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Expression profiling of leukemia patients: Key lessons
and future directions
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Gene expression profiling (GEP) is a well-established indispensable tool used to study hema-
tologic malignancies, including leukemias. Here, we summarize the insights into the molecular
basis of leukemias obtained by means of GEP, focusing especially on acute myeloid leukemia
(AML), one of the first diseases to be extensively studied by GEP. Profiling mRNA and micro-
RNA expression are discussed in view of their applicability to class prediction, class discovery,
and comparison, as well as outcome prediction, and special attention is paid to the recent ad-
vances in our understanding of the role of alternative RNA splicing in AML. In addition to
microarray-based GEP approaches, over the last few years RNA sequencing based on next-
generation sequencing technology is gaining wider recognition as an advanced tool for tran-
scriptome profiling. Therefore, the advantages of RNA sequencing-based GEP and its current
and potential implications in AML are discussed. Finally, we also highlight recent efforts to
integrate already available and newly acquired omics data sets so that a more precise under-
standing of AML biology and clinical behavior can be achieved, which ultimately will
contribute to further refine leukemia management. � 2014 ISEH - International Society
for Experimental Hematology. Published by Elsevier Inc. Open access under CC BY-NC-ND licen
At the end of the 20th century a seminal study by Todd Golub
and colleagues [1] demonstrated the usefulness of a new
microarray-based technology for gene expression profiling
(GEP) that for the first time allowed the comprehensive study
of human acute leukemias. For the next decade, GEP
became an invaluable research tool in the field of hematolo-
gy, provided crucial insights in the biology of hematologic
malignancies, and led to some clinical implications. In the
last several years, the newly emerging next-generation
sequencing (NGS) techniques have shifted the research focus
to a genomic level. As the leukemia transcriptome is the im-
mediate outcome of various genetic and epigenetic abnor-
malities [2], its continued precise investigation will remain
an indispensable prerequisite for understanding hematologic
malignancies, especially leukemias, at a more individual
level. In that respect, the rapidly developing NGS platforms
also provide the basis for novel approaches to quantitative
assessment of the human transcriptome and the possibilities
for integration of several levels of molecular profiling. In this
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review, we aim to briefly recapitulate the last 15 years of
experience in transcriptome profiling. This is done using
the prime example of acute myeloid leukemia, which was
one of the first cancers to be extensively studied by GEP
and, later, the first to be analyzed byNGS [3].We also discuss
the future prospects for transcriptome analysis in the field.
Gene expression profiling in acute myeloid leukemia:
Key findings
In their seminal work, Golub et al. used supervised gene
expression profiling (GEP) analysis to successfully discrim-
inate between acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL) samples and developed a
gene expression-based predictor that assigned new leuke-
mia cases to each of the two leukemia types with high ac-
curacy [1]. In principle, this study suggested three main
implications of GEP in the study of acute leukemia, and
cancer in general: (i) class discovery, (ii) class prediction
and class comparison, as well as later studies adding clini-
cally oriented implications such as (iii) outcome prediction.
Although several recent reviews provide an in-depth discus-
sion of the main GEP studies in AML [4–7], here we briefly
Published by Elsevier Inc. Open access under CC BY-NC-ND license.
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summarize some of the key findings and conclusions ob-
tained over the last decade.

Class discovery in AML through mRNA profiling
Several GEP studies in adult AML patients were able to
distinguish new subgroups based on characteristic gene
expression patterns, some of which are exemplified in this
section. For example, two novel subgroups within the cyto-
genetically normal (CN) AML cases could be identified
that were in part associated with FLT3-ITD mutations or
myelomonocytic/monocytic differentiation, as defined by
the French–American–British (FAB) classification, respec-
tively [8]. Similarly, core binding factor (CBF) leukemias
could be subdivided based on GEP analysis [8,9], and it
was later found that a distinct gene expression profile in
CBF-AML correlates also with the presence of KIT muta-
tions [10]. In accordance, a pivotal study analyzing 285
AML cases reported 16 GEP-defined subgroups, which
comprised novel leukemia subgroups that were also associ-
ated with different outcomes [11]. In line, Wilson and col-
leagues found novel clinically meaningful leukemia
subgroups within older AML patients [12]. After these
observations, the first studies also started to dig further
into the molecular mechanisms underlying novel GEP-
defined subtypes of AML, which, for example, can reflect
a specific epigenetic abnormality, as illustrated by the
epigenetic silencing of CEBPA [13]. Thus, all of the afore-
mentioned studies clearly illustrated the power of GEP to
discover novel leukemia classes of clinical importance.
Furthermore, these early analyses suggested that GEP was
a valuable tool with which to define known tumor classes
and to gain further insights via the respective predictive
gene signatures.

Class prediction and class comparison in AML through
mRNA profiling
Association of gene expression profiles with specific cyto-
genetically defined subtypes of AML such as AML with
t(15;17), inv(16), t(8;21), and t(11q23) has been addressed
by all major studies because such associations, on one hand,
confirm the true biological difference between these entities
and, on the other hand, might be very useful in clinical set-
tings if novel surrogate biomarkers are identified. In accor-
dance, all major studies identified gene expression profiles
associated with the cytogenetically defined adult AML sub-
types, which also exhibited very strong concordance [5,6].
To predict the respective subgroups, a large international
multicenter research program, the Microarray Innovations
in Leukemia (MILE) Study, sought to identify biomarkers
based on GEP in 2143 patients with leukemia and myeloid
dysplasia [14]. The retrospective phase I of this study
included 542 AML cases and classified, with a specificity
of O99%, all subtypes of leukemia. The second prospec-
tive phase II of the study with 1152 cases comprising a
large cohort of AMLs also reached that high specificity
level to distinguish between AML with complex aberrant
karyotype, CN-AML/AML with other abnormalities,
t(15;17), inv(16), t(8;21), and t(11q23) [14].

Notably, several studies reported that homeobox genes
(such as HOXA5, HOXA7, HOXA9, HOXA10, and also
MEIS1) are frequently overexpressed in MLL-rearranged
leukemias, but can also be found in CN-AMLs and in cases
with trisomy 8 [15–17]. Later, it could be illustrated that
this signature is frequently associated with NPM1 muta-
tions, which also harbor a distinct gene and microRNA
(miRNA) expression signature [18]. More recent studies
also identified specific profiles in CN-AML cases defined
by mutations in different genes such as CEBPA [13,19],
FLT3 [20], IDH2 [21], TET2 [22,23], ASXL1 [24], and
RUNX1 [25]. However, these efforts also indicated that
not all aberrations tend to have strong profiles, which
seem to be seen mainly in known ‘‘founder’’ mutations
such as CEBPA and NPM1. Notably, the presence of
CEBPA and NPM1 mutations can be reliably predicted,
even within multicenter GEP studies [26]. Importantly,
driver mutation-associated signatures can capture unknown
molecular aberrations associated with identical phenotypes
and patient outcome. In line, a FLT3-ITD gene expression
profile performed better than the FLT3-ITD mutational sta-
tus in terms of overall survival (OS) prediction [20].

Outcome prediction in AML through mRNA profiling
Besides the identification of distinct leukemia subgroups
and the prediction of known aberrations, the prediction of
outcome based on GEP is also of obvious clinical rele-
vance, especially in a disease such as AML, in which
even ‘‘well-defined’’ cytogenetic subgroups exhibit consid-
erable heterogeneity, at both the molecular and clinical
levels. A first study examining the feasibility of outcome
prediction in AML stratified AML cases into two outcome
groups based on the differential expression of 149 probes
[16]. The prognostic power of this gene signature was
confirmed in an independent study of CN-AML cases
[27]. More recent studies could further narrow down the
number of genes needed to delineate groups of prognostic
relevance [28], and a meta-analysis including data from
five different studies identified a prognostic score signature
consisting of only 24 genes [29]. In accordance, GEP could
potentially predict outcome in childhood myeloid leukemia
as well. For example, Lacayo et al. were able to subdivide
pediatric AML cases with FLT3-ITD into prognostic sub-
groups based on GEP [30], and Bresolin et al. identified
an AML-like signature associated with poor prognosis in
juvenile myelomonocytic leukemia [31].

Another recent key study indicated that AML cellular
subpopulations enriched for leukemia stem cells (LSCs)
have a distinct gene expression signature, which shares
core ‘‘stemness’’ features with profiles of hematopoietic
stem cells (HSCs) [32]. Notably, both signatures were pre-
dictive of patient survival. In an independent study,
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Metzeler et al. [33] reported that the LSC-like gene expres-
sion profile was associated with clinical outcomes of
CN-AML patients. Furthermore, this LSC signature was
also associated with a specific microRNA expression pro-
file. These studies support the LSC theory for AML patho-
genesis and indicate that true biological features at the
cellular and transcriptomic levels are of particular relevance
to the clinical outcome.

Initially, a major criticism of the application of GEP in
AML in clinical settings was the poor reproducibility of
gene expression findings in early studies, which was due
to poorly designed studies, platform differences, and over-
fitting of the data. However, over the years, investigators
have learned how to use GEP, and since the early days, it
has become a very reliable tool to measure gene expression
differences in leukemias and cancer in general. This is re-
flected by a growing number of multicenter clinical trials
and meta-analyses, some of which were mentioned above
[14,26,29], and a very recent meta-analysis of 25 studies
indicated a high level of concordance between indepen-
dently defined gene expression profiles of prognostic rele-
vance [34].

Alternative splicing in AML as revealed by microarray
technologies
In the last 2 years, several groups identified coding muta-
tions in the genes involved in the RNA splicing processes
[35,36]. Notably, these mutations appeared to be a common
feature of many myeloid malignancies including AML
[37,38]. Although it has been known for many years that
alternative splicing is affecting some leukemia-associated
genes, such as WT1 [39], the recent identification of spli-
ceosomal machinery mutations spurred interest in the eval-
uation of the presence and general features of alternative
splicing events in AML, as this might be a significant
source of phenotypic variation and may have a direct role
in leukemia pathogenesis. Some microarray platforms
such as exon arrays and high-density tiling arrays provide
the tools needed to address this issue. Very recently, Ada-
mia et al. reported a genome-wide profiling of alternative
splicing in adult AML patients [40]. They found that 29%
of expressed transcripts were differentially spliced in
AML patients compared with normal donors at a signifi-
cance level of 0.05. They found a high rate of partial or
complete intron retention events, which is surprising
because intron retention is the least frequent alternative
splicing event in mammals [41]. Also of note, up to 21%
of the differential splicing events mapped to 50 and 30 un-
translated regions, suggesting a high likelihood for affected
posttranscriptional regulation of these genes. More than
half of the identified alternatively spliced variants had
not been reported before, and a large number of alterna-
tively spliced oncogenes (RUNX1, PML, BRAF, FOS,
JUN) and tumor suppressor genes (ATM, TP53) were iden-
tified. Furthermore, NOTCH2 missplicing and FLT3 gene
missplicing were found to be common events in AML
cases, pointing to new potential targets [42]. Overall these
studies nicely illustrate the importance of investigating
alternative splicing further in AML. However, the useful-
ness of microarray-based approaches in identifying novel
alternative splicing events is limited and requires functional
investigation. But obviously, the novel NGS-based
approach to the study of alternative splicing events on a
genome-wide level is a promising field for future research,
as has recently been found for U2AF1 mutated cases
[43,44]. In myeloid malignancies (including AML), it was
reported that U2AF1 mutated cases, wild-type cases with
lower U2AF1 expression, and wild-type cases with normal
U2AF1 expression levels had distinct patterns of alternative
splicing events [44]. Similarly, another recent study re-
ported an impact of U2AF1 mutations on alternative
splicing in lung cancer and AML [43] by identifying 30
splicing events common to the two malignancies and by
verifying a causative effect of U2AF1 mutations on the
respective splicing pattern.
The noncoding transcriptome
A key breakthrough in our knowledge of the molecular
biology of the eukaryotic cell during the last decade was
the recognition that the protein-coding transcriptome com-
prises only a small proportion of the entire RNA content of
the cell [45]. In accordance, most of the noncoding RNAs
appeared to be of functional relevance as they exert modu-
lation of the expression and translation of the coding
mRNAs through a number of mechanisms. The best-
studied noncoding RNA species are the miRNAs. Mature
miRNAs are single stranded RNAs of about 22 nucleotides
of length that are processed endogenously through pro-
cessing of pre-miRNA transcribed from polymerase
II-dependent loci [46]. MicroRNAs are complementary to
short stretches of the 30 untranslated regions of the coding
mRNAs and suppress their translation or trigger their
degradation [47]. So far, more than 2500 well-annotated
human miRNAs have been identified, some of which
were experimentally verified as participating in important
mRNA–miRNA regulatory networks in hematopoiesis
[48]. MicroRNA expression profiling was also used to study
AML for the same purposes as the mRNA expression
profiling described above. Here we focus on key findings
only because more extensive reviews were published
recently [49–51].

Class discovery in AML through microRNA expression
profiling
A landmark study by Lu et al. made use of a custom bead-
based suspension array to analyze the miRNA expression
profiles of more than 334 cancer samples [52]. Notably,
miRNA expression profiles correctly classified cancer types
including AML and ALL samples. In a later study, Li and
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colleagues reported discrimination between AML and ALL
samples based on the expression of 28 miRNAs, and 4 of
these were the most discriminatory [53]. Using a multiplex
quantitative polymerase chain reaction platform, Jongen-
Lavrencic et al. profiled the expression of 178 miRNAs in
a total of 215 adult AML patients [54]. They were able to
identify 22 clusters based on differential miRNA expression
profiles, many of which correlated well with known cytoge-
netic abnormalities.
Class prediction and class comparison in AML through
microRNA expression profiling
Most of the studies on miRNA expression profiling in AML
were focused on the identification of expression signatures
associated with different AML subtypes. Notably, studies
from different groups exhibited only partial overlap, mostly
because of differences in microarray platforms, but never-
theless, common signatures could be identified. For
instance, AML with t(15;17) is characterized by expression
of miR-127, miR-299, miR-323, miR-368, and miR-382
and downregulation of miR-17 and miR-126 [54,55]. Other
studies focused primarily on the identification of specific
miRNA expression signatures in CN-AMLs with specific
molecular features [56]. CN-AMLs with NPM1 mutations
overexpress miR-10a/10b, miR-196a, and miR-196b,
miRNAs located in the HOXA cluster, and exhibit lower
Table 1. Characteristic microRNA expression signatures in different adult acute

Genetic/molecular subtype Upregulated

t(15;17) miR-193b/379/382/4855p/134/376a/2995p/452/

127/224/432/370/100/323/125b/154/424/181a,b

miR-127/154/154*/299/323/368/370

miR-181a,b,c,d/224/368/382/424/100/125b -

t(18;21) miR-126*

inv(16) miR-424/199b/365/335/511

miR-99a/100/224

11q23 rearrangements miR-326/219/194/301/324/339/99b/328

miR-196b/17-3p,5p/18a/19a,b/20a/92/93/10a,b/12

Trisomy 8 miR-124a/30d/337/184/302b/105/let7d/153/215/1

Cytogenetically normal acute myeloid leukemia

FLT3-ITD mutated miR-155/10b/511/135a

NPM1 mutated miR-10a,b/100/let-7a-3/21/16a,b/29a,b,c/16-1/17-

miR-10a,b/196a,b/135a/let-7b

CEBPA mutated miR-335/181a

miR-128/181a,b,c,d/192/219-1-3p/224/335/340

RUNX1 mutated miR-211/220/595

ASXL1 mutated None

DNMT3A mutated miR-10a*/659/147/361-3p

IDH2 R172 mutated miR-1/133a/125b/125a-5p/421/374a/361-5p/26a/3

TET2 mutated miR-148a, 148b, 24, 640, 107

Low MN1 expression miR-30b/126/126*/30a/30b/146a/146/199a/363

Low BAALC expression miR-222/130a/130b/126/126*/380/26a/26b

Low ERG expression miR-208a/144*/612/107/148a

Adapted from Havelange et al. [49], Wieser et al. [50], and Marcucci et al. [51]
expression of miR-204, miR-128, miR-126, miR-130a,
and miR-451 [56,57]. Although FLT3-ITD mutations
were found to be associated with overexpression of miR-
155 [58], the more favorable CEBPA mutation genotype
was characterized by miR-181a and miR-335 expression
and downregulation of miR-34a [59,60]. Other molecular
aberrations with specific miRNA expression profiles were
IDH2 [21], TET2 [22], and RUNX1 [61] mutations, as
well as DNMT3A mutations [62], whereas other mutations
of epigenetic modifiers, like ASXL1 mutations, did not
exhibit a characteristic miRNA expression signature [24].
Notably, deregulation of leukemia-relevant genes such as
overexpression of MN1 [63], BAALC [64], and ERG [64]
was also found to be associated with distinct miRNA pat-
terns. The miRNA signatures associated with the main mo-
lecular/cytogenetic subgroups of AML are summarized in
Table 1. In pediatric AML, several studies also reported
that miRNA expression profiling correlated well with cyto-
genetically defined subgroups and could distinguish be-
tween AML and ALL cases [65].

Outcome prediction in AML through microRNA
expression profiling
In the last decade it became clear that miRNA gene expres-
sion profiling, similar to mRNA-based GEP, can also add
prognostic information in AML. Much of the work in this
respect was done on CN-AML cases, most of which are
myeloid leukemia subtypes

Downregulated Study

,d

miR-96a,b/151/10b/let-7c [54]

miR-173p/185/187/194/200a,b,c/330/339 [55]

miR-126/126*/150/17-5p/20a/422b/10a/124a [55]

let-7b,c/miR-148a/125b/99a/133a,b/9/10a,b/196a,b/133a [54]

miR-10a,b/196a,b/127/192/let-7b,c [54]

[55]

miR-34b/15a/29a/29c/372/30a/29b/30e/196a/102/331/

299/193/let-7f

[58]

4a miR-126/126*/130a/146a/181a,b,c,d/224/368/382/424 [53]

/194 [58]

miR-143/338/30a-3p/182/145/130a/214/203 [54]

92 miR-192/299/128a/198/429/326/204/127/299-5p/193b [17]

miR-320/335/130a/126*/424/365/450/127/299-5p/193b [54]

miR-196a,b/149/9/21/130b/let-7b/99b/148a [54]

miR-34a/194 [59]

miR-223/99a/100/let7a,f [61]

None [24]

miR-30c-1*/181c/504/365-2/410/626/640 [62]

0d miR-7/345/129-5p/632/615-5p/1301/639/548b/520a-3p/

526a/194-1

[21]

miR-135a/186 [22]

let-7b/miR-10a/10a*/10b/449a/550*/766 [95]

miR-9/9*/10b/10b*/105/99/100/let-7b, miR-10a, 10a* [96]

miR-106a/147b/495/302d/26a-1*/ 515-5p [96]

.
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generally classified as having an intermediate risk. Initially,
Garzon et al. analyzed 122 AML patients from various cyto-
genetic subtypes and found that the overexpression of
miR-20a, miR-25, miR-191, miR-199a, and miR-199b was
associated with a worse outcome [58]. The validation of
these miRNAs as potential biomarkers for worse prognosis
in an independent cohort of 60 cases using quantitative poly-
merase chain reaction indicated that two miRNAs (miR-
199a and miR-191) were biomarkers for shorter overall sur-
vival and event-free survival (EFS). Using the same miRNA
expression profiling platform, the Cancer and Leukemia
Group B (CALGB) searched for prognostically relevant sig-
natures in CN-AML patients [56] and identified two miR-
NAs (miR-181a and miR-181b), the increased expression
of which was associated with decreased risk of any event
(lack of complete remission, relapse, or death). On the other
hand, the overexpression of six other miRNAs (miR-124,
miR-128-1, miR-194, miR-219-5p, miR-220a, and miR-
320) was associated with an increased risk of any of the
respective events. A follow-up study could validate the over-
expression of miR-181a as an independent prognostic factor
in CN-AML [64]. On the contrary, miR-155 overexpression
was reported to be an independent prognostic biomarker for
shorter overall survival in both younger and elderly
CN-AML patients [66]. A very recent Spanish study also
identified miRNAs with prognostic power in intermediate-
risk AML. It was reported that miR-196b and miR-644 are
independent factors for overall survival, and miR-135a and
miR-409 are independent factors for the relapse rate [67].
In pediatric AML patients, Zhang et al. reported a miRNA
expression signature associated with increased risk of cen-
tral nervous system relapse [65].
MicroRNA as circulating biomarkers in AML
Recently, it was recognized that, because of their small size,
miRNAs might be less amenable to degradation in body
fluids (e.g., plasma) than mRNAs [68], and indeed,
miRNAs are stable in human serum even after long-term
storage for up to 10 years [69]. Several studies have
addressed the feasibility of miRNA expression profiling in
serum/plasma samples derived from AML patients [70].
Tanaka et al. reported that miR-638 was stably present in hu-
man AML plasma, whereas miR-92 was downregulated in
plasma of AML patients [71]. Therefore, the expression ratio
miR-92a/miR-638 could be valuable for diagnostic pur-
poses. Similarly, Fayyad-Kazan et al. found that let-7b
and miR-523 were upregulated, whereas let-7d, miR-150,
miR-339, and miR-342 were downregulated, in AML
patients compared with normal controls [70]. Further-
more, the combination of the expression of miR-150 and
miR-342 exhibited good discriminatory power between
AML cases and normal controls. Finally, Zhi et al. reported
that miR-93, miR-129, miR-155, and miR-320 were upregu-
lated in all AML subtypes compared with normal controls,
and the level of expression of miR-181b in serum appeared
to be of prognostic relevance [72]. Obviously, these first
studies on the clinical relevance of circulating miRNAs in
AML patients require independent verification in larger
cohorts (and, ideally, in a prospective fashion), but neverthe-
less they indicate future directions for ‘‘liquid biopsies’’ that
will play a role in the management of not only leukemia, but
also solid tumors.

Profiling of other noncoding RNA expression in AML
It is very likely that miRNAs are not the only class of non-
coding RNAs playing a role in AML. Actually, the final step
in the biogenesis of mature miRNAs, cleavage by Dicer, is
creating a double-stranded RNA molecule [46]. For a long
time, it had been accepted that only one of the RNA strands
was playing a role as a mature miRNA, that is, loaded in the
RNA-induced silencing complex to silence mRNAs, and the
other strand was a passenger without any significant func-
tional role. This is actually not the case, and on many occa-
sions, the passenger miRNA (denoted with an asterisk next
to the name of the corresponding mature miRNA) is also
well expressed and can also serve as an mRNA silencer. Ku-
chenbauer et al. systematically studied the expression of
passenger miRNAs by NGS and found that in a large per-
centage of the miRNA duplexes, the ratio between the two
strands varied significantly between the tissues investigated
[73]. The functional verification of the duplex (miR-223/
miR-223*) revealed a regulatory role of miR-223* in
myeloid progenitor cells, and high miR-223* expression
was associated with a better prognosis. In accordance, future
AML research should also interrogate the putative role of
long noncoding RNAs (lncRNAs) [74], circular RNAs
(circRNAs) [75] and PIWI-interacting RNAs (piRNAs)
[76]. The recently coined concept of ‘‘competing endoge-
nous RNAs’’ (ceRNAs) [77] also warrants further testing
in leukemia by means of expression profiling and experi-
mental validation. Although the hypothesis that multiple
coding and noncoding RNAs containing identical or closely
similar microRNA binding sites may function as endoge-
nous microRNA sponges, thereby regulating the expression
of other mRNAs, is intriguing. There are several examples
that such regulatory networks might play a role in cancer,
but data from hematologic malignancies are currently
missing [77].
Gene expression profiling in AML in the era of deep
sequencing
Like for microarray technology, leukemia researchers were
also pioneering the application of NGS-based whole-
genome sequencing to study human cancer. After the first
sequencing of an entire tumor genome, an AML genome,
in 2009 [78], we are witnessing a large number of studies
identifying various previously unknown somatic mutations
in AML and cancer in general. This chasing after the

http://dx.doi.org/10.1016/j.exphem.2014.04.006


656 V. Shivarov and L. Bullinger/ Experimental Hematology 2014;42:651–660
disease-causing mutations, however, is not sufficient to
explain the leukemogenic process in its entirety [2]. Fortu-
nately, massively parallel sequencing has also been adapted
to sequence cDNA libraries derived after reverse transcrip-
tion from various RNA sources (poly(A) RNAs, size-
fractionated RNAs, ribosomal RNA-depleted RNA, etc.),
a technique usually referred to as RNA sequencing
(RNA-Seq) [79,80]. The advantages of RNA-Seq,
compared with standard hybridization-based microarray
methods, are the ability to identify unknown transcripts as
well as transcripts not present in the reference genome
(e.g., fusion transcripts, viral sequences), short- or long-
range splicing events, and sequence variations at the RNA
level (e.g., RNA editing-associated single-nucleotide varia-
tions). RNA-Seq can achieve very high coverage of the
reference genome (80–90%) at a relatively affordable cost
based on the depth of sequencing (e.g., several million
uniquely mapped reads can yield coverage of 80%).

RNA sequencing is very suitable for digital quantification
of RNA expression based on the number of reads per kilo-
base per million reads (RPKM), with a very high dynamic
range of almost ten-thousandfold. However, today, RNA-
Seq still poses some hurdles with respect to technical varia-
tion based on library preparation and bioinformatic analysis.
Although library preparation is easier for short RNA species
(miRNAs, piRNAs, etc.), for mRNAs, it requires additional
steps of fragmentation, which may confer bias toward spe-
cific regions. Similarly, bioinformatic challenges are due
to the requirements to process, store, and analyze large
amounts of data and to align multiple short reads to unique
genomic regions, as well as to account for sequence variants.
Detailed discussion of these issues is beyond the scope of the
present review, but continuous efforts in this field will make
RNA-Seq the future GEP technology. On the other hand,
large microarray-based data sets are already available.
Thus, it will be crucial to integrate gene expression data
from various sources including RNA-Seq experiments. In
that respect, the first bioinformatic tools have already been
developed and are going to address the integration of gene
expression data [81].
Integration of gene expression profiling with other
omics data
The most prominent example illustrating the power of a
combined analysis of several omics data set layers stems
also from the analysis of AML cases. As part of The Cancer
Genome Atlas project [82] 200 adult AML cases were stud-
ied by whole-genome and whole-exome sequencing, and
these data sets were integrated with microarray-based
GEP data, mRNA and microRNA expression RNA-Seq
data, microarray-based DNA methylation data, and
single-nucleotide polymorphism microarray profiling data.
This pivotal integrative study provided many insights in
addition to capturing the genomic landscape of AML. For
example, as RNA-Seq data provide a single-base resolution
of the expressed transcripts, the RNA-Seq analysis in The
Cancer Genome Atlas study revealed increased or exclusive
expression of the mutant allele for several genes such as
DNMT3A, RUNX1, PHF6, and TP53, that was most
commonly caused by loss of heterozygosity or partial uni-
parental disomy. The unsupervised clustering analysis of
the data derived from RNA-Seq allowed identification of
seven RNA-Seq groups and five miRNA sequencing
groups, which, for example, were associated with leukemia
differentiation and with mutations of NPM1, DNMT3A,
FLT3, and cohesin complex genes. Furthermore, univariate
analysis indicated that these mRNA/miRNA expression-
defined groups correlated with overall survival, which is
in line with previous GEP reports [8,11]. In addition, the
comparison of the clustering based on RNA-Seq with mi-
croarray data indicated a high level of concordance between
the platforms, further supporting the possible integration of
these two technologies.

Furthermore, The Cancer Genome Atlas consortium
analyzed the correlation of the mRNA-Seq- and miRNA-
Seq-defined leukemia subgroups with DNA methylation
profiles and found that distinct methylation patterns are
associated with distinct gene expression groups. This is in
accordance with previous studies, which could indicate
that DNA methylation signatures integrated with gene
expression data can identify biologically distinct subtypes
in AML [83], and that an integration of findings can
improve outcome prediction [84]. Similarly, a very recent
study by Marcucci et al. integrated DNA methylation
profiling with GEP and microRNA expression profiling
data to develop a prognostic score for CN-AML patients
[85]. In a training set of 134 AML patients, they identified
7 genes (CD34, RHOC, SCRN1, F2RL1, FAM92A1,
MIR155HG, and VWA8), whose differentially methylated
promotor regions correlated with outcome. The expression
levels of these seven genes also correlated with prognosis:
low expression (and higher methylation level) was associ-
ated with a better overall survival. The weighted summary
score was then validated in four independent data sets,
where its low levels were always associated with a better
3-year overall survival [85].

Overall, these studies point the way to integrate multiple
omics data to gain additional insights into leukemia,
thereby defining biologically more meaningful disease sub-
types. Although of course further studies will have to eluci-
date the biological processes affected by these integrated
molecular profiles and although their precise role in the
leukemogenic process needs to be determined, these first
integrative studies are nevertheless pioneering improved
patient management in the future. In addition, the develop-
ment of public platforms for integrative exploration of
genome-wide molecular data offers novel perspectives.
For example, the Leukemia Gene Atlas (LGA) provides a
public platform that supports the research and analysis of
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Figure 1. Fifteen years of gene expression profiling in acute myeloid leukemia. Timeline of selected transcriptome profiling milestones in acute myeloid
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thousands of published GEP, DNA methylation, single-
nucleotide polymorphism and NGS profiling data sets
derived from leukemia and normal hematopoiesis samples
[86]. Similarly, the Gene Set Control Analysis (GSCA) in-
tegrates publicly available chromatin immunoprecipitation
with high-throughput sequencing data sets to identify likely
combinatorial transcriptional control mechanisms, thereby
complementing Gene Ontology and Gene Set Enrichment
analyses to analyze gene sets of interest [87].
Gene expression profiling at a single-cell level
Another paradigm shift in our understanding of AML
biology during the last decade was the recognition that at
the individual level, the leukemic cell population comprises
a mixture of hierarchically organized subclones that may
evolve differently over time, especially on interaction
with treatment [88–91]. Although recent advances in
cellular and molecular techniques allow for interrogation
of the clonal heterogeneity of AML, several techniques
now also exist that can be used to shed light on the individ-
ual AML gene expression phenotype at the single-cell level.
These include, for example, multiparameter flow cytometry,
mass cytometry, single-cell sequencing, single-cell poly-
merase chain reaction for selected transcripts, single-cell
RNA-Seq, and matrix-assisted laser desorption/ionization
time of flight imaging [92]. In line, two very recent articles
reported the applicability of single-cell expression profiling
through multiplex high-throughput technologies to eluci-
date the hierarchy of early stages of normal hematopoiesis
[93,94], and soon these tools will also be applied to study
the hierarchy and clonal evolution of various AML sub-
types at a single-cell level.
Conclusions
During the last 15 years, gene expression profiling has
become an invaluable platform to investigate the coding
and noncoding transcriptomes of AML (Fig. 1). A number
of studies have identified novel subclasses of AML and
characteristic gene and miRNA expression signatures asso-
ciated with known AML subtypes. These signatures also
contributed to the experimental elucidation of complex
signaling and regulatory networks in AML. Gene and
miRNA expression profiling have been also useful in the
development of prognostic scores with relevance to clinical
management of AML. However, we are just in the prelude
of a novel boom of transcriptome profiling in AML because
of the emerging RNA-Seq technologies. Important insights
will be derived from the integration of multiple omics data,
even at a single-cell level. Undoubtedly, the integration of
genomic and RNA-Seq data will further the development
of novel prognosis stratification schemes in AML, although
this effort will highly depend on the quality of the patient
sample annotation data, which optimally should stem
from controlled clinical trials. Then, the great hope for
the future is that advances in AML transcriptomics will
support the development of effective therapeutic strategies
for most AML subtypes, a challenge not conquered in the
last decades.
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