti
g
en

p
ro
ce
ss
in
g
an

d
p
re
se
n
ta
ti
o
n
o
f
p
ep

ti
d
e
an

ti
g
en

vi
a
M
H
C
cl
as
s
I;
m
em

b
ra
n
e
p
ro
te
in

ec
to
d
o
m
ai
n
p
ro
te
o
ly
si
s;
re
g
u
la
ti
o
n
o
f
b
lo
o
d
p
re
ss
u
re
;r
es
p
o
n
se

to
b
ac
te
ri
u
m
;a

n
ti
g
en

p
ro
ce
ss
in
g
an

d
p
re
se
n
ta
ti
o
n
o
f
en

d
o
g
en

o
u
s
p
ep

ti
d
e
an

ti
g
en

vi
a
M
H
C
cl
as
s
I;
re
g
u
la
ti
o
n
o
f
in
n
at
e
im

m
u
n
e
re
sp
o
n
se
;
fa
t
ce
ll
d
iff
er
en

ti
at
io
n
;
p
o
si
ti
ve

re
g
u
la
ti
o
n
o
f
an

g
io
g
en

es
is

A
N
KD

D
1A

:s
ig
n
al

tr
an

sd
u
ct
io
n

LI
N
C
02

79
8:

--
M
CC

C1
:l
eu

ci
n
e
ca
ta
b
o
lic

p
ro
ce
ss
;b

io
ti
n
m
et
ab

o
lic

p
ro
ce
ss
;b

ra
n
ch

ed
-c
h
ai
n
am

in
o
ac
id

ca
ta
b
o
lic

p
ro
ce
ss
;p

ro
te
in

h
et
er
o
o
lig

o
m
er
iz
at
io
n

S. Konigorski et al.

1132

European Journal of Human Genetics (2024) 32:1127 – 1135



small sample sizes, and the MR analyses as well as replication
analysis were based on weak instruments. Nevertheless, we found
a high number of genes to be associated with our outcomes in the
gene expression analysis. This was made possible by high-quality
phenotyping, analysis of quantitative phenotypes, deep RNA-
sequencing data, extensive quality-control to reduce measure-
ment error and imprecise measures, and the use of powerful
statistical modeling using copula models. The association tests
based on copula tests yielded more associations compared to
linear regression models, and their validity to keep the nominal
type I error is supported by detailed evaluations of the copula
models and Wald tests in previous studies [21, 41]. These
strengths of our study counterbalanced the smaller sample size
compared to published studies on gene expression in subcuta-
neous adipose tissue that didn’t have MRI data available [14] or
another focus in the analysis on cell-type composition [13]. In the
choice between using more liberal instruments in the MR analysis
and using more stringent filtering criteria on the SNVs, we opted
for the latter to minimize risk of bias. As such, we believe that our
results provide a lower bound on the genes whose gene
expression in SAT is causally linked to adiposity. Similarly, only
very few SNVs could be used in the replication analysis in the UK
Biobank to impute SAT gene expression based on the whole-
exome sequencing data. Still, the imputed gene expression of 6
genes was associated with body fat mass and body fat
distribution, supporting the robustness of our analyses and
results. As further limitation, the genotype calls in our study were
not available from genotyping microarrays or DNA-sequencing
and were called from the RNA-sequencing data. Due to again
stringent filtering steps, few SNVs remained and were used in
imputation. In our opinion, this might have rather decreased the
power of the subsequent MR analysis, instead of increasing bias
and false positive findings. As another point of discussion, about
10% of participants in our sample took antidiabetic drugs, which
might affect gene expression of some genes. However, different
drugs might have different effects and detailed information on
drugs was not available. Therefore, we opted not to add
antidiabetic medication use as a covariate in the copula model,
which was supported by sensitivity checks we performed in an
earlier study where results of association studies did not change
[28]. Even if the association tests of some genes might have been
affected by this, our choice of following up the identified genes in
a Mendelian Randomization analysis ensured that these results
would not be affected. Finally, in our study, we only investigated
gene expression in subcutaneous adipose tissue. Without the
assessment of VAT gene expression and secretion rates from SAT
and VAT, however, parts of the overall molecular picture remain
unclear. For example, in terms of molecular mechanisms, it cannot
be ruled out that the gene expression in VAT is upregulated or
downregulated in parallel to the gene expression in SAT. However,
assessing VAT in a population–based study is rarely possible, and
VAT gene expression measured after bariatric or other surgeries
might not allow for a valid approximation of the metabolic activity
in the general population.
In summary, we identified novel adiposity genes that are fat

mass specific and fat distribution-specific, involved in different
molecular processes, and whose upregulated or downregulated
gene expression may causally contribute to obesity. These
findings can provide guidance for future work in finding
pieces in the puzzle of molecular mechanisms contributing to
adiposity.
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