1 Subjects & Methods ## 1.1 Samples For assay assessment, we sequenced AML cell lines (n = 3), samples from healthy volunteers (n = 2, from peripheral blood (PB)) and AML patient samples (n = 57 samples, from bone marrow aspirates (BM)). In total, and including all technical replicates, we sequenced and analyzed 90 samples. The human AML cell lines HL-60 (FLT3-ITD negative control¹), MOLM-14 (FLT3-ITD positive control, 21 bp ITD¹) and PL-21 (FLT3-ITD positive control, 126 bp ITD¹) were obtained from the German cell line repository DSMZ (Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany). The 57 AML samples were derived from 28 AML patients who were all included in the AMLSG BiO Registry study (ClinicalTrials.gov identifier: NCT01252485) and gave their informed consent for both biobanking and genomic analysis of leukemia samples according to the Declaration of Helsinki. For initial assay assessment, we sequenced 3 FLT3-ITD negative controls (healthy volunteers, n=2; AML cell line HL-60), 2 FLT3-ITD positive controls (AML cell lines MOLM-14 and PL-21) and diagnosis samples of 28 AML patients who previously tested FLT3-ITD positive by PCR- and capillary electrophoresis-based fragment analysis (FA). To further evaluate our assay in the context of MRD monitoring of FLT3-ITD positive AML, we sequenced 29 follow-up samples of 10 of these AML patients, five of whom achieved continuous complete remission and five of whom relapsed from the disease. For all patients, at least one sample from complete remission, following induction therapy, and at least one additional follow-up sample, either from continued complete remission or the time of relapse, were sequenced. All of these 10 patients were also enrolled in the AMLSG 16-10 trial (ClinicalTrials.gov identifier: NCT01477606). Within this trial, patients were treated with intensive induction chemotherapy in combination with midostaurin followed by allogeneic stem cell transplantation (HSCT) as first priority for consolidation or an age-adapted high-dose cytarabine (HDAC) based chemotherapy regimen in combination with midostaurin. A one-year maintenance therapy with midostaurin was intended for all patients, starting after chemotherapy-based consolidation or 30 days after HSCT. A detailed sample overview is provided in Table S2, including the attained sequencing coverage and FLT3-ITD statistics. ## 1.2 FLT3-ITD detection by NGS and getITD Next-generation sequencing: Patient samples had been enriched for mononuclear cells by Ficoll gradient centrifugation and purified cells were biobanked at -80 °C. Of these samples, genomic DNA was isolated using the AllPrep Mini Kit (Qiagen, Hilden, Germany) according to the manufacturers instructions. *FLT3* exons 14–15 were amplified by PCR, using 1 μL (50 ng) of genomic sample DNA, 20 μL of 2x KAPA HiFi HotStart ReadyMix (KAPA Biosystems, Wilmington, Massachusetts, USA) and 1.2 μL of 10 μM forward and reverse primer (forward primer: TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGA + GCAATTT-AGGTATGAAAGCCAGCTAC, reverse primer: CCAACGGCAGTTTTACGA-CTTTC + AGACAGAGAATATGTGTAGAGGCTCGGGTGCTCTG, each consisting of *FLT3* locus-specific sequence and the required sequencing adapter). The PCR comprised an initial denaturation step (95 °C 3 min), 30 amplification cycles (denaturation 98 °C 20 s, annealing 65 °C 30 s, elongation 72 °C 1 min) and a final elongation step (72 °C 5 min). PCR products were prepared for sequencing as detailed in the Illumina 16S Metagenomics Sequencing Protocol (16S Metagenomic Sequencing Library Preparation, Illumina, San Diego, California, USA) using either single or double unique indices for sample multiplexing. The resulting libraries were sequenced to high-coverage on the Illumina MiSeq using 250 bp paired-end reads (500-cycles MiSeq Reagent Kit V2, Illumina) and 7% phiX control spike-in (Kit V3, Illumina; coverage: 0.04–4.2 million, mean 1.6 million paired-end reads). In total, library preparation takes 6 h, with roughly 3 h of hands-on time. Se- In total, library preparation takes 6 h, with roughly 3 h of hands-on time. Sequencing takes an additional 39 h, so that samples are fully processed within 48 h. For our validation experiments, we have aimed for a rather high coverage and pooled 8 samples per MiSeq run, generating on average around 2 million paired-end reads per sample. With this setup, assay costs amount to about 150 Euro per sample. However, more than 90 % of these costs are spent on sequencing and only a minor fraction covers the sequencing library preparation. Costs could thus be reduced to about 100 Euro per sample if 16 instead of 8 samples were pooled, which would still generate a sufficient coverage of around 1 million reads per sample. Sample indexing: We tested our assay with both single and double unique indices for sample barcoding and multiplexing. Comparing 14 technical replicates, derived from 14/28 FLT3-ITD positive AML patients analyzed for assay assessment, we found significant index mis-assignment, so-called index hopping, when using single indices only². Index hopping causes reads to be mis-assigned to the wrong sample in a pooled library—when FLT3-ITD mutated reads are mis-assigned, they are then detected as false positive contaminated variants in these samples. For exam- ple, in our 14 replicates sequenced with single unique indices, 22/61 FLT3-ITDs could be traced to index hopping. We therefore sequenced all of our AML patient samples thereafter using double unique indices, found zero ITDs attributable to index hopping, and thus recommend others also use double indexing whenever low-allelic variants are of interest. Details of the ITDs detected with either index design are provided in Table S3. **getITD**: We developed the bioinformatics program *getITD* for the analysis of our assays sequencing data and the identification of respective ITDs. In brief, *getITD* aligns high-quality sequencing reads to the wild type (WT) amplicon, identifies insertions relative to this reference and then determines whether these qualify as ITDs. Insertions and ITDs are both extensively annotated and reported to the user. By default, high-quality sequencing reads are those with an average base quality score (BQS) of at least 30, equivalent to a sequencing error probability below 0.1%, whose sequence is not unique in a given sample. Each of these reads is aligned to the WT sequence of the target amplicon using the Needleman-Wunsch alignment algorithm³, with alignment scores optimized for the detection of long insertions (match: 5, mismatch: -15, gap opening: -36, gap extension: -0.5). Only alignments with gap-free primer sequences and an alignment score of at least 50% of the maximum possible score are processed further. This alignment score, which quantifies the similarity between the reference sequence and each of the samples reads, is calculated for each read as a running sum that increases whenever bases match between the read and the reference and decreases when they do not. Very low scores are indicative of PCR artefacts and respective reads are thus filtered out. From passing reads, insertions relative to the reference are extracted which are (i) in-frame, (ii) at least 6 bp / 2 amino acids long and (iii) free of ambiguous bases (N). Inserts at the very 5' or 3' end of a read, which we call trailing inserts, are not required to be in-frame - since they are not fully covered by the read, their exact length is unknown. Detected insertions, both trailing and non-trailing, are considered ITDs if they are adjacent to a second repeat of their own sequence (Figure 1B). These repeats, the respective ITDs WT tandems, are identified by realigning the insert to the WT reference and again require an alignment score of at least 50% of the maximum possible score. From all ITDs identified in this way, a set of high-confidence calls is obtained by filtering for those with a VAF of at least 0.006% and two or more distinct supporting reads. While this is the primary output of interest, all of the insertions and ITDs identified as part of the analysis are annotated and reported. Specifically, each insertion and ITD is annotated with insertion length, site, sequence and frequency. ITD frequencies are provided as VAFs and, calculated from these as shown below in equation 1, allelic ratios (ARs). Insertion sites are given as coordinates relative to the amplicon, genome, transcript and protein. Detailed results of getITD are presented in Table S3 for all 210 FLT3-ITDs described in the manuscript. $$AR = \frac{VAF}{100 - VAF} \tag{1}$$ All analysis parameters are user-adjustable and can be tuned to accommodate for example single-end, merged or trimmed reads as well as reads generated from other sequencing technologies or target regions⁴. Limits on the maximum detectable ITD length are imposed only by the sequencing data used for the analysis, not by *getITD* itself. Code availability & details: getITD is implemented in python3, runs on Linux, Mac and Windows and is freely available for download at https://github.com/tjblaette/getitd. It may be run directly from the command-line or via a wrapper program that offers a simple graphical interface to supply input files and parameters. Analysis of a single sample with one million paired-end reads takes, depending on the computational resources available, 20 min with and up to 60 min without parallelization across multiple cores. Analysis of the data described in this manuscript was performed with default parameters and without any manual curation of results. Fragment analysis: All patient samples were independently screened for FLT3-ITDs at diagnosis and relapse using the established diagnostic FA, a PCR-based amplification of FLT3 exons 14 and 15 followed by capillary electrophoresis as described previously⁵. ITD insertion sites were determined by conventional Sanger sequencing⁵. To compare ITDs detected by FA and by NGS, which
report mutation frequencies as ARs and VAFs respectively, the AR determined using the GeneScan platform was converted to the corresponding VAF as follows: $$VAF = \frac{AR}{AR+1} * 100 \tag{2}$$ ## Supplementary references - Quentmeier H, Reinhardt J, Zaborski M, and Drexler HG. FLT3 mutations in acute myeloid leukemia cell lines. *Leukemia* 2003; 17: 120. - Kircher M, Sawyer S, and Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. *Nucleic Acids Res* 2011; 40: e3–e3. - Needleman SB and Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970; 48: 443–453. - 4. Rücker FG, Du L, Blätte TJ, Benner A, Krzykalla J, Gathmann I, et al. Prognostic Impact of Insertion Site in Acute Myeloid Leukemia (AML) with FLT3 Internal Tandem Duplication: Results from the Ratify Study (Alliance 10603). *Blood* 2018: 435 (abstract). - Kayser S, Schlenk RF, Londono MC, Breitenbuecher F, Wittke K, Du J, et al. Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. *Blood* 2009; 114: 2386–2392. | MOLM-14: HL-60 | 1:100 | 1:1000 | 1:10000 | |-------------------------------|---------|---------|---------| | Expected VAF (%) | 0.67 | 0.067 | 0.0067 | | VAF by NGS (%) | 0.88043 | 0.08545 | 0.00483 | | VAF by NGS (%) | 0.72653 | 0.07486 | 0.01509 | | VAF by NGS (%) | 0.72068 | 0.05967 | 0.00073 | | VAF by NGS (%) | | | 0.00075 | | | | | | | | | | | | Mean | 0.77588 | 0.07333 | 0.00535 | | Standard deviation | 0.09059 | 0.01296 | 0.00677 | | Coefficient of variation (CV) | 0.11676 | 0.17677 | 1.26592 | Table S1: Replicates of the serial dilution: For the three dilutions with expected FLT3-ITD frequencies 0.67%, 0.067% and 0.0067%, 3–4 independent technical replicates were analyzed using our NGS-based assay. Reported here are the exact variant allele frequencies (VAFs) estimated in each replicate, also plotted in Figure 1A of the manuscript, and the standard deviation, mean and coefficient of variation (CV, standard deviation / mean) for each of the three dilutions. Note that independent serial dilutions were pipetted for all replicates. | Dilution Patient ID | Cohort_sensitivity Co | hort_specificity Co | ohort_accuracy Coho | ort_reproducibility | Cohort_mrd-rl | Cohort_mrd+ | rl Material Tir | ne point N | umber of ITDs (FA) | AR of ITDs (FA) | VAF of ITDs (FA / calculated) I | TD1 length & site (FA / Sanger) | ITD2 length & site (FA / Sanger) Numb | er of ITDs (getITD) T | otal ITD VAF (getITD) Number of FA-fe | ound ITDs (getITD) Total VAF of | FA-found ITDs (getITD) | Sample indexing (| Coverage (read pairs) | |---|-----------------------|---------------------|---------------------|---------------------|---------------|-------------|------------------------|--------------------|--------------------|------------------------------------|---------------------------------|------------------------------------|---------------------------------------|-----------------------|---------------------------------------|---------------------------------|------------------------|-------------------|-----------------------| | - 1 | | | yes | yes | | | BM | dx | 1 | 0.192 | 16.10738255 | 54 (AS 598/599) | | 2 | 13.2897 | 1 | 12.958 | double | 121444 | | - 1 | | | yes | yes | | | BM
BM | dx
dx | 1 | 0.192
0.617 | 16.10738255
38.15708101 | 54 (AS 598/599)
72 (AS 606/607) | | 6 | 13.1415
33.7071 | 1 | 12.68
33.695 | single
double | 502823
1139145 | | . 3 | | | yes | yes | | | BM | dx | 1 | 0.789 | 44.10285075 | 21 (AS 600/601) | | 1 | 43.489 | 1 | 43.489 | double | 1143537 | | - 3 | | | jus | yes | | | BM | dx | ī | 0.789 | 44.10285075 | 21 (AS 600/601) | | 3 | 44.4894 | 1 | 44.45 | single | 283201 | | - 4 | | | yes | yes | | | BM | dx | 1 | 17.169 | 94.49611976 | 39 (AS 593) | | 1 | 94.653 | 1 | 94.653 | double | 143104 | | - 4 | | | | yes | | | BM | dx | 1 | 17.169 | 94.49611976 | 39 (AS 593) | | 6 | 89.1975 | 1 | 89.111 | single | 642035 | | - 5 | | | yes | yes | | | BM
BM | dx
dx | 1 | 0.861
0.861 | 46.26544868
46.26544868 | 42 (AS 602)
42 (AS 602) | | 1 3 | 44.728
47.0621 | 1 | 44.728
47.007 | double
single | 2092251
321840 | | - 6 | | | yes | yes
yes | yes | | BM | dx | 1 | 0.552 | 35.56701031 | 27 (AS 599) | | 5 | 37.2114 | 1 | 34.127 | double | 2110204 | | - 6 | | | , | yes | , | | BM | dx | ī | 0.552 | 35.56701031 | 27 (AS 599) | | 5 | 38.6549 | 1 | 33.755 | single | 271565 | | - 6 | | | | | yes | | BM cr | cy2_c1 | | | | | | 0 | 0 | 0 | 0 | double | 2668487 | | - 6 | | | | | yes | | | fu_m11 | | | | | | 0 | 0 | 0 | 0 | double | 1987005 | | - 7 | | | yes
yes | yes | yes | | BM
BM | dx
dx | 1 | 0.752
0.686 | 42.92237443
40.68801898 | 33 (AS 596/597)
36 (AS 608/609) | | 5 | 43.7485
44.7312 | 1 | 43.702
44.718 | double | 1602251
1358468 | | - 8 | | | yes | yes | yes | | BM | dx | 1 | 0.686 | 40.68801898 | 36 (AS 608/609) | | 1 | 46.784 | 1 | 46.784 | single | 285460 | | - 8 | | | | , | yes | | BM cr | cy2_c1 | | | | (| | ō | 0 | 0 | 0 | double | 2415099 | | - 8 | | | | | yes | | BM ci | fu_m3 | | | | | | 0 | 0 | 0 | 0 | double | 2950217 | | - 8 | | | | | yes | | BM cr | fu_m12 | | | | | | 0 | 0 | 0 | 0 | double | 1895959 | | - 9 | | | yes
yes | | | | BM
BM | dx
dx | 1 2 | 0.103
0.347 | 9.338168631
25.76095026 | 48 (AS 610)
24 (AS 598) | 33 (AS 594) | 1
12 | 3.4012
25.5057 | 1 | 3.4012
24.677 | double
double | 779831
2324362 | | - 10 | | | yes | yes | | | BM | dx | 1 | 0.452 | 31.12947658 | 45 (AS 590/591) | 33 (AS 594) | 1 | 24.702 | 1 | 24.702 | double | 182304 | | - 11 | | | jus | yes | | | BM | dx | ī | 0.452 | 31.12947658 | 45 (AS 590/591) | | 3 | 27.636 | i | 27.6 | single | 1344506 | | - 12 | | | yes | yes | yes | | BM | dx | 1 | 0.768 | 43.43891403 | 45 (AS 598) | | 2 | 42.2052 | 1 | 41.874 | double | 2076011 | | - 12 | | | | yes | | | BM | dx | 1 | 0.768 | 43.43891403 | 45 (AS 598) | | 2 | 42.3822 | 1 | 42.105 | single | 543655 | | - 12 | | | | | yes | | BM cr | cy2_c1 | | | | | | 0 | 0 | 0 | 0 | double | 1856671 | | - 12
- 13 | | | yes | yes | yes | yes | BM cr. | fu_m12
dx | 2 | 0.276 | 21.63009404 | 60 (AS 613) | 39 (AS 595/596) | 0 | 22.2246 | 3 | 22.2246 | double
double | 1887112
1423217 | | - 13 | | | yes | yes | | yes | BM | dx | 2 | 0.276 | 21.63009404 | 60 (AS 613) | 39 (AS 595/596) | 3 | 22.2663 | | 22.2529 | single | 383536 | | - 13 | | | | , | | yes | BM cr | cy2_c1 | - | | | (, | | ō | 0 | 0 | 0 | double | 1708522 | | - 13 | | | | | | yes | BM cr | eot_c4 | | | | | | 0 | 0 | 0 | 0 | double | 2962904 | | - 13 | | | | | | yes | BM ci | _fu_m3 | | | | | | 0 | 0 | 0 | 0 | double | 2013235 | | - 13
- 13 | | | | | | yes | BM ci
BM ci | fu_m6
fu_m9 | | | | | | 0 | 0 | 0 | 0 | double
double | 2220894
1426831 | | - 13 | | | | | | yes | | _ru_m9
fu_m11 | 0 | 0 | 0 | | | 2 | 0.21863 | 0 | 0 | double | 1888212 | | - 14 | | | yes | | | yes | BM II | dx dx | 2 | 0.765 | 43.3427762 | 18 (AS 603) | 30 (AS 593) | 2 | 42.581 | 2 | 42.581 | double | 2474806 | | - 15 | | | yes | yes | | | BM | dx | 1 | 0.525 | 34.42622951 | 24 (AS 601/602) | | 1 | 31.827 | 1 | 31.827 | double | 38989 | | - 15 | | | | yes | | | BM | dx | 1 | 0.525 | 34.42622951 | 24 (AS 601/602) | | 9 | 31.0303 | 1 | 30.846 | single | 549621 | | - 16 | | | yes | | | | BM | dx | 1 | 0.863 | 46.32313473 | 18 (AS 598) | | 5 | 42.8743 | 1 | 41.651 | double | 2601573 | | - 17
- 18 | | | yes | | yes | | BM
BM | dx
dx | 2 | 0.412
5.419 | 29.17847025
84.42124942 | 54 (AS 613)
27 (AS 608) | 90 (AS 606) | 11 | 29.2862
78.7967 | 2 | 28.646
78.789 | double
double | 1203484
1160877 | | - 18 | | | yes | yes
yes | yes | | BM | dx | 1 | 5.419 | 84.42124942 | 27 (AS 608) | | 1 | 77.659 | 1 | 77.659 | single | 237902 | | - 18 | | | | yes | yes | | | cy2_c1 | - | 0.410 | 04.42124342 | 27 (10 000) | | Ô | 0 | Ō | 0 | double | 2331331 | | - 18 | | | | | yes | | BM cr | eot_c4 | | | | | | 0 | 0 | 0 | 0 | double | 2178063 | | - 19 | | | yes | | | yes | BM | dx | 2 | 0.195 | 16.31799163 | 36 (AS 596) | 93 (AS 611/612) | 16 | 13.6331 | 2 | 8.0268 | double | 1268768 | | - 19
- 19 | | | | | | yes | BM cr
BM cr | _cy2_i2
_eot_tx | | | | | | 4 | 0.654645
0.03156 | 0 | 0 | double
double | 1480411
1241329 | | - 19 | | | | | | yes | | _eot_ix
_fu_m4 | 1 | 0.299 | 23.01770593 | 93 (AS 611/612) | | | 17.9518 | 1 | 17.484 | double | 1071694 | | - 20 | | | yes | | | yes | BM | dx | ī | 0.51 | 33.77483444 | 39 (AS 593) | | 3 | 28.6368 | î | 28.364 | double | 1454110 | | - 21 | | | yes | yes | | yes | BM | dx | 1 | 0.632 | 38.7254902 | 87 (AS 609/610) | | 4 | 38.2656 | 1 | 38.089 | double | 2486855 | | - 21 | | | | yes | | | BM | dx | 1 | 0.632 | 38.7254902 | 87 (AS 609/610) | | 3 | 34.866 | 1 | 34.724 | single | 238719 | | - 21 | | | | | | yes | BM cr | _cy2_i2 | | | | | | 1 | 0.93816 | 0 | 0 | double | 2709486 | | - 21
- 21 | | | | | | yes
yes | | _eot_tx
fu_m3 | | | | | | 1 | 0
0.060832 | 0 | 0 | double
double | 2857166
1131351 | | - 21 | | | | | | ves | | fu_m5 | 1 | 0.646 | 39.24665857 | 87 (AS 609/610) | | 1 | 35.688 | 1 | 35.688 | double | 745374 | | - 22 | | | yes | | | , | BM | dx | 1 | 0.892 | 47.14587738 | 39 (AS 611/612) | | 3 | 46.1544 | 1 | 46.136 | double | 1095411 | | - 23 | | | yes | | yes | | BM | dx | 1 | 0.76 | 43.18181818 | 54 (AS 600) | | 2 | 41.2423 | 1 | 41.156 | double | 1633097 | | - 23 | | | | | yes | | BM cr | cy2_c1 | | | | | | 0 | 0 | 0 | 0 | double | 1942717 | | - 23
- 24 | | | | | yes | | BM cr
BM | _eot_c4
dx | 1 | 0.788 | 44.07158837 | 66 (AS 610) | | 0 | 0
39.744 | 0 | 39 744 | double | 1394662
2526191 | | - 24 | | | yes
yes | yes | | yes | BM
BM | dx | 2 | 0.788 |
44.07158837
28.46924177 | 42 (AS 590) | 60 (AS 598) | 7 | 39.744
29.083 | 2 | 39.744
27.903 | double | 736243 | | - 25 | | | jus | yes | | yes | BM | dx | 2 | 0.398 | 28.46924177 | 42 (AS 590) | 60 (AS 598) | 8 | 29.5654 | 2 | 28.573 | single | 789474 | | - 25 | | | | - | | yes | BM cr | cy2_c1 | | | | | * * | 6 | 2.22909 | 0 | 0 | double | 2705254 | | - 25 | | | | | | yes | | _eot_c4 | | | | | | 1 | 0.63748 | 0 | 0 | double | 1862886 | | - 25 | | | | | | yes | BM rl
BM | _fu_m1 | 1 | 0.744 | 42.66055046 | 60 (AS 598)
36 (AS 608/609) | | 2 | 37.1815 | 1 | 37.103 | double | 1478562 | | - 26
- 27 | | | yes
yes | | | | BM
BM | dx
dx | 1 | 0.178
0.861 | 15.11035654
46.26544868 | 36 (AS 608/609)
96 (AS 613) | | 3 | 15.5536
48.3012 | 1 | 15.505
48.29 | double
double | 2254869
1160877 | | - 28 | | | yes | yes | | yes | BM | dx | î | 0.386 | 27.84992785 | 198 (AS 614/615) | | 6 | 10.326 | 1 | 9.9464 | double | 1022779 | | - 28 | | | • | yes | | | BM | dx | 1 | 0.386 | 27.84992785 | 198 (AS 614/615) | | 8 | 20.9549 | 1 | 20.593 | single | 340073 | | - 28 | | | | | | yes | | cy2_c1 | | | | | | 0 | 0 | 0 | 0 | double | 1483295 | | - 28 | | | | | | yes | BM rl | fu_m4 | 0
KNOWN 0 | 0
KNOWN 0 | 0 | | | 1 | 0.055593 | 0 | 0 | double | 2069770 | | HL-60 healthy_volunteer1 | | yes
yes | | | | | cell_line
PB | | KNUWNU | KNOWN U | U | | | 0 | 0 | 0 | 0 | double
double | 4164257
1137581 | | - healthy_volunteer2 | | yes
yes | | | | | PB
PB | - | | | | | | 0 | 0 | 0 | 0 | double | 2441834 | | 10-0 MOLM-14 | yes | , | | | | | cell_line | - | 1 | KNOWN 2, FA 2.451 | KNOWN 66.7, FA 71.02289192 | 21 (AS 599) | | 1 | 64.979 | 1 | 64.979 | double | 1797368 | | 10-1 MOLM-14 | yes | | | | | | cell_line | - | 1 | KNOWN 0.0718 | KNOWN 6.7 | 21 (AS 599) | | 1 | 8.6377 | 1 | 8.6377 | double | 2698207 | | 10-2 MOLM-14 | yes | | | | | | cell_line | - | 1 | KNOWN 0.00675 | KNOWN 0.67 | 21 (AS 599) | | 1 | 0.72068 | 1 | 0.72068 | double | 1686834 | | 10-2 MOLM-14 | yes | | | | | | cell_line | - | 1 | KNOWN 0.00675 | KNOWN 0.67 | 21 (AS 599) | | 1 | 0.72653 | | 0.72653 | double | 1629789 | | 10-2 MOLM-14
10-3 MOLM-14 | yes
yes | | | | | | cell_line
cell_line | - | 1 | KNOWN 0.00675
KNOWN 0.000670 | KNOWN 0.67
KNOWN 0.067 | 21 (AS 599)
21 (AS 599) | | 1 | 0.88043
0.059666 | 1 | 0.88043
0.059666 | double
double | 2681959
1139435 | | 10-3 MOLM-14
10-3 MOLM-14 | yes | | | | | | cell_line | 2 | 1 | KNOWN 0.000670 | KNOWN 0.067 | 21 (AS 599)
21 (AS 599) | | 1 | 0.059666 | | 0.059000 | double | 1261903 | | 10-3 MOLM-14 | yes | | | | | | cell_line | - | 1 | KNOWN 0.000670 | KNOWN 0.067 | 21 (AS 599) | | î | 0.085454 | 1 | 0.085454 | double | 2850841 | | 10-4 MOLM-14 | yes | | | | | | cell_line | - | 1 | KNOWN 0.0000670 | KNOWN 0.0067 | 21 (AS 599) | | 1 | 0.0048347 | | 0.0048347 | double | 2408074 | | 10-4 MOLM-14 | yes | | | | | | cell_line | - | 1 | KNOWN 0.0000670 | KNOWN 0.0067 | 21 (AS 599) | | 1 | 0.015087 | 1 | 0.015087 | double | 1609750 | | 10-4 MOLM-14
10-4 MOLM-14 | yes | | | | | | cell_line
cell_line | - | 1 | KNOWN 0.0000670
KNOWN 0.0000670 | KNOWN 0.0067
KNOWN 0.0067 | 21 (AS 599)
21 (AS 599) | | 1 | 0.00073096 | | 0.00073096 | double | 1742353
1562426 | | 10-4 MOLM-14
10-0 PL-21 | yes
yes | | | | | | cell_line
cell line | - | 1 | KNOWN 0.0000670
KNOWN 0.5 | KNOWN 0.0067
KNOWN 33.3 | 21 (AS 599)
KNOWN 126 (AS 613) | | 1 | 0.00074673
18.641 | 1 | 18.641 | double | 1562426
2249360 | | 10-0 PL-21 | yes | | | | | | cell_line | | î | KNOWN 0.0341 | KNOWN 3.3 | KNOWN 126 (AS 613) | | î | 2.6228 | ī | 2.6228 | double | 2353158 | | 10-2 PL-21 | yes | | | | | | cell_line | - | 1 | KNOWN 0.00331 | KNOWN 0.33 | KNOWN 126 (AS 613) | | 1 | 0.26 | 1 | 0.26 | double | 2198641 | | 10-3 PL-21 | yes
yes | | | | | | cell_line | - | 1 | KNOWN 0.000330 | KNOWN 0.033 | KNOWN 126 (AS 613) | | 1 | 0.014983 | 1 | 0.014983 | double | 1432778 | **Table S2:** Sample overview: Listed are all of the samples processed and described in the manuscript with results obtained by fragment analysis (FA) and our NGS-based assay and *getITD*-based analysis. | Nution Patient ID Time point Sample indexing Index - 1 dx double - 1 dx double | k hopping artefact ITD length (bp) Star
no 21
no 54 | | The property of | Instalt sequence GREACHEATHEATHCATECT GREACHEGETCETCAGARAATGAGTACTTCTACGTTGATTTCAGAGAARATGAA | Insert domains: [[com.ldM.D. pipenfoot*] [com.ldM.D. pipenfoot*] [com.ldM.D. pipenfoot*] | Series A. | (bp, in transcript) Start (AA, in
1792 594
1741 591 | Earl Sp., to ch 13] Cris Earl Sp., to ch 13] Cris 200000000000000000000000000000000000 | (bp., in transcript) End (AA, is
1902 60
1794 56 | | Insertion site (bp. in transcript) I
2803
1795
1803
1798 | section site (AA, in protein) Insection site domain
601 excel4_3MD_zippenfoot
599 excel4_3MD_zippenfoot | |---|---|---
--|---|--|--
---|--|--|--|--
--| | - 1 dx single
- 1 dx single
- 1 dx single | no 21
yes 29
yes 45 | 79 0.386 0.00397 65135
56 0.039 0.0003 436196
90 0.007 0.00007 436196 | 247 Falter
9549 Falter
1778 Falter
124 Falter
22 Falter
55309 Falter
97 Falter | GANGANATGANTANTAN
ANGAGNATUTCHGGATGANTGANAT
ANATGATCTGANTGGAGTTTCCAAGAGAAATTAGAGTTTG | [Passmald_JMLD_plankled]] [Passmald_JMLD_dathCollection(#_(mostAd | 28608274
28608297
28608263 | 1792 594
1759 597
1793 598 | 20000254
20000259
20000219 | 1802 66
1704 56
1802 66
1797 56
1827 61
1704 55
1826 66 | 31 28608253
89 28608258
13 28608218 | 1903
1798 | 601 excel4_MD_ripperMotf
600 excel4_MD_ripperMotf
- inten14_spliceDonor | | - 1 dx single
- 1 dx single | yes 54
yes 65 | 70 0.022 0.0002 436196
72 0.018 0.00038 436196 | 97 False
78 False | GIGACIGAE CE FORMANICAM INC. I CIRCUI TRAN I FORMANICAM COTTGATTICAGA ANXIGAMENTA CETCAMA TOGGA GATTICCAGA GAMA TGATTICAGA GANTATGA TATAGA TICCAA ANTIGGA GAAAANTTAGA GATTICGA TA | [waste_Jubunactived; waste_Juboppinions]
[waste_Jubunactived; waste_Jubprepartie; prant_Jubinquisequer]
[waste_Jubunatthier; waste_Jubprepartie; yaste_Jubinquisequer; waste_Jubunatthier; waste_JupicoCosso*; waste_Jubunatthier; waste_Jubunat | 2800213
2800212
2800220 | 1713 591
1775 592 | 28608230
28608215 | 1826 60 | 99 29608229
- 29608214 | 1795
1927 | 609 exch14_MO_hingeRegion - intron14 | | - 2 dx double
- 2 dx double | no 22
no 21 | 44 23.695 0.50019 1036513
77 43.499 0.70857 1054593 | 222 Fallon
2385027 Fallon
458027 Fallon
50912 Fallon
26 Fallon | GGCTCCTCAGATAATGAGTACTTCAGAGTAATTGAGAGTATGAATGA | [mont.], M.D., geografied / mont.], M.D. Sappilegen() [mont.], M.D., geografied / mont.], M.D., geografied [mont.], | 2800257
2800209
28000276 | 1747 582
1780 594 | 20000220
20000230
20000256 | 1919 60
1900 60 | 96 29608227
20 29608255 | 1919
1901 | 607 exch1_MD_tingsRegion
601 exch1_MD_tippsRegion | | - 2 dx single
- 2 dx single
- 2 dx single | yes 42
yes 54 | 61 0.022 0.00023 114212
25 0.017 0.00017 114212 | 26 False
29 False
29 False | CCTITICAGGITGATTOGAGGITGATCTCAA ACAGATGGTAGAGCGGGCCCCTCAGARAAGGAGTACTCCACGATTATTC | [manta_last_Officerary] [manta | 2800276
2800292
2800228 | 1764 588
1764 576
1728 576 | 28608251
28608275 | 1900 60
1900 60
1905 60
1791 55
1779 56 | 20 28608250
24 28608274 | 1825
1810
1801
1801
1804
1806
1702
1779
1888
1779 | 602 exceld_JMD_ripperModi
504 exceld_JMD_ripperModi
504 exceld_JMD_ripperModi | | | yes 179
no 29 | 1966 | 22 True
429505 False | CICCICAGAIANTAGAIACTICIAC GGTGACCGGTCCTCAGAIANTAGTCTTCTAC GGTGACCGGTCCTCAGAIANTAGTCTTCTACTTGA | [mont4_MO_switchfootf,mont4_MO_logical_MO_logical_mont4_MO_logical_mont4_MO_logical_mont4_mont4_spiceDonor_intent4_spiceAcceptor] [mont4_MO_switchfootf,mont4_MO_logical_mont4_MO_logical_mont4_MO_logical_mont4_mont4_spiceAcceptor]
[mont4_MO_switchfootf,mont4_ | 28508207
28508216 | 1749 582
1740 580 | 2000029
20000270
20000270 | 1779 56 | 29608277
29608277 | | 612 exon15_TKD1_beta1Sheet
592 exon14_MD_ripperMotF | | - 4 dx single
- 4 dx single | yes Si | 41 0.026 0.00006 482100
70 0.020 0.00000 482100 | 127 False
95 False | AGGACTICTCAGATANGAGTICTTCAGTTGATTCAGAGAANGAATAY CGTTGATTCAGAGAANGAGTAGTCAAATGGGAGTTCCAAGAGAANGAATAY | The control of co | 28608282
28608282 | 1744 592
1773 591 | 20000259
2000259 | 1797 55
1826 60 | 99 29508258
99 29508259 | 1798
1827 | 600 excrt4_MD_tipperMotf
609 excrt4_MD_hingsRegion | | - 5 dx double
- 5 dx single | no 62
yes 21 | 61 64.729 0.80923 1899947
77 0.064 0.0004 129798 | 027665 Falso
61 Falso | CCITTICOAGTIGATIOAGAANIGAATIGATCOA | [mania_mo_manumam_mania_mo_mo_mo_mo_mo_mo_mo_mo_mo_mo_mo_mo_mo_ | 28608292
28608276 | 1764 588
1780 594 | 29608251
29608256 | 1905 60
1900 60 | 2 28508250
20 28508255 | 1806
1801 | 602 excel4_MD_ripperMotif
601 excel4_MD_ripperMotif | | - 5 dx single
- 6 dx double | yes 56
no 21 | 25 0.011 0.0001 129798
65 0.008 0.0008 1827296
66 24.177 0.51807 1827296 | 25 Falter
247 Falter
673049 Falter | ACAGNEGIAACOGCICCICOGANAIGAS WCTICIACOTTGATT ACACNEGIGATIVAGAGA CONGICTION ACAGNETICAGAGA CONGICTION ACAGNETICAGAGA | [construct_non_c | 28608228
28608288
28608287 | 1728 576
1768 590
1769 590 | 28608275
28608268
28608261 | 1701 56
1700 56 | M 29608276
86 29608267
96 29608267 | 1800 1 18 | SS4 excit_XMD_ripperMotif
SS7 excit_XMD_ripperMotif
SS0 excit_XMD_ripperMotif | | - G dx double
- G dx double
- G dx double | no 20
no 22
no 66 | 61 0.050 0.0058 1837396
29 0.265 0.0036 1837396
42 2.733 0.0283 1837396 | 1071 False
5241 False
50215 False | TGGGGCCTACGTTGATTTCAGAGAANTGA GTGGTACAGGTGACCGGCTCCTCAGTAAGGG GCCCAACCTCAGATAAGGATCACCGGCTCCTCAGATAAGGG GCCCAACCTCAGATAAGAATCTCTCAGAGTGATTCAGAAATGGATTGAATTGA | [count_d, Standarder count_d, Mar. questions' count_d, Mar. questions'] [count_d, Mar. questions' count_d, Mar. questions' count_d, Mar. questions'] [count_d, Mar. questions' count_d, Mar. questions'] | 2808292
2808224
2808211 | 1764 588
1732 578
1745 582 | 28608262
28608292
28608246 | 1788 55
1792 55
1792 55
1792 55
1704 55
1810 65
1793 55
1794 55
1794 55
1810 66
1795 55
1794 55
1795 55
1795 55
1795 55
1795 55 | 98 29508262
98 29508291
94 29508245 | 1794
1765
1911 | SSS exceld_3MD_ripperMost
SSS exceld_3MD_switchMost
SSS exceld_3MD_binosRosion | | - G dx single - G dx single - G dx single | no 21
no 27
no 30 | 71 0.012 0.00012 120472
66 22.755 0.50955 120472
61 0.061 0.00061 120472 | 14 False
40005 False
74 False | GGTGATTTCAGAGAAXATGAA CCTAGGTTGATTCAGAGAAXAGAAT TIGGGGCCTAGGTTGATTCAGAGAAXAGAA | Trends, 200, market result, 200, market result, 200, generally [Second Second | 28608282
28608287
28608292 | 1774 592
1769 590
1764 588 | 28608262
28608261
28608262 | 1794 56
1795 50
1793 56 | 98 29508261
99 29508260
98 29508262 | 1795
1796
1794 | 500 exact AVD piperholf
500 exact AVD piperholf
500 exact AVD piperholf
500 exact AVD piperholf | | - G dx single
- G dx single
- 7 dx double | no 22
no 66
no 18 | 29 0.328 0.0029 120472
42 4.499 0.04711 120472
67 0.024 0.0008 1428432 | 295 Falce
5420 Falce
345 Falce | GTGGTACAGGTGACCGGCTCCTCAGATAATGAG
GCCCAACCTCAGATAATGAGTACTTCAGCATTAATTCAGAGAATATGAGTCTCAAATGAG
CINCCTTGAGTTCAGAGAATATGAGATATGAGAT | [contal_A,DAIO_intelligents", total A_JAIO_intelligents (_Coll_A,Baino) [rospil_A,DAIO_intelligents (_Coll_A,Baino), Tell_A,DAIO_intelligents (_Coll_A,DAIO_intelligents (_Coll_A,DAIO_ | 28608224
28608211
28608285 | 1722 578
1745 582
1770 590 | 28608292
28608246
28608269 | 1764 56
1810 60
1797 56 | 88 29508291
36 29508265
96 29508268 | 1765
1811
1788 | 589 exon14_3MD_switchMost
604 exon14_3MD_bingeRegion
586 exon14_3MD_pipperMost | | - 7 dx double
- 7 dx
double
- 7 dx double | no 27
no 23
no 48 | 67 0.007 0.0007 1428422
52 43.702 0.77626 1428432
89 0.006 0.0006 1428432 | 98 False
624249 False
89 False | CINCUTTANTITCAGAGARIATGARA GATAGAGTACTICTUCGITGATTCAGAGAA GATAGAGTCTCAAATGAGATTTCCAGAGAAAATTTGAGTTGGT | [worsta_JMD_suschMost*] worsta_JMD_paperMost*] [worsta_JMD_paperMost*] [worsta | 28508285
28508200
28508254 | 1770 590
1756 585
1792 598 | 28608260
28608268
28608217 | 1796 56
1788 56 | 99 29508259
96 29508267
- 29508216 | | 599 excel4_3MD_xipperMotif
597 excel4_3MD_xipperMotif
- intron14 | | - 7 dx double
- 8 dx double
- 8 dx double | no 66
no 36
no 72 | 20 0.009 0.0009 1428432
86 64.718 0.0089 1198294
50 0.012 0.00012 1198294 | 132 False
535998 False
158 False | GATATIGAG TACTICTACGTTGATTCAAGAAGAATANTIGAG TACTICTACSTTGATTCAAGAA
TAGAANTGATCTCAAATGGGGGTTTCCAAGAGA
TAGAANTGATCCAAATGGGAGTTCCAAGAAATATGAATGGATTCCAAGAGAA | [wood_A_MD_bindpulser] "wood_A_MD_inpulser[wood_A_MD_inpulser[wood_A] [wood_A_MD_inpulser] [wood_A_MD_inpulser[wood_A_MD_inpulser] [wood_A_MD_inpulser[wood_A] [wood_A_MD_inpulser[wood_A] [wood_A_MD_inpulser[wood_A] [wood_A_MD_inpulser[wood_A] [wood_A] [wood_A_MD_inpulser[wood_A] [wood_A] [woo | 28608222
28608267
28608202 | 1722 575
1789 597
1752 585 | 28608268
28608232
28608232 | 1788 55
1824 60
1824 60 | 96 29608267
58 29608231
58 29608231 | 1788
1805
1805
1805
1806
1794
1796
1796
1798
1798
1798 | 597 excn24_3MD_pipperMotif
609 excn24_3MD_hingeRegion
609 excn24_3MD_hingeRegion | | - 9 dx single
- 9 dx double
- 30 dx double | no 36
no 49
no 15 | 86 46.784 0.87913 123939
79 2.601 0.03521 746478
76 0.013 0.00013 2023998 | 52662 False
25269 False
264 False | TATGAMMIGATICTOMATIGGAGATTTCOMGAGAA CAGAGAMATGAMATGAGAGTTTCOMGAGAAAATTT TTTOMAGAMATGA TATGAAGAMATGA | [excatd_AMD_ippenfelor("xcatd_AMD_inepenfegors) [excatd_AMD_ippenfelor("xcatd_AMD_inepenfegors("xcatd_AMD_inepenfegors("xcatd_AMD_inepenfegors("xcatd_AMD_inepenfegors("xcatd_AMD_inepenfegors(") [excatd_AMD_inepenfelors(") | 2866827
28668274
28668277 | 1799 597
1792 594
1779 593 | 28608232
28608227
28608263 | 1826 60
1829 61
1793 56 | 58 29608221
10 29608226
98 29608262 | 1925
1920
1794 | 609 excn14_MD_hingeRegion
610 excn14_MD_tipperMotif
698 excn14_MD_tipperMotif | | - 20 dx double
- 20 dx double
- 20 dx double | no 21
no 26
no 27 | 72 0.026 0.0006 2023998
67 8.717 0.0950 2023998
28 0.009 0.0009 2023998 | 175428 False
175 False | TTGATTICAGAGANIGAN CIPACITIGATICAGAGANIGA GTGACCGGCTCCTCAGANATGAGTAC | [wants_MD_watchMed", wants_MD_openMedi"]
[wants_MD_watchMed", wants_MD_MD_openMedi"]
[wants_MD_watchMedi"] | 2806281
2806286
2806215 | 1775 592
1770 590
1741 581 | 28606261
28606263
28606289 | 1795 55
1793 55
1767 56 | 99 29608260
98 29608262
99 29608288 | 1796
1794
1768 | S99 excel4_3MD_sipperMost
S90 excel4_3MD_sipperMost
S90 excel4_3MD_switchMost | | - 90 dx double
- 90 dx double | no 27
no 30
no 23 | 61 0.006 0.0006 2023998
45 15.960 0.18991 2023998 | 129 False
222022 False | GRAD RECTEMENT INTO TRANSPORT GRECTEMENT INTO ANALYSISA GETECTO ANALYSISATION ANALYSISATION GETECTO ANALYSISATION ANALYSISATION GETECTO ANALYSISATION ANALYSIS | [washed_Jule_machinery.wash_Jule_populators] [washed_Jule_machinery] [washed_Jule_machinery.wash_Jule_putebors] [washed_Jule_machinery.washed_Jule_putebors] | 2800294
2800292
2800308 | 1764 588
1768 583 | 28608282
28608276 | 1792 55
1790 55 | 96 29608262
96 29608275 | | SSG exceld_SMD_pipperMost
SSG exceld_SMD_pipperMost
SSG exceld_SMD_pipperMost | | - 90 dx double
- 90 dx double | no 69 | 62 0.016 0.00015 2022898
42 0.155 0.00156 2022898 | 222 False
222 False
2145 False | ACTICIAGATICAGAGAARIGAARIGACTOAARIGAATICAGAAAAAATTIGAGT
CCGGCTCCTOAATAATGAGTACTICIAGATGATTICOAARIGAARIGAARIGAARITICOAARIGAAATTICOAARIGAAATTICOAARIGAARIA | Intensity Alloy American Control (Alloy Contr | 2800290
2800290
2800211 | 1766 589
1765 589
1745 582 | 28608222
28608231 | 1824 61
1825 60 | 12 29608221
29 29608220 | 1825
1826
1822 | 612 exon14_TKD1_bets1Sheet
609 exon14_TMD_bingsRegion | | - 20 dx double
- 20 dx double
- 11 dx double | no 96 | 29 0.086 0.0006 2022998
29 0.086 0.0006 2022998
22 24.702 0.3286 82612 | 1722 False
1739 False
20607 False | TRACCISCICCIO DARMINIA INCIDEI TICATI TO DARAMINI ANTIDE TO CANDIDATI | [microid_Abo_selectation*, microid_Abo_Speciments*, microid_Abo_selectation_Ab | 28608214
28608214
28608230 | 1742 S81
1742 S81
1736 S76 | 20000235
20000219
20000206 | 1827 61
1770 56 | 12 28608218
10 28608218
80 28608285 | | - introd 4, pilos Donor
591 econt 4, MD , switch Molf | | - 11 dx single
- 11 dx single
- 12 dx single | no 45 | 22 27,600 0.38122 1355054
72 0.017 0.00017 1355058
67 0.231 0.0022 1055550 | 221550 Falter
202 Falter
5047 Falter | CGACCGGAAAATGGTCGGTCGCTCAGATAATGAGTACTTC GGGAAATTCAGAGAATGAATGAATGAGTCCTCCAAGAG CTGCCTTGGTTGGGAAATGTCAGAGAGTCCTCCAAGAG | [world_MD pintphoff (world_MD putchfort]] [world_MD putchfort] [world_MD putchfort] [world_MD putchfort] [world_MD putchfort] [world_MD pintphoff [world_MD putchfort]] [world_MD putchfort] [world_MD putchfort] [world_MD putchfort] [world_MD putchfort] | 28608230
28608281
28608285 | 1726 576
1775 592
1730 590 | 20000236
20000234
20000234 | 1770 55
1822 66 | 00 29808295
08 29808222
00 29808222 | 1771
1805
1771
1822
1794
1794
1794
1794 | SS1 exon14_MD_switchholf
SS0 exon14_MD_hingeRegion
SS0 exon14_MD_ringeRegion | | - 12 dx double
- 12 dx single | no 45
no 24 | 46 41.874 0.72040 1825658
67 0.277 0.00278 244605
46 42.105 0.72726 244605 | 764492 False
679 False
103992 Ealse | CCTCCTCGATANTOAGTACTTCTACGTTGATTCAGAGAATANGA
CTACGTTGATTCAGAGAATANGA
CTCCTCGATATAAGTACTCTTGATGATTCAGAGAATANGA | [examis_JMC]_muschMedf_examis_JMC_appententf] [examis_JMC]_muschMedf_examis_JMC_appententf] [examis_JMC]_muschMedf_examis_JMC_appententf] [examis_JMC]_muschMedf_examis_JMC_appententf] | 28608207
28608286
28608207 | 1749 582
1770 590 | 20000262
20000262
20000262 | 1792 56
1793 56 | 98 29608262
98 29608262
99 29608262 | 1794
1794
1794 | SSB excel4_3MD_ripperMotif
SSB excel4_3MD_ripperMotif
SSB excel4_3MD_ripperMotif | | - 13 dx double
- 13 dx double
- 13 d m11 double | no 29
no 60
no 21 | 45 1.910 0.01947 120222
77 20.315 0.25494 120222
72 0.016 0.00016 1797023 | 25211 False
250254 False
292 False | GCTCCTCAGATAATGAGTACTTCTACGTTGATTCAGAG
TTCAGAGAATATGACTCCAATGGGAGTTTCCAGAGAAAATTAGAGTTTGGT
TTGATTCAGAGAATATGAT
TTGATTCAGAGAATATGAT | [recontd_JMD_contentMostF_contd_JMD_pipenhostF] [recontd_JMD_pipenhostF_contd_JMD_pipenhostF]
[recontd_JMD_pipenhostF_contd_JMD_pipenho | 28508208
28508276
28508281 | 1748 582
1780 594
1775 592 | 28608270
28608217
28608261 | 1786 56
1795 56 | 96 29508259
- 29508216
99 29508250 | 1797
1796 | SSG exceld_MC_ripperMost
introduct
SSG exceld_MC_ripperMost | | - 13 ri_m11 double
- 13 dx single
- 13 dx single | no 60
yes 197
no 39 | 77 0.202 0.0003 1797022
22 0.012 0.00012 156759
45 1.920 0.01864 201651 | 3625 False
21 True
3690 False | TTCKGAGAADITGATCTCAARIGGGAGTTTCCAAGAGAAARTTKGGT
CONOGGTGACGGCTCCTCA
GCTCCTCAGARAARAGADITCTCKGGTTGAFTCAGAG | [mont4_MD_appendedf_wont4_MD_impendedf_wont4_MD_impendededf_mont4_MD_impendedf_mont4 | 28608276
28608221
28608208 | 1790 594
1725 579
1748 582 | 28608217
28608125
28608270 | 1941 61
1786 56 | - 29508216
14 29508124
96 29508269 | 1942
1797 | intox14 614 excn15_TXD1_betx1Sheet 656 excn14_3MD_spperMotE | | - 13 dx single
- 14 dx double
- 14 dx double | no 60
no 18
no 30 | 77 20.423 0.25664 201651
87 15.753 0.18699 2117395
46 25.828 0.36664 2117395 | 41194 Falce
223546 Falce
558054 Falce | TTCKGAGAADITGATCTCAAATGGGAGTTTCCAAGAGAAATTTKGGT
TGAADITGATCTCAAF
CACCTCAGADATGATGATCTTGA | | 28608276
28608265
28608207 | 1790 594
1790 597
1749 582 | 28608217
28608249
28608278 | 1907 60
1779 56 | - 29508216
33 29508248
83 29508277 | | 602 excel4_3MD_ripperMotif
502 excel4_3MD_ripperMotif | | - 15 dx double
- 15 dx single
- 15 dx single | no 26
no 19
yes 21 | 77 21.827 0.6666 25997
70 0.054 0.0004 657648
81 0.022 0.0002 657648 | 8274 False
298 False
102 False | TICAGAGANINGANINGATICAC CGTIGATTICAGAGANIA GAGANINGANIGACICA GAGANINGANIGACICA | [round_A_De_invelocity round_A_De_inpended/] [round_A_De_inpended/] [round_A_De_inpended/] [round_A_De_inpended/] [round_A_De_invelocity round_A_De_inpended/] [round_A_De_inpended/] | 28608276
28608282
28608272 | 1790 594
1773 591
1784 595 | 26606253
26606266
26606252 | 1903 60
1790 56
1904 60 | 01 28608252
97 28608265
02 28608251 | 1904
1791
1905 | 602 excel4_3MD_zipperMotif
597 excel4_3MD_zipperMotif
602 excel4_3MD_zipperMotif | | - 25 dx single
- 25 dx single
- 25 dx single | no 26
yes 29
yes 45 | 77 20.845 0.44505 457648
27 0.007 0.00007 457648
22 0.018 0.00028 457648 | 144252 False
23 False
84 False | TITICAGAGAMATIGAGITAGATTIC GGTGACCOGGCTCCTCAGARIAATGAGITACTICTACGTTGA CGACCIGGAAAANIGGTCGGTCGGCTCCTCAGARIAATGAGITAGTTCT CGACCIGGAAAANIGGTCGGTCGGCTCCTCAGARIAATGAGITACTTC | [WALL-JAMO_Open-Model]
[wash_JAMO_witholderi(_Open-JAMO_Open-Model]
[wash_JAMO_Open-JA | 28608276
28608216
28608230 | 1780 594
1780 580
1726 576 | 30000000000000000000000000000000000000 | 1903 66
1778 56
1770 56 | 01 28608252
83 28608277
80 28608285 | 1908
1779
1804
1791
1805
1806
1779
1771
1822 | 592 excrt4_3MD_ripperMotif
592 excrt4_3MD_ripperMotif
591 excrt4_3MD_switchMotif | | - 25 dx single
- 25 dx single
- 25 dx single | yes 40
yes 57
no 62 | 72 0.028 0.00028 467648
78 0.010 0.00020 467648
27 0.022 0.00022 467648 | 154 False
48 False
103 False | GGGANTONGAGANIGANINGA/TECHNATIGGGGATTTECHNAG
TONGGANTGANIGATCHAGAGGGGATTECGAGAGAMATTIGAGATTIG
GGTGACCGGCTCCTC/GATANTGAGTACTTCT/CGTTGATTTONGAGATANTGANIGATCT | South, July, | 28608211
28608275
28608216 | 1775 592
1781 594
1780 580 | 20000234
20000219
20000254 | 1827 61
1827 61 | 58 29608223
13 29608218
31 29608253 | 1923 | 608 excn14_MD_tingsRegion - intron14_spliceConor 601 excn14_MD_tipperMotif | | - 15 dx single
- 15 dx double
- 15 dx double | yes 99
no 19
no 33 | 36 0.009 0.0009 467648
72 41.651 0.71393 2223663
52 0.015 0.00015 2223663 | 40 False
925144 False
343 False | ACGTGACCGGCTCCTCAGABATGAGTACTTCTACGGTTGATTTCAGAGATAGAGAGAGAG | [weerd.4_MC_matchMost*, weard_Most_properlays*, weard_MO_insperlays*, weard_MOSt_benistSwert] [weerd.4_MC_matchMost*, weard_MOSt_properlays*, properlays*, properlay | 2800217
280020
280020 | 1739
590
1776 592
1756 596 | 26606219
26606262
26606268 | 1927 61
1793 56
1788 56 | 13 29608218
98 29608262
96 29608267 | 1794
1799 | - intron14_spiceConor
SSB exceL4_3MD_sipperMost
SS7 exceL4_3MD_sipperMost | | - 35 dx double
- 35 dx double
- 35 dx double | no 40
no 70
no 96 | 43 0.012 0.00012 2223603
23 1.187 0.0120 2223603
13 0.009 0.0009 2223603 | 260 False
26207 False
210 False | CGGCTCCTCMATARTIAG THETTICKGTTGATTGATAGAGAKRIGA TINCHGRIGGTGACGGCTCCTCAGATAGAGAGACGTGATTCAGAGAKRIGA TINCHGRIGGTGACGGCTCCTCAGATAGAGAGACTGCGAGAGATATGAGATATGAGATCTC TGAMGCCHGCTACHGRIGGTRCAGGTGACCGGCTCCTCHGATAATGAGTACTTCTACGTTGATTTCAGAGAATRIGARTRIGATCTCAARTGGGA | [wanta_JMC_purples[] [Amount_Moder_woods_JMC_purples[]] [[wanta_JMC_purples[] [Amount_Moder_woods_JMC_purple | 2800210
2800230
2800240 | 1765 582
1726 576
1716 572 | 26606252
26606252
26606246 | 1793 55
1803 56
1811 66 | 98 29608262
31 29608262
36 29608264 | 1794
1799
1794
1804
1812
1788
1782
1784
1821 | SSB exceld_SMD_sipperMost
602 exceld_SMD_sipperMost
604 exceld_SMD_singeRegion | | - 17 dx double
- 17 dx double
- 17 dx double | no 26
no 42 | 52 0.080 0.0000 130867
44 0.021 0.00031 130867
29 0.028 0.00038 130867 | 366 False
410 False | GGCTCCTCAGATATGAGTACTTCAGTTGATTCC CACCCAATTCCTCAGATAATGAGTACTTCACGTTGATTCA | [exacts_Jun_jun_contenter_vicoso_Jun_zoppontentr] [exacts_Jun_jun_jun_jun_jun_jun_jun_jun_jun_jun_j | 28508309
28508309
28508314 | 1767 SE2
1762 SE2 | 28608274
28608273 | 1782 56
1783 56 | 66 29608272
96 29608272 | 1782
1784 | SSG exceld_SVD_ripperVote SSG exceld_SVD_ripperVote SSG exceld_SVD_ripperVote SSG | | - 17 dx double
- 17 dx double
- 17 dx double | no 51 | 25 0.012 0.00012 1200567
82 16.565 0.19655 1200567 | 1/0 False
160 False
182316 False | GEAGNIGANCIA GRANISTA I I COMMISSIONALI I I COMMISSIONALI I I COMMISSIONALI I COMMISSIONALI I COMMISSIONALI I COMMISSIONALI I COMMISSIONALI CO | [record_and_peperson_conta_box_repressor_conta_box_repressor_conta_box_repressor_conta_conta_repressor_
[record_and_persor_conta_box_repressor_con | 28508228
28508271
28508271 | 1789 576
1798 576
1785 595 | 28608278
28608218
28608218 | 1778 55 | 29608277
- 29608277 | | 502 exceld_MD_pipperMoti - introd4_splceDonor | | - 17 dx double
- 17 dx double
- 17 dx double | no 69 | 11 0.229 0.0029 1100567
70 0.011 0.00011 1100567
27 0.256 0.00057 1100567 | 2515 False
121 False
2610 Dales | CCGGAAAGCOACTACAGATAGTACAGTGACCGCCCCCAAAAAGAGTACTCACATTGATTC AATTGATTCAGAAAATGAAATG | Personal, July, Securitary and July, July (1994). A presentation of the personal process person | 28508342
28508282
28508283 | 1714 572
1772 591 | 20000274
20000215
20000215 | 1792 56 | M 29508272
- 29508214
N 29508210 | 1903
1793 | SSS exceld_MD_ripperMotil - intentil 666 exceld_MD_ripperMotil | | - 17 dx double
- 18 dx double | no 90
no 18 | 25 12.080 0.13740 1100567
71 0.008 0.0008 1005759
94 79.789 3.71450 1072004 | 132944 Falton
80 Falton
844505 Calton | GGGGACGGTRAGGCGGCTCCTCAGRANTAGATACTTCTACGTTGATTCAGGAATATGAARTGATCCCAAATGGGAGTTTCC
CAGATTCAGAGATAT
TOATCTCAATGGGGGTTCCAGGGA | [exan14_JMD_switchMotif\exan14_JMD_sigperMotif] | 28608228
28608282
28608282 | 1728 576
1774 592
1797 599 | 20000239
20000205
20000233 | 1917 66
1791 56 | 205 20508228
27 20508226
20 20508272 | 1918
1792
1924 | 606 excn14_3MD_hingsRegion
598 excn14_3MD_hingsRegion
609 excn14_3MD_hingsRegion | | - 12 dx single
- 12 cr <y2-12 double<="" td=""><td>no 27
no 36</td><td>94 77.659 3.47630 101431
49 0.475 0.00177 1464299
34 0.011 0.00013 1464299</td><td>78770 False
6861 False
164 False</td><td>TGATCTOANTGGAGTTTCOAGGA
GGGCGARATGGAGTTTCTAGTTCAGAGA
AGGGCGARATGAGTTCTTCAGTTGATTCAGAGA</td><td>[month_JMC_paperson_month_JMC_paperson] [month_JMC_paperson] [month_JMC_paperson] [month_JMC_matchled" (month_JMC_paperson] [month_JMC_matchled" (month_JMC_paperson] [month_JMC_matchled" (month_JMC_paperson] [month_JMC_matchled" (month_JMC_paperson] [month_JMC_paperson] [month_JMC_</td><td>2800259
2800204
2800204</td><td>1797 599
1752 584
1777 579</td><td>20000232
20000239
20000275</td><td>1823 66
1797 56</td><td>08 29508232
36 29508236
34 29508274</td><td>1924
1798
1792</td><td>600 excel4_MD_hingsRegion
566 excel4_MD_ringsRefion
564 excel4_MD_ringsRefion</td></y2-12> | no 27
no 36 | 94 77.659 3.47630 101431
49 0.475 0.00177 1464299
34 0.011 0.00013 1464299 | 78770 False
6861 False
164 False | TGATCTOANTGGAGTTTCOAGGA
GGGCGARATGGAGTTTCTAGTTCAGAGA
AGGGCGARATGAGTTCTTCAGTTGATTCAGAGA | [month_JMC_paperson_month_JMC_paperson] [month_JMC_paperson] [month_JMC_paperson] [month_JMC_matchled" (month_JMC_paperson] [month_JMC_matchled" (month_JMC_paperson] [month_JMC_matchled" (month_JMC_paperson] [month_JMC_matchled" (month_JMC_paperson] [month_JMC_paperson] [month_JMC_ | 2800259
2800204
2800204 | 1797 599
1752 584
1777 579 | 20000232
20000239
20000275 | 1823 66
1797 56 | 08 29508232
36 29508236
34 29508274 | 1924
1798
1792 | 600 excel4_MD_hingsRegion
566 excel4_MD_ringsRefion
564 excel4_MD_ringsRefion | | - 29 cr-cy2-2 double
- 29 cr-cy2-2 double | no 63
no 93 | 1 | 100 | COGGACOGGCCCCAGARAGGAGACCTCCCAGARAGGAGACTCCAGGTGACTTCAGGAGATAGGATAG | Percit_AEC_proposite reset_AEC_proposite res | 28008317
28008315
28008315 | 1739 500
1741 501 | 28608255
28608223
28608273 | 1901 60
1923 61 | 28608254
11 28608222
11 28608222 | 1818 1818 1818 1792 1805 1805 1805 1805 1805 1805 1805 1805 | 601 exceld_MD_ripperMotif
612 exceld_TKD1_bets1Sheet
612 exceld_TKD1_bets1Sheet | | - 19 dx double
- 19 dx double
- 19 dx double | no 194
no 21
no 30 | 35 0.103 0.00103 981039
77 0.015 0.00015 113606
61 0.012 0.00012 113606 | 1007 True
173 False
125 False | COGGTGACCGGCTCCTCAGAF
TTCAGAGAARTGAARTGA
CTRCTCCAGGTTCAGAGAARTGA | [world_MO_watchbotf;world_MO_zepenbotf;world_MO_begoingon;world_TXO_bealSheet;world_upinConor;world_twronld_plonAcoptor;world_TXO_bealSheet] [world_MO_zepenbotf] [world_MO_zepenbotf] | 2800218
2800276
2800282 | 1728 580
1780 594
1764 588 | 20060223 AMDRIGHT STATE | 1941 61
1900 60
1793 56 | 14 29009124
30 29008255
80 29008262 | 1962
1901
1796 | G14 excels_TKDs_beta1Sheet
G01 excels_MC_ripperMost
S90 excels_MC_ripperMost | | - 19 dx double
- 19 dx double
- 19 dx double | no 25
no 45
no 51 | 49 4.520 0.04734 1135405
34 1.941 0.01875
1135405
25 0.007 0.00007 1135405 | 51261 False
20921 False
85 False | GGGCGARAIGAGTACTTCIRCGTGARTTCAGAGA AAGGGGGCCGCGCCCCAGARATGAGTACTTCATTGATT CCAGAGGGACAGGCCCCCCAGARATGAGTACTTCATCAGTGA CCAGAGGGACAGGACGCCCCCCAGAGAATGAGTACTTCACGTTGA | [exant4_NO_switchMost*; exant4_NO_sipenMost*] [exant4_NO_switchMost*; exant4_NO_sipenMost*] [exant4_NO_sidenMost*; exant4_NO_sipenMost*] [exant4_NO_sidenMost*; exant4_NO_sidenMost*] | 28508304
28508219
28508228 | 1752 584
1737 579
1728 576 | 28608269
28608275
28608278 | 1797 56
1791 56
1779 56 | 96 29608268
96 29608276
92 29608277 | 1788
1782
1779 | SSG exceld_SVD_piperMost
SS4 exceld_SVD_piperMost
SS2 exceld_SVD_piperMost | | - 29 dx double
- 29 dx double
- 29 dx double | no 54
no 54
no 57 | 27 0.255 0.00256 1125605
81 0.017 0.00017 1125605
28 0.279 0.00280 1125605 | 2998 False
197 False
2258 False | GGTGACCGGCTCCTCAGAAAGGAGTKCTTCAGATTCAGAAAAATATGA
CCTCKIATGAAXIATGATCCAAATGGGAGTTTCCAAGAGAAAATTKGAGTTTG
GATGGTACAGCGGCTCCTCAGAAAATGAGATCTTCAAGTTGATTCAGAGA | "(Substitution), (Substitution), (Substitution | 28608216
28608272
28608225 | 1780 590
1784 595
1731 577 | 29608262
29608219
29608269 | 1793 56
1827 61
1797 56 | 98 29508262
12 29508218
96 29508268 | 1794
-
1798 | SSS exceld_MD_ripperMost - introx14_splceDonor SSG exceld_MD_ripperMost | | - 29 dx double
- 29 dx double
- 29 dx double | no 57
no 60
no 63 | 78 0.016 0.00015 1126406
75 0.218 0.00218 1126406
26 2.728 0.02804 1126406 | 179 False
2473 False
21000 False | AGGGGANTGANTGATCTONATGGGAGTTTCONGAGANATTRAGGTTTG ATTCAGAGANTGANTGATCTONATGGGAGTTTCCNGAGANATTRAGGTTG CCGTGACCGCCCCCCGNATGAGAGTCTCTCAGTTCAGAGANATAGAGTTG CCGTGACCGCCCCCCGNATGAGAGATCTCTAGGTTGATTCAGAGANTGATTGATCC | [woxsld_JMO_jripenfold(_woxsld_JMO_hripenfoldor(_woxsld_JMO_bringnfo | 28608275
28608278
28608217 | 1781 594
1778 592
1729 590 | 28608219
28608219
28608255 | 1927 61
1927 61
1901 60 | 13 28608218
13 28608218
01 28608254 | 1802
1820 | - introx14_pplceDonor
introx14_pplceDonor
- excel4_MD_zipperMotif | | - 29 dx double
- 29 dx double
- 29 dx double | no 72
no 87
no 93 | 45 0.050 0.0050 1125405
48 0.057 0.0057 1125405
28 2.507 0.0825 1125405 | 570 False
649 False
29656 False | ACTICETOARMATIAGRATECTICEAGATTGATTCAGAGARKIIGAATKICAGCTCAARTGGGAGTTTCCAA CCTCAGARANGAGTACTTCIAGATGATTGATGAGARKIIGAATKICAGCTCAARTGGGGATTTCCAAGAGAAAAATTIAGAGTTTG GTGACCGGCTCCTCAGARANGAGAGTCCTCACTTCACAGAGAKARAARTAINGACTCAARTGGAGTTTCCAGAGAAAAATTIAGAG GTGACCGGCTCCTCAGARANGAGACTCTCACCTTGATTCAGAGAAKARGAARTIGGATCCAARTGGAGTTTCCAGAGAAAAATTIAGAG | [Pamella, J.M., Janebart (mark J.M.), papelage (J.M.), Lincon] [Pamella, J.M., Lincoln (J.M.), Lincoln (J.M.), Lincoln (J.M.), papelage | 28508208
28508205
28508215 | 1749 592
1751 594
1741 591 | 28608237
28608219
28608223 | 1819 60
1827 61
1823 61 | 77 29808236
13 29808218
11 29808222 | | 607 excn14_3MD_hingeRegion - introx14_spliceDonor 612 excn14_TKD1_bets1Sheet | | - 29 dx double
- 29 rt_m4 double
- 29 rt_m4 double | no 96
no 194
no 21 | 35 0.021 0.00001 125606
35 0.021 0.00021 772271
77 0.011 0.00011 96206 | 96 False
163 True
104 False | GGBLAGGTGACOSCTCCTOAANAYGAGBACTTCHCGTTGATTCOAAGAANAYGACCTCAAANGGGAGTTTCOAAGAAAANTT
CCGGTGACCOGGCTCCTCAGAT
TTCAGAGANAYGAGATGAT | [excold_MO_webchilderf_excold_MO_zipperhiosf_excold_MO_hingeRegion(excold_TXO0_beta1Sheer()mixedd_spliceConor(/mixedd_spliceAcceptor(excold_TXO0_beta1Sheer)] [excold_MO_zipperhiosf] | 2800022
2800218
2800276 | 1734 578
1738 580
1780 594 | 28608227
28608225
28608256 | 1829 61
1941 61
1800 60 | 10 29008226
14 29008124
30 29008255 | Made | 610 exon14_TKD1_bets1Sheet
614 exon15_TKD1_bets1Sheet
601 exon14_MD_xipperMosf | | - 29 fl.m4 double
- 29 fl.m4 double
- 29 fl.m4 double | no 51
no 54 | 25 0.086 0.0006 942046
27 0.021 0.00021 942046 | 100 | COMBINISTANCIA CONTROL TECNICAL THAN TO CAMBAN
COMBINISTANCIA CONTROL TO CONT | [Tabalwago, Jan. Lacana, Walkana, Mul. Lakana, Walkana)
[Tabalwago, Mi. Lakana, "Mathana, Mul. Lakana, "Indulana, G.M., Lakana)]
[Tabalwago, G.M., Lakana, "Mathana, G.M., Lakana)
[Tabalwago, G.M., Lakana, "Mathana, G.M., Lakana," Mathana, G.M., Lakana)] | 28508228
28508228
28508216 | 1728 576
1720 580 | 28606276
28606263 | 1797 56
1779 56
1792 56 | 60 29608277
80 29608262 | 1779
1794 | SS2 excit, MD_ripperMost
SS2 excit, MD_ripperMost
SS6 excit, MD_ripperMost | | - 29 ft.m4 double
- 29 ft.m4 double
- 29 ft.m4 double | no 62
no 92 | 26 0.179 0.00179 96206
26 17.484 0.21199 96206 | 1505 False
1507 False
154712 False | COSTAGA DE ADECEMBRAÇÃO DE CENTRA DE CENTRA DE CENTRA DE CENTRA DE COSTAGA | [exceld_4_MAD_swatchModf_1condl_4_MAD_rispenModf_1condl_4_MAD_rispenModf]
[exceld_4_MAD_swatchModf_1condl_4_MAD_rispenModf_1co | 28608215
28608215 | 1731 577
1739 580
1741 581 | 28608256
28608253 | 1901 60
1923 61 | 01 28008254
11 28008254
11 28008222 | 1768
1802
1834 | 601 exceld_MD_ripperMost
602 exceld_MD_ripperMost
602 exceld_MDI_beta1Sheet | | - 20 dx double
- 20 dx double | no 29 | 27 28.264 0.39595 1228941
20 0.198 0.00199 1228941 | 251279 False
2458 False | GGGGCGGCTCCTOAGAWTGAGTCTCTCACGTTGA CACCUCAATGGTCACGGCGCCCCCAGAWTGAGGCTCTC | [mank_AMO_methoder] [excusl_AMO_methoder] [excusl_AMO_methoder] [mank_AMO_methoder] [m | 28508215
28508222 | 1740 580
1723 575 | 28508278
28508285 | 1778 56
1770 56 | 22 28508277
80 28508285 | 1779
1771 | SS2 excit_MD_reperior SS1 excit_MD_retributer SS1 excit_MD_retributer | | - 21 cr-tu-m3 double
- 21 dx double | no 87
no 21 | 28 0.061 0.0061 1076742
68 0.101 0.00101 226556
26 0.009 0.0009 234556 | 655 Falter
2251 Falter
100 Falter | CCCACCGGGTCCTCAGATAATGAGTACTTCTACGTTGATTCAGAGAGATATGAATATGATCTCAAATGGGAGTTTCCAAGAGAAAAT CCCTTTGATTCAGAGAAATAT GAGGTGGTBCAGGTGATCCGCTCTCCGGATATGAGTTCTTCATCGTTGATTCC | [monile_JMD_matchMatlf'(monile_JMD_properMort(monile_JMD_propeRegion)] [monile_JMD_matchMatlf'(monile_JMD_properMort[)] [monile_JMD_inderMort(monile_JMD_properMort[)] [monile_JMD_inderMort(monile_JMD_properMort[)] [monile_JMD_inderMort(monile_JMD_properMort[)] [monile_JMD_inderMort(monile_JMD_properMort[)] [monile_JMD_inderMort(monile_JMD_properMort[)] [monile_JMD_inderMort[]] [monile_JMD_inde | 28608215
28608285
28608277 | 1741 591
1771 591
1779 577 | 20000229
20000205
20000274 | 1827 66
1791 56
1792 56 | 295 29508228
87 29508264
54 29508272 | 1828
1792
1792 | 610 excel4_TXD1_beta1Sheet
580 excel4_MD_xipperMotf
566 excel4_MD_xipperMotf | | - 22 dx double
- 21 dx double
- 21 rl m5 double | no 57
no 87 | 22 0.058 0.0058 2245256
28 28.069 0.51522 2245256
28 25.588 0.55492 674926 | 1527 False
655512 False
240959 False | AGGGAGGTGACCGGCTCCTCAGARWIGAGTACTCTCAGGTGATTCAGAGAART CCCACCGGGTCCTCAGARWIGAGTACTCACCTGGATTCAGAGAARTGAARGACTCAATGGGAGTTTCAAGAGAAAT CCCACCGGGTCCTCAGARWIGAGTACTCACCTGGATTCAGAGAAATGAARTGAATGACTCAAATGGGAGTTTCAAGAGAAAAT CCCACCGGGTCCTCAGARWIGAGGACTCTCACGTGGTTTCAAGAGAAARTGAARTGAATGATCAAATGGGAGTTTCAAGAGAAAAT | [wastel_NO_matchlern(_wastel_NooninputMatf] [wastel_NO_matchlern(_wastel_Noon_inputMatf_wastel_Noon_inputMat | 28608221
28608215
28608215 | 1725 579
1741 581
1741 581 | 20000205
20000229
20000229 | 1791 55
1827 66
1827 66 | 27 2808264
39 2808229
39 2808229 | 1792
1828
1828 | 550 exceld_MD_xipperModf
650 exceld_TNDi_betaiSheet
650 exceld_TNDi_betaiSheet | | - 21 dx single
- 21 dx single
- 21 dx single | no 21
no 57
no 87 | 68 0.029 0.0009 107012
22 0.112 0.0012 107012
28 24.724 0.52196 107012 | 21 False
121 False
27159 False | CCCACGGGTCCTCAGATAVGAGTACTAGATTCAGAGAATAT CCCACGGGGTCCTCAGATAVGAGTACGGTCCTCAGATATGAGATATTCAGAGAATAT CCCACGGGTCCTCAGATAVGAGTACTTCTAGGTTGATTCAGAGAATATTCAAGAATAT | [exant4_NO_nuichMost] (wom14_NO_poperMost] [exant4_NO_pouchMost] (wom24_NO_poperMost] [exant4_NO_pouchMost] (wom24_NO_poperMost] [exant4_NO_pouchMost] (wom14_NO_poperMost] | 28508285
28508221
28508215 | 1771 591
1735 579
1741 591 | 28608265
28608265
28608229 | 1791 56
1791 56
1827 66 | 97 29608264
97 29608264
99 29608228 | 1792
1792
1828 | SSB exceld_SMD_ripperMost
SSB exceld_SMD_ripperMost
610 exceld_TMD1_beta1Sheet | | - 22 dx double
- 22 dx double
- 22 dx double | no 39
no 79
no 9 | 92 46.136 0.85653 979941
54 0.008 0.0008 979941
79 0.010 0.0000 115571 | 452104 Falce
79 Falce
12 Falce | ATGATCTCMATGGGAGTTTCCMGAGAMATTTAGAGT ATGATCTCMATGGGAGTTTCCAAGAGAMATTTAGAGT ATGATCTCMATGGGAGTTTCCAAGAGAMATTTAGAGTTGAGAGAGATTTCCAAGAGAMATTTAGAGT GAGAGGGA | ["excel_CMC_DMC_DMC_DMC_DMC_DMC_DMC_DMC_DMC_DMC | 28508250
28508299
28508274 | 1795 599
1757 595
1782 594 | 28608222
28608222
28608266 | 1834 61
1834 61
1790 56 | 12 29608221
12 29608221
87 29608265 | 1925
1925
1791 | 612 exon14_TKD1_bets1Sheet
612 exon14_TKD1_bets1Sheet
987 exon14_DKD_sipperModf | | - 23 dx double
- 23 dx double
- 24 dx double | no 54
no 57
no 66 | 42 41.155 0.59941 1411441
28 0.085 0.00085 1411441
61 29.744 0.55859 2125903 | 580999 False
1219 False
949995 False | GGGCTCCTCAGTANTIAGTACTICTICGTTCAGTTCAGAGARIIGARIGA
CCCAGTACAGGGGCCCTCGGGTAATGAGTCCTCTCAGGTGGTTCAGGGA
CCTGCGGGGCGGG |
[excent.6_MAD_count.6_MAD_count.flow.com.6_MAD_coun | 28608210
28608225
28608292 | 1745 582
1724 577
1764 588 | 28608257
28608269
28608227 | 1799 60
1797 56
1829 61 | 2868256
286258
10 2868258 | 1900
1798
1920 | 600 excel4_3MD_ripperMotif
596 excel4_3MD_ripperMotif
610 excel4_7KD1_beta1Sheet | | - 25 σ_gg_c1 double
- 25 σ_gg_c1 double
- 25 σ_gg_c1 double | no 21
no 35
no 39 | 82 0.053 0.0053 2565761
41 0.061 0.0061 2565761
40 0.050 0.0060 2565761 | 1254 False
1551 False
1295 False | TOTAGGATOMATICATORA GTOGGCTOCTOGAGATOGATCTOA GACOGGCTOCTOGAGATATGAGTTCTACGTTGAT GACOGGCTOCTOGAGATATGAGTACTTCTACGTTGATT | [rount], MO_spendorf] [rount], MO_suntiled Front, Mo, Spendorf] | 2800271
2800212
2800213 | 1785 595
1744 592
1743 591 | 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 200000200 20000200 20000200 20000200 20000200 20000200 20000200 2000000 | 1905 60
1779 55
1781 56 | 22 29808250
83 29808276
84 29808274 | 1906
1780
1792 | SS4 excel4_3MD_pipperMost
SS4 excel4_3MD_pipperMost
SS4 excel4_3MD_pipperMost | | - 25 σ_cy2_c1 double
- 25 σ_cy2_c1 double
- 25 σ_cy2_c1 double | no 42
no 42
no 60 | 25 0.040 0.00048 2565761
44 0.012 0.00012 2565761
31 2.004 0.02045 2565761 | 1235 False
219 False
51428 False | GGTCCETTCCTHAGTGAAGGGCTCCTCAGATAATGACTACET AGCTCCTCAGATAATGACTACTTCTCAGATGAAGACTTCAAGAA GCCACAGGTGACCGGCTCCTCAGATAATGAGTACTTCTACGTTGATTTCAGAGAATATGA | [munch_Alphone_Count_Alphone_C | 280023
2800309
2800322 | 1728 576
1747 582
1734 578 | 26606267
26606268
26606262 | 1769 55
1788 55
1793 56 | 0 2900206
6 2900267
8 2900262 | 1770
1789
1794 | SSO exon14_3MD_swechMost
SS7 exon14_3MD_sipperMost
SS0 exon14_3MD_sipperMost | | - 25 dx double
- 25 dx double | no 21
no 24 | 82 0.718 0.00723 705386
54 0.008 0.00008 672529 | 5065 False
53 False | GEDERAGI GACEGGETECTONANAMINASIAETTE TENGETTAAT TENGERANIAGA
TAAGAGAGAGTACTICTACGTTGATT | promote and the control of contr | 28508227
28508271
28508299 | 1785 595
1787 586 | 28608251
28608276 | 1905 60
1700 56 | 96 29608250
96 29608275 | 1906
1906
1791 | 602 exceld_MD_ripperMotil
504 exceld_MD_ripperMotil | | - 25 dx double
- 25 dx double | no 29 | 40 0.367 0.00009 672529
40 0.367 0.00089 672529
25 15.830 0.18807 672529 | 505 Falton 2471 Falton 106450 Falton 81102 Falton 78 Falton 602209 Falton 4026 Falton 41 Falton | GACCOGCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOC | | 28508212
28508228
28508228 | 1743 581
1743 581
1728 575 | 28608275
28608275
28608287 | 1791 56
1781 56
1769 56 | 28508276
36 28508274
30 28508285 | 1782
1792 | SS4 exceld_SMD_paperMost
SS4 exceld_SMD_paperMost
SS0 exceld_SMD_parketMost | | - 25 dx double
- 25 rt_m1 double | no 92
no 42 | 29 0.012 0.00012 672529
44 0.079 0.00079 1225595 | 78 False
1042 False | CCCGCCGCTCCTCAGATANTGAGTACTTCAGGTGATTCAGAGGAATTGAGAGAATTGAGAGAATTCAGAGGAATTCAGAGGAATTCAGAGGAATTGAGAGAAATTAGAGT AGCTCCTCAGATAGGAGATACTCAGAGGAATTCAGAGAAAATTAGAGAAATTAGAGAAAAATTAGAGAAAAATTAGAGAAAAATTAGAGAAAAATTAGAGAAAAAA | [world_MD_matchest_MD_pends(f) world_MD_pends(f) | 28508214
28508209 | 1742 SR1
1747 SR2 | 20000222
20000200 | 1824 61
1788 56 | 12 29608221
86 29608267 | 1925
1789 | 612 exon14_TKD1_bets1Sheet
597 exon14_TMD_pipperMotif | | - 25 dx single
- 25 dx single | no 21
no 24 | 82 0.610 0.00614 428572
54 0.010 0.0000 428573
41 0.020 0.00020 428573 | 2515 False
41 False
220 False | TORGANDAMINATION ANATAGENETICACTICAT ANATAGENETICACTICAT GEOGETETETETETAGET | [reard, A.D. Josepherf von L.D. A.D. Josepherf von L.D. A.D. Josepherf von L.D. A.D. Josepherf [reard, A.D. Josepherf von L.D. Jose | 28608271
28608299
28608112 | 1785 595
1757 586
1744 502 | 28608251
28608276
28608277 | 1905 66
1790 56 | 20000250
36 2000275
20 2000276 | 1906
1791
1790 | 602 excit4_MD_zipperMotif
564 excit4_MD_zipperMotif
564 excit4_MD_zipperMotif | | - 25 dx single
- 25 dx single | no 36
no 39 | 56 0.006 0.0006 428572
40 0.280 0.0028 428573
25 16.260 0.19573 429573 | 26 False
1200 False
70149 False | CGAGGGGGGTTCRCGTTGATTCAGGAGARATGAA GACCGGCTCCTCAGATAATGAGTACTTCAGGTGATT
GGTCCTTCCTTAGGTAAGGGGTCCTCCAGGTGATTT | | 28608212
28608297
28608213
28608228
28608228
28608224 | 1759 587
1743 581
1779 576 | 28606277
28606262
28606275
28606287
28606262 | 1794 56
1791 56
1799 50 | 98 29608261
94 29608274
90 29608296 | 1795
1792
1770 | 599 excel4_MD_ripperMotif
594 excel4_MD_ripperMotif
590 excel4_MD_ripperMotif | | - 25 dx single
- 25 dx single | no 60
no 93 | 40 0.280 0.0028 428572
25 16.388 0.18671 428572
31 12.285 0.13802 428573
29 0.007 0.00007 428573 | 52200 False
21 False
755 False | GCCACAGGTGACCGGCTCCTCAGATAATGAGTACTTCTCGGTTGATTCAGAGAGAG | [mont4, Julio dischipated" (worst4, Julio puinchhard") [mont4, Julio puinchhard"] [mont4, Julio puinchhard", Julio | 2800822
28008214
2800826 | 1734 578
1742 581
1730 590 | 28608262
28608222
28608209 | 1792 56
1824 61
1797 56 | 98 29608262
12 29608221
96 29608268 | 1794
1825
1700 | 598 excit_3MD_rippeMotif
612 excit4_TKD1_bets1Sheet
656 excit4_TKD1_rippeMotif | | - 26 dx double
- 26 dx double
- 27 dx double | no 23
no 36
no 72 | 52 0.010 0.00010 1991236
86 15.505 0.18250 1991236
40 0.011 0.00011 1649051 | 207 False
207192 False
185 False | | [counts]_MD_countsMortF_counts_(_MDrepentator) [counts_MD_copentator]_counts_MD_copentator] [counts_MD_copentator]_counts_MD_copentator_counts_MD_counts_MD_copentator_counts_M | 2800200
2800207
2800212 | 1756 586
1789 597
1743 581 | 28608249
28608232
28608242 | 1700 56
1824 66
1814 66 | 96 2969267
26 2969221
26 2969241 | 1709
1825
1815 | 597 exceld_MD_ripperMotif
609 exceld_MD_hingsRegion
605 exceld_MD_hingsRegion | | - 27 dx double
- 28 dx double
- 28 dx double | no 96
no 197
no 36 | 29 68.290 0.93285 1548051
22 9.965 0.11045 942988
54 0.047 0.00047 945585 | 795840 Falce
92794 True
441 Falce | COMPAGGTGACCGGCTCCTCA
GGGTCCCGTTGATTTCAGAGAATATGATCT | [record_AMC_watchMost /coord_AMC_properfoot | 28508214
28508221
28508289 | 1742 581
1735 579
1767 589
1775 592 | 28608219
28608125
28608254 | 1926 60
1916 60
1927 61
1981 63
1992 66
1921 61
1922 61
1927 66 | 13 29608218
14 29608124
01 29608253 | 1905
1915
 | - introst4_spliceDonor
614 exon15_TKD1_bets1Sheet
601 exon14_MD_sipperMotF | | - 28 dx double
- 28 dx double
- 28 dx double | no 57
no 60
no 75 | 72 0.007 0.0007 94585
70 0.028 0.0008 94585
50 0.029 0.0009 94585 | 68 Falce
255 Falce
277 Falce | TIGATTICAGAGAARRIGARKIGAICTCAARRIGGGGTTTICCAAGAGAAARTTRG CGITGATTICAGAGAARRIGARRIGARRIGECCAARGIGGGTTICCAAGAGAAARTTRGA CCAGARRIGAGACHCTCCACGTGRATTICAGAGARRICAARTIGAARGAARTICAARGAARTICAARGAARTICAARGAARTICAARGAARTICAARGAARTI | [words_AMO_peabMedf_words_AMO_peabMedf_words_AMO_peabfor(words_AMO_peabfor(words_TMO_pead_Deer]
[words_AMO_peabMedf_words_AMO_peabMedf_words_AMO_peabfor(words_AMO_peabfor(words_TMO_peabfor(words_AMO_peabfor(wor | 28608281
28608282
28608302 | 1775 592
1772 591
1753 585 | 28608225
28608224
28608229 | 1821 61
1822 61
1827 60 | 11 29608224
11 29608223
39 29608228 | 1932
1923
1929 | - INDIGE SPECIAL SPECI | | - 20 dx | no 94
no 197
no 19 | 51 0.259 0.0050 946585
22 0.056 0.0055 1953684
73 0.014 0.00014 154729 | 2452 False
1095 True
21 False | TRANSAIGAG PACTERACETIGATTO AGAMANG ANA TRANSAIGAG TITCAAGAGAAAATTAGAGTTIG COOKAGTIGACGGCCCCCCCA TRANSAIGAG PACTERACETIGATTO AGAMANG AGAMATTAGAGTTIG COOKAGTIGACGGCCCCCCCA | [word_AMD_matching*,word_AMD_paperholf*,word_AMD_paperholf*,word_aMD_paperholf*,word_amd_paperholf*,word_a | 28608202
28608221
28608280 | 1754 585
1725 579
1775 592 | 28608219
28608125
28608262 | 1937 61
1941 61
1792 56 | 12 29608218
14 29608124
98 29608262 | 1942
1794 | - inton14 spiceDonor 614 excn15_TXD1_beta1Sheet 658 exce14_3M0_sipperMotf | | - 28 dx single
- 28 dx single
- 28 dx single | no 197
no 23
no 36 | 22 20.582 0.25823 154196
41 0.010 0.0000 154729
64 0.062 0.0002 154729 | 31752 True
35 Falter
95 Falter | CORAGGIFACOGGITACTOR ACCIGITATION AGRAPATION TO THE TOTAL CONTROL OF T | [mon4_MD_makthhatf_won14_MD_spenhatf_won14_MD_breedingst_won14_MOS_breakfact]
[mon14_MO_makthhatf_won14_mon1 | 28608221
28608212
28608289 | 1725 579
1744 582
1767 589 | 28608125
28608280
28608254 | 1941 61
1776 56
1902 60 | 14 29509124
92 29509279
51 29609252 | 1962
1777
1903 | - intend L, uples Coron C Gold Record Type, Described Gold Record L, MC, Dysperking MCD, Described R | | - 28 dx single
- 28 dx single
- 28 dx single | no 57
no 60
no 75 | 72 0.017 0.0007 156739
70 0.067 0.0007 156739
50 0.006 0.0006 154739 | 27 Falter
104 Falter
20 Falter | HANTTICKAKAKAKKIKAMISTERANTIGKAKATTICKAKAKAMATTIKA COTTOATTICKAKATAKAKATIKAKATAKATAKATAKAT COKARTANGAKATICKACATIKATICKAKAKATIKAKATIKAKATIKAKATIKAKATIKAKATIKAKATIKAKATIKAKATIKAKATIKAKATIKAKATIKAKATIKAKATIKATI | [Yeard J. Mid. yealchilder] recent J. Wid. psychology (recent J. Wid. psychology) (recent J. ROS), bent Scheer] [Yeard J. Mid. yealchilder] recent J. Alb. psychology (recent J. Mid. psychology) (recent J. ROS J. bent Scheer) [exceld J. Alb. yealchilder] recent J. J. Alb. psychology (recent J. Mid. J. Mid. psychology) | 28608281
28608283
28608203 | 17/5 592
1773 591
1752 585 | 29608225
28608224
28608229 | 1932 61
1932 61 | 11 29608224
11 29608223
39 29608229 | 1822
1822
1828 | 611 excent4_TKD1_beta1Sheet
611 excent4_TKD1_beta1Sheet
630 excent4_TKD1_beta1Sheet | | 28 dx single
10^0 MOLM-14 - double
10^1 MOLM-14 - double | no 21
no 21 | 72 64.979 1.85540 1608216
72 8.628 0.09454 2534728 | 200 False
2005001 FALSE
218942 False | TOWNSHIP HE HELD I HERE I HERE I HERE HERE AND AND ANTICOME SA ANTICAMENT TO ANTICAMENT AND ANTI | [worse_mos_reconser_worse_mos_mos_mos_mos_mos_mos_mos_mos_mos_mos | 280022
2800281
2800281 | 175 592
1775 592
1775 592 | 28508251
28508251
28508251 | 1765 56
1765 56 | 29608218
39 29608260
39 29608260 | 1796
1796 | intro 1.5 julice Donor
509 excel.4_3MD_ripperMost
509 excel.4_3MD_ripperMost | | 10°-2 MCLM-14 - double
10°-2 MCLM-14 - double
10°-2 MCLM-14 - double | no 21
no 21
no 21 | 72 0.721 0.0076 1997236
72 0.721 0.00726 1997236
72 0.727 0.00732 1542260 | 2000 False
11511 FALSE
11205 FALSE | I HAN I IRCHANAGATGAAT
TIGATTICAGAGAATGAAT
TIGATTICAGAGAATGAAT | reasses_auts_aucenteral* (woods_AUD_appenfealt) [reassel_AUD_aucenteral* (woods_AUD_appenfealt)] [reassel_AUD_auchteral*, woods_AUD_appenfealt] [reassel_AUD_auchteral*, woods_AUD_appenfealt] | 2800291
2800291
2800291 | 1775 592
1775 592
1775 592 | 28508251
28508251
28508251 | 1765 55
1795 55 | 2900200
99 2900200
99 290020 | 1/96
1796
1796 | saw excel4_3MD_ripperMost
509 excel4_3MD_ripperMost
509 excel4_3MD_ripperMost | | 10°-3 MOLM-14 - double
10°-3 MOLM-14 - double
10°-3 MOLM-14 - double | no 21
no 21 | 72 0.075 0.0005 1182257
72 0.050 0.00050 1070862
72 0.050 0.00050 1070862 | 885 FALSE
629 FALSE | TIGATTICAGAAANTGAAT TIGATTICAGAAANTGAAT TIGATTICAGAAANTGAAT TIGATTICAGAAANTGAAT | Tennand John Sandchaff S. Spotta J. May J. Opportunity Tennand J. McC. Sandchaff S. Spotta J. M. D. J. Opportunity Tennand J. McC. Sandchaff S. Spotta J. McC. J. Opportunity Tennand J. McC. Sandchaff S. Spotta J. Opportunity Tennand J. McC. Sandchaff S. Spotta J. J | 28508281
28508281
28508281 | 1775 592
1775 592
1775 592 | 28508261
28508261
28508261 | 1795 55
1795 55
1795 56 | 2000250
99 200250
99 200250 | 1796
1796
1796 | SSO exceld_JMD_ripperMost
SSO exceld_JMD_ripperMost
SSO exceld_JMD_ripperMost | | 10"-4 MOLM-14 - double
10"-4 MOLM-14 - double
10"-6 MOLM-14 - double | no 21
no 21
no 21 | 72 0.015 0.00015 151789
72 0.001 0.00001 164666
72 0.001 0.00001 14730*** | 229 FALSE
22 FALSE
11 D-77 | COMMITTACION CONTROLLA CON | [woods MO. paschider]. | 28608281
28608281
28608281 | 1775 592
1775 592
1775 592 | 20000251
20000251
20000261 | 1827 d 1 1841 d 6 1904 d 6 1904 d 6 1904 d 6 1905 d 6 1906 190 | 29508250
39 29508250
39 29508250 | 1842
1794
1842
1842
1842
1843
1843
1843
1843
1845
1796
1796
1796
1796
1796
1796
1796
1796 | 500 markl_AVD_repentual | | 1 | no 21
no 125
no 125
no 125
no 125 | 8 1 1.00 | 2010 | TEAMTICIS DIAMOGITALOGICI ELECTROMINI DI TEATTICIS AGANISTICAT TEAMTICIS DIAMOGITALOGICI ELECTROMINI DI TEATTICIS AGANISTICATI TEAMTICIS DI TEAMTICIS DI TEAMTICIS DI TEAMTICIS AGANISTICATI DI TEAMTICIS TEAMTI | Transaction of the control co | 300,000 20 000,0000 20 000,000 20 | 1300 | 30000120
30000120 300000120 30000120 30000120 30000120 30000120 30000120 30000120 300000120 30000120 30000120 30000120 30000120 30000120 30000120 300000120 30000120 30000120 30000120 30000120 30000120 30000120 300000120 30000120 30000120 30000120 30000120 30000120 30000120 300000120 30000120 30000120 30000120 30000120 30000120 30000120 300000120 30000120 30000120 30000120 30000120 30000120 30000120 300000120 30000120 30000120 30000120 30000120 30000120 30000120 300000120 30000120 30000120 30000120 30000120 30000120 300000120 300 | | 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | Ē | control, All Superholms control and Contr | | 10~3 PL-21 - double | no 125 | 24 0.015 0.00015 1361676 | 204 True | TCAMICGGTACAGGTGACCGGCTCCTCAGATAATGAGTACTTCTACGTTGATTTCAGAGAATATGATGATCTCCAATGGGGAGTTTCCAAGAGAAAAT | [months_MO_binderplotef; months_MO_switchhoof; months_MO_zappenhoof; months_MO_bingeRegion; months_MOS_bentSweet; mirrorld_spiceConor; mirrorld] | 28000229 | 1727 576 | 28608205 | | 29608204 | | - inton14 | **Table S3:** getITD results: Shown are the detailed results obtained by getITD for each FLT3-ITD that was detected by our assay in the samples listed in Table S1. Genomic coordinates are based on hg19, transcriptomic and proteomic coordinates refer to NCBI NM_004119. | Patient ID | Age at dx
(years) | Sex | Type of AML | Time from dx to rl (days) | CR after induction | BM blasts at dx (%) | PB blasts at dx (%) | BM blasts
at rl (%) | PB blasts
at rl (%) | NPM1-mutated at dx | NPM1 transcripts at dx (in BM) | NPM1 transcripts at rl (in BM) | Induction cycles (Dauna-ARAC 7+3) | Consolidation cycles (High dose ARAC) | Transplanted in 1st CR | WBC at dx
(G/I) | WBC at rl
(G/I) | |------------|----------------------|------|-------------|---------------------------|--------------------|---------------------|---------------------|------------------------|------------------------|--------------------|--------------------------------|--------------------------------|-----------------------------------|---------------------------------------|------------------------|--------------------|--------------------| | 13 | 65.15 | male | de novo | 561.00 | CRi | 95 | 98 | 5 | 0 | yes | 104882 | 22022 | 1 | 4 | no | 166.6 | 5.2 | | 19 | 25.03 | male | de novo | 182.00 | CR | 69 | 11 | 32 | na | no | na | na | 2 | 0 | yes | 10.7 | na | | 21 | 52.14 | male | de novo | 325.00 | CRi | 90 | 59 | 43 | 4 | no | na | na | 2 | 0 | yes | na | 2.3 | | 25 | 53.49 | male | de novo | 245.00 | CR | 80 | 37 | 90 | 25 | yes | 537470 | 3682990 | 1 | 4 | no | na | 6.6 | | 28 | 51.52 | male | de novo | 289.00 | CRi | 80 | 29 | na | 8 | no | na | na | 1 | 3 | no | 52.8 | 3.5 | $\textbf{Table S4:} \ \textbf{Clinical data:} \ \textbf{Provided are clinical details of five } \textit{FLT3-ITD positive AML patients that relapsed during follow-up (Figure 2A).}$