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Abstract 
The clinical course of the 2019 coronavirus disease (COVID-19) is variable and to a substantial 
degree still unpredictable, especially in persons who have neither been vaccinated nor recovered 
from previous infection. We hypothesized that disease progression and inflammatory responses 
were associated with alterations in the microbiome and metabolome. To test this, we integrated 
metagenome, metabolome, cytokine, and transcriptome profiles of longitudinally collected 
samples from hospitalized COVID-19 patients at the beginning of the pandemic (before vaccines 
or variants of concern) and non-infected controls, and leveraged detailed clinical information and 
post-hoc confounder analysis to identify robust within- and cross-omics associations. Severe 
COVID-19 was directly associated with a depletion of potentially beneficial intestinal microbes 
mainly belonging to Clostridiales, whereas oropharyngeal microbiota disturbance appeared to be 
mainly driven by antibiotic use. COVID-19 severity was also associated with enhanced plasma 
concentrations of kynurenine, and reduced levels of various other tryptophan metabolites, 
lysophosphatidylcholines, and secondary bile acids. Decreased abundance of Clostridiales 
potentially mediated the observed reduction in 5-hydroxytryptophan levels. Moreover, altered 
plasma levels of various tryptophan metabolites and lower abundances of Clostridiales explained 
significant increases in the production of IL-6, IFNγ and/or TNFα. Collectively, our study identifies 
correlated microbiome and metabolome alterations as a potential contributor to inflammatory 
dysregulation in severe COVID-19. 
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Graphical Abstract 
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Introduction 
The Coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), has affected over 600 million individuals and resulted in 
more than 6 million deaths worldwide by early November 2022 (https://coronavirus.jhu.edu). The 
infection typically starts with mild to moderate respiratory symptoms. After approximately one 
week, a minority of infected individuals develop pneumonia which may be complicated by acute 
respiratory distress syndrome (ARDS), coagulopathy, and multiorgan failure1,2. The common 
kinetics of disease progression together with recent observational studies suggest that disease 
severity is primarily driven by a dysregulated immune response. Several studies found high levels 
of proinflammatory cytokines, such as IL-6, TNFα, and IFNγ, as well as T cell lymphopenia, 
decrease of non-classical (CD14loCD16hi) monocytes, and occurrence of neutrophil precursors in 
the peripheral blood of severe COVID-19 patients3–7. Older age, male sex, chronic lung and 
cardiovascular diseases, diabetes mellitus, obesity, host genetics, and IFN autoantibodies have 
also been associated with severe disease and death8–11, but these factors alone do not appear to 
explain the wide variability in the clinical course of COVID-19. 

Mucosal surfaces of the upper respiratory tract and gut are physiologically colonized with a 
microbiota that consists of trillions of microbial cells and whose diversity and composition vary 
widely among individuals12. The microbiota constantly generates thousands of unique metabolites 
that can influence many aspects of human biology13. Animal studies have revealed that the 
microbiota calibrates immune responses during pulmonary and systemic infections, e.g. through 
production of short-chain fatty acids (SCFAs), tryptophan catabolites, and secondary bile acids14–

17. Interindividual gut microbiota differences in humans have been associated with variation in 
cytokine production capacities of peripheral blood cells18, and lung microbiota composition has 
been linked to e.g. baseline levels of proinflammatory cytokines19. Previous studies have also 
indicated an association between COVID-19 status and/or severity, gut microbiota composition, 
and production of some inflammatory mediators20–22. Moreover, a reduced abundance of upper 
respiratory tract commensals in severe COVID-19 patients has been described23–25.  

In this study, we longitudinally collected samples from COVID-19 patients with varying disease 
severity as well as from uninfected controls, and applied an integrated systems approach to 
characterize the interplay between the microbiome, metabolome and immune system. Using 
linear mixed-effect models and exhaustive confounder testing to account for clinical and host 
factors wherever possible, we identify distinct microbiome, metabolome, and immunological 
signatures of severe COVID-19, and reveal associations between specific members of the 
microbiota, circulating metabolites, and systemic inflammatory mediators. 
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Results  
The present work includes a subset of patients enrolled between March and June 2020 in the Pa-
COVID-19 cohort, a prospective observational cohort study of patients with COVID-19 at Charité 
Universitätsmedizin Berlin26. We longitudinally collected plasma, stool, urine, and oropharyngeal 
(OP) swabs from a total of 30 laboratory-confirmed, hospitalized COVID-19 patients with varying 
degrees of disease severity, as well as 15 uninfected, age- and sex-matched controls (Fig. 1). In 
parallel, we obtained comprehensive clinical information including underlying diseases, 
medication before and during hospitalization, and the development of secondary infections (Table 
1 and Table S1). We classified patient samples into early or late observation groups based on the 
number of days since symptom onset (≤10 days or >10 days, respectively). According to the WHO 
ordinal scale of clinical improvement (OSCI, www.who.int/publications/i/item/covid-19-
therapeutic-trial-synopsis), 22 patients (73.3%) had mild disease (maximum OSCI score 1-4), and 
8 (26.7%) had a more severe disease course (maximum OSCI score 5-8), 3 of whom died in the 
hospital. The median duration of hospitalization was 8.5 days (range 3-132 days) excluding 
patients who died (3). Peripheral blood mononuclear cells (PBMCs) were obtained from 14 
patients at an early phase of infection as well as 11 controls, and tracheobronchial secretions 
(TBS) were collected from 4 ventilated COVID-19 patients. We performed whole metagenome 
sequencing of stool, OP and TBS samples, metabolomics of plasma and urine, single cell RNA 
sequencing (scRNAseq) of PBMCs, multiplex cytokine ELISA of plasma, and IFN qRT-PCRs of 
OP samples. Our integrated statistical approach enabled us to analyze -omics and clinical data 
individually and in conjunction with one another while accounting for a range of potential 
confounders. 

 

Table 1: Clinical characteristics 

Characteristics Patients Controls 
N 30 15 
Average age, y (SD) 58.17 (18.15) 52.80 (19.37) 
Female, % (n) 43.3 (13) 40.0 (6) 
Average BMI, (SD) 26.85 (4.91) 23.94 (3.52) 
Active smokers, % (n) 10.0 (3) 6.7 (1) 
Comorbidities 

Diabetes mellitus, % (n) 
Cardiovascular disease, % (n) 
Chronic lung disease, % (n) 
Chronic kidney disease, % (n) 
Chronic liver disease, % (n) 
IBD, % (n) 
Dyslipidemia, % (n) 
Active neoplasia, % (n) 
Altered thyroid hormones, % (n) 

 
16.7 (5) 
53.3 (16) 
30.0 (9) 
33.3 (10) 
16.7 (5) 
3.3 (1) 
16.7 (5) 
3.3 (1) 
23.3 (7) 

 
6.7 (1) 
26.7 (4) 

0 (0) 
0 (0) 

6.7 (1) 
0 (0) 

13.3 (2) 
0 (0) 

6.7 (1) 
Charlson Comorbidity Index, median (IQR) 2.5 (4.0) 1.0 (3.25) 
OSCI, median (IQR) 4.0 (2.0) 0 (0) 
Gastrointestinal symptoms at admission, % (n) 23.3 (7) 0 (0) 
Medication, median (IQR) 2 (3.0) 0 (2.0) 
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Figure 1: Cohort description and sampling timepoints 
Uninfected controls and enrolled patients classified by maximum OSCI score. We refer to scores between 1-4 as mild 
and scores between 5-8 as severe disease in further discussion. Sampling time points are represented according to 
the days after symptom onset for patients. The observation and hospitalization period is marked with a solid line, or a 
dashed gray line when prolonged. Sample materials included oropharyngeal swabs, plasma, peripheral mononuclear 
blood cells (PBMCs), urine, stool and tracheobronchial secretions (TBS). The use of antibiotics shortly before or during 
the sampling period is marked for each participant. All control subjects were antibiotic-free for at least 3 months before 
and during the sampling period.  
 

Airway and intestinal microbiota disturbance in severe COVID-19 

To characterize the microbiota of our cohorts, shotgun metagenomic sequencing was conducted 
on a total of 94 OP swabs, 18 TBS, and 81 stool samples. The gut microbiota of COVID-19 
patients exhibited significantly decreased taxonomic diversity and richness when compared to 
uninfected controls (FDR-adjusted P<0.001) regardless of infection timepoint, which is in line with 
previous observations20,27,28. These depletions were most strongly associated with disease 
severity as measured by OSCI score, and negatively correlated with the number of days patients 
were hospitalized (Fig. 2A, C, Fig. S1). Taxonomic profiling further revealed that severe courses 
of COVID-19 robustly associated with lower abundances of several commensals including 
Ruminococcaceae, Lachnospiraceae, Bifidobacterium, Faecalibacterium, Roseburia, and 
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Intestinibacter in the gut (Fig. 2E, Fig. S1). Importantly, disease severity explained more 
significant variation in the intestinal abundances of these taxa than antibiotic intake during the 
sampling period. The depletion of commensals was  exacerbated and in some cases potentially 
mediated by longer hospitalization times. Patients with longer hospitalization times additionally 
displayed depletions of e.g. Rothia and Actinomyces along with increased colonization by 
Pseudomonas. 

In the oropharynx, severe disease courses were associated with depletion of e.g. Aggregatibacter 
and Kingella, while current antibiotic use was associated with decreased abundance of e.g. 
Streptococcus and enrichment of Enterococcus (Fig. 2F, Fig. S1). Similar to previous findings30, 
diversity and richness of the oropharyngeal microbiota as well as abundance of various members 
commonly found in healthy individuals are lower in COVID-19 patients as compared to uninfected 
controls, but these perturbations also appeared to be mainly driven by antibiotic administration 
(Fig. 2B, D, F, Fig. S1). In addition, we observed a negative correlation between the abundances 
of several commensals of the human oropharynx like Actinobacteria and Rothia, and the 
development of a secondary hospital-acquired pneumonia (HAP) (Fig. 2F). The depletion of 
Actinobacteria was at the same time partially explained by the use of antibiotics. Moreover, we 
found enrichment with Gram-negative bacilli like Klebsiella and Achromobacter in some of the 
TBS samples obtained from ventilated patients who developed HAP (for simplicity, we use the 
term HAP throughout to refer to all types of nosocomial pneumonia in both ventilated and non-
ventilated patients) (Fig. S2). Collectively, our results indicate a direct association between 
intestinal microbiota abnormalities and severe COVID-19, whereas oropharyngeal microbiota 
disturbance appeared to be mainly driven by antibiotic use in our patients.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.12.02.518860doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518860
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 
Figure 2: Microbiota compositional changes are associated with COVID-19 severity and hospitalization 
A-B) Taxonomic richness and alpha diversity indices for gastrointestinal and oropharyngeal microbiota as a function of 
the worst disease severity attained by each individual (ordinal variable treated as continuous), with 0 indicating no 
infection (control group) and 8 indicating eventual death of the patient. Spearman correlations while controlling for 
antibiotic intake are shown. C-D) Principal coordinates analysis on mOTU (species) relative abundances with OSCI 
scores 1-4 indicating mild disease and 5-8 indicating severe or fatal disease. E-F) Standardized effect sizes for OSCI 
scores and current antibiotic use (Spearman correlation and Cliff’s delta, respectively) were calculated across all 
bacterial features in COVID-19 patients and are shown contrasted with one another. Results from our modeling of 
taxonomic and clinical data are overlaid, indicating the variables with the most explanatory power over a given 
taxonomic abundance (see Methods). See also Fig. S1 and S2.  
OSCI: ordinal scale for clinical improvement, HAP: hospital-acquired pneumonia. 
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Immune dysregulation in severe COVID-19 

To characterize the systemic immune response in our cohort, we measured cytokines in plasma 
samples from all patients and healthy controls. In line with previous studies29,30, type I, II and III 
IFNs as well as several inflammatory cytokines including TNFα, IP-10/CXCL10, CCL2, and IL-10 
were increased in early plasma samples of COVID-19 patients when compared to uninfected 
controls (Fig. 3A-H). While IFN levels mostly decreased in the later phase of the infection, 
production of the inflammatory cytokines remained high in severe COVID-19 patients. Next, we 
characterized PBMCs from a subset of patients at an early infection time point and uninfected 
controls (see Fig. 1) by droplet-based scRNAseq. Since we aimed to focus primarily on the innate 
immune cells, PBMCs were depleted of T and B lymphocytes before measurements. UMAP and 
cell type classification identified various cell types and subtypes expected in the mononuclear 
compartment of blood (Fig. 3I, J). Further analyses revealed an increase of classical monocytes 
in severe COVID-19 patients as compared to uninfected individuals and patients with mild 
infection (Fig. 3K), and a depletion of non-classical monocytes and cDCs in early COVID-19. NK 
cells were only depleted in patients with severe COVID-19. IFN-stimulated genes (ISG) were 
highly expressed in PBMCs of mild and severe COVID-19 patients (Fig. S3A,B,D), and ISG 
expression correlated with systemic levels of both type I and II IFNs (Fig S3C). Moreover, we 
measured expression of type I and III IFN genes in our oropharyngeal samples, and found 
increased IFNL2 mRNA levels in mild COVID-19 patients as compared to uninfected controls 
(Fig. S3E). Overall, our results indicate that the systemic inflammatory response is disturbed in 
patients with severe COVID-19. 
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Figure 3: Dysregulated immune response in severe COVID-19 patients 
A-H) Plasma levels of IFNs and inflammatory cytokines in healthy controls and COVID-19 patients were measured 
using MSD Meso Scale V-Plex assay kits or Simoa® Technology. I) UMAP representation of scRNA-seq profiles all 
merged T and B cell-depleted PBMC samples. 13 cell types were identified by cluster gene signatures. J) Violin plots 
showing top marker genes for the cell types shown in I). K) T and B cell-depleted PBMCs from 14 COVID-19 patients 
collected at an early infection phase (<10 days since symptom onset) and 11 healthy controls. The immune cell 
distribution varies between controls and COVID-19 patients and between mild and severe disease. Significant pairwise 
comparisons are denoted in panels A-H and K (Mann-Whitney U test). See also Fig. S3. 
n.m.: not measured; scRNAseq: single cell RNA sequencing, PBMCs: peripheral mononuclear blood cells, cMono: 
classical monocytes, ncMono: non-classical monocytes, mDC: myeloid dendritic cells, pDC: plasmacytoid dendritic 
cells, NK: natural killer cells, MK: megakaryocytes 
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Alterations in tryptophan, bile acid, lipid, and amino acid metabolism in severe COVID-19 

To identify potential microbiota- and/or host-derived factors underlying COVID-19 phenotypes, 
we performed metabolomic analyses on a total of 96 plasma and 77 urine samples from COVID-
19 patients and uninfected controls. Our analysis highlighted significant differences in the plasma 
metabolome of COVID-19 patients when compared to uninfected controls, as well as direct 
associations between various metabolites and disease severity. In COVID-19 patients, we 
observed lower plasma levels of several tryptophan metabolites including the primarily dietary-
derived tryptophan itself (ρ=-0.68, FDR-adjusted P<0.0001), the serotonin precursor 5-
hydroxytryptophan (ρ=-0.38, FDR-adjusted P=0.0003), and the microbial metabolites tryptamine, 
indole-3-propionic acid, and indole-3-acetic acid31 (Fig. 4, Fig. S4A), indicating severe disturbance 
of host-dependent kynurenine and serotonin pathways and the microbiota-dependent indole 
metabolic pathway. Many of the altered tryptophan metabolites are ligands for the 
immunoregulatory aryl hydrocarbon receptor (AhR)32. In line with previous studies33,34, the host-
derived tryptophan catabolites kynurenine, which is also an AhR ligand, and the potentially 
neurotoxic 3-hydroxykynurenine35 were strongly enriched in COVID-19 patients, with kynurenine 
showing a robust association with severity (ρ=0.7, FDR-adjusted P<0.0001; Fig. 4), in both early 
and late samples (Fig. S4A). Moreover, severe COVID-19 was robustly associated with lower 
plasma concentrations of the microbiota-produced secondary bile acid glycodeoxycholic acid (ρ=-
0.42, FDR-adjusted P=0.0006), and with higher levels of the primary bile acid taurocholic acid 
(Fig. 4). Secondary bile acids have recently been shown to calibrate various immune cells and 
pathways36–38. In line with previous studies39–41, COVID-19 infection and disease severity were 
also associated with depletion of various lysophosphatidylcholines at all sampling timepoints and 
phosphatidylcholines in the early samples (Fig. S4A-B). Lysophosphatidylcholines are a group of 
proinflammatory lipids that are produced from phosphatidylcholine by the enzyme phospholipase 
A2, and shown to have effects on e.g. endothelial cells and immune cells42,43. Taken together, 
these results demonstrate that tryptophan, bile acid, lipid, and other amino acid metabolism is 
dysregulated in severe COVID-19. 
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Figure 4: Tryptophan and bile acid metabolite associations with COVID-19 severity 
Tryptophan and bile acid metabolite concentrations (given in ng/mL and µM, respectively) from all plasma and urine 
samples, annotated with pairwise Spearman test P-values and post-hoc identified confounders from early or late slices 
of the data. Some co-associated clinical variables were rationally grouped and relabeled here for annotation purposes, 
i.e. a metabolite confounded by hospitalization and infection reflects confounding by one or more of the following: HAP, 
number of days hospitalized, or other hospitalization-associated infections such as bacteremia and sepsis. The 
kynurenine and serotonin pathways are host-associated, while indole and part of the bile acid metabolism are carried 
out by gut microbes. See also Fig. S4. 
CCI: Charlson comorbidity index, HAP: hospital-acquired pneumonia  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.12.02.518860doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518860
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

Integrated analyses reveal associations between altered levels of tryptophan metabolites and 
enhanced production of proinflammatory cytokines 

Finally, we integrated our various -omics data into our mixed-models analysis framework in order 
to establish potential associations between the microbiome, metabolome, and immune response 
parameters. First, we summarized the extent to which features from the different -omics spaces 
were associated with disease severity and/or confounded by different clinical factors such as 
previous or current antibiotic use, other medications, comorbidity, days of hospitalization, or age. 
This analysis revealed that many features of the gut microbiome, immune response, and plasma 
metabolome were robustly associated with COVID-19 severity, whereas most features of the 
oropharyngeal microbiome and urinary metabolome were only indirectly (i.e. confounded) or not 
significantly associated with COVID-19 severity, respectively (Fig. 5A, B). In particular, a large 
part of the alterations of the oropharyngeal microbiome appeared to be driven by previous and 
current antibiotic therapies (Fig. 5B). Next, we focused on the three most strongly COVID-19-
linked -omics feature spaces, and used the robust severity-associated subset from each in further 
modeling steps to identify all unconfounded individual associations between features from 
different spaces (see Methods). This analysis uncovered 115 robust associations between the 
gut microbiome and the plasma metabolome, 3 between the gut microbiome and the immune 
response, and 29 between the plasma metabolome and the immune response (Fig. 5C). Lastly, 
we generated a model based on the most robust and interconnected associations between the 
three -omics data sets. Our model suggests that tryptophan metabolism is tightly linked to the 
dysregulated immune response in severe COVID-19, since a depletion of tryptophan and its 
metabolite 5-hydroxytryptophan, as well as enhanced levels of kynurenine and 3-
hydroxykynurenine, explained significant increases in the production of IL-6, IFNγ and/or TNFα 
(Fig. 5D). Decreased 5-hydroxytryptophan in severe COVID-19 might be mediated by a depletion 
of Clostridiales and Faecalibacterium spp. from the gut, as both taxa robustly correlated with the 
metabolite levels, and in both cases the microbe-severity association was reducible to the 
microbe-metabolite association. Likewise, the association between IFNγ and disease severity 
was reducible to the association between IFNγ and kynurenine when modeled and tested jointly, 
indicating potential mediation. Depletion of Faecalibacterium was also associated with reduced 
production of the immunomodulatory metabolite tryptamine, which is similar to several of the 
above-mentioned tryptophan metabolites a ligand of AhR32. In addition, reduced intestinal 
abundance of Clostridiales explained significant variation in kynurenine, and in TNFα levels 
independent of 5-hydroxytryptophan. Roseburia might directly or indirectly be involved in the 
production of formylkynurenine, an intermediate of the kynurenine reaction and precursor for 
kynurenine and 3-hydroxykynurenine, since reduced abundances of this genus robustly 
associated with the decrease of the metabolite. Moreover, IFNγ production correlated with 
phenylalanine, and reduced concentrations of several lysophosphatidylcholines explained 
significant variation in  IL-6, TNFα, and IFNγ levels. Taken together, our analysis indicates that 
alterations in both the microbiota- and host-dependent tryptophan metabolism, as well as 
potentially other metabolic pathways, may contribute to the dysregulated inflammatory immune 
reaction in severe COVID-19. 
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Figure 5: Integration of severity-associated models from among and across -omics spaces 
A) Robustness of OSCI associations across all -omics features. Plasma metabolites were associated the most robustly 
with disease severity (highest n=66 and percentage of total features), while nearly half of the oropharyngeal taxa were 
confounded (n=44, 48%). B) Main confounding clinical variables. All significant OSCI associations are shown 
(cumulative area of non-grey bars from A), as well as an estimate of the percentage which were confounded, and if so 
by what. An asterisk* indicates co-association rather than confounding. C) Unconfounded associations between -omics 
spaces. Robust OSCI-associated features denoted in bold. D) Selected relationships across -omics spaces which 
emerged from our integrated linear model testing (see Methods). Some associations with disease severity were 
statistically reducible to other -omics features, which were considered potential mediators (rather than confounders) in 
this context. While low abundances of tryptophan and tryptophan-associated microbes negatively correlated with 
disease severity, downstream kynurenine metabolites were positively correlated with disease severity, and could 
explain significant variation in pro-inflammatory host cytokines (TNFα, IL-6) and type II interferon (IFNγ). 
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Discussion 
While several excellent microbiomics20,24,27,44,45, metabolomics33, and multi-omics studies34,41,46–50 
of COVID-19 have been published, our work is unique in simultaneously measuring and analyzing 
a particularly large number of different -omics types, and, in this, the first to integrate gut and 
oropharyngeal metagenome sequencing, metabolomics, host transcriptomics, and cytokine 
profiling. Our analyses using linear mixed-effect models and exhaustive confounder testing 
revealed the plasma metabolome to be the -omics domain most affected by SARS-CoV-2 
infection. Consistent with previous observations33,40,41, plasma levels of various host- and 
microbiota-derived tryptophan metabolites and lysophosphatidylcholines robustly correlated with 
COVID-19 severity, as did secondary bile acids in our study. In addition, enhanced inflammatory 
cytokine production and gut microbiota perturbations were strongly associated with the infection. 
For example, taxonomic diversity and richness were reduced in severe COVID-19 patients, and 
several potentially beneficial commensals (mainly belonging to the Clostridiales order as well as 
Bifidobacterium) were depleted, which is consistent with previous reports20,21. In contrast, the 
oropharyngeal microbiome alterations observed in our COVID-19 patients were largely explained 
by antibiotic use. Some of the changes (e.g. depletion of Actinobacteria) were at the same time 
associated with the development of HAP. 

We related the depletion of intestinal Clostridiales and Faecalibacterium to the perturbed 
production of various tryptophan metabolites, and found that the increased production of key 
inflammatory cytokines including IL-6, TNFα, and IFNγ was statistically reducible to microbiota 
and metabolome features in some cases. The constellation of robust, cross-omics associations 
we uncovered thus contributes potential biomarkers as well as novel mechanistic hypotheses 
regarding the dysregulated immune response considered causative of severe COVID-19. In 
hospitalized patients, we estimated these mechanisms to further involve a vicious cycle, as critical 
illness, prolonged hospitalization, and high concentrations of inflammatory mediators further 
exacerbate the disruption of the microbiome and metabolome. Still, we speculate that several of 
our findings, e.g. hypotheses describing how certain intestinal commensals are associated with 
specific metabolites, or how tryptophan catabolites and lysophosphatidylcholines may regulate 
systemic cytokine production, are also relevant for other types of severe infections and perhaps 
non-infectious inflammatory diseases.  

While levels of the host-derived tryptophan catabolite kynurenine were strongly elevated, 
tryptamine, indole-3-acetic and other microbiota-derived tryptophan catabolites were depleted in 
the plasma of severe COVID-19 patients. All of these metabolites are known to activate the AhR, 
which controls the differentiation and inflammatory potential of various innate and adaptive 
immune cells31,51. It is likely that, in aggregate, the markedly altered levels of these AhR ligands 
observed in our cohort contributed to the dysregulation of the immune response in severe COVID-
19; however, further studies are needed to understand the cumulative impact of oppositely altered 
tryptophan catabolites (which presumably also differ with respect to their AhR binding affinities) 
on individual immune cells. Moreover, more research is also required to characterize the impact 
of these metabolites in different phases of COVID-19, such as the acute inflammatory phase, 
resolution, or the subsequent period of tissue repair. 

We also observed that metabolites of the serotonin pathway were altered in plasma and/or urine 
of patients suffering from severe COVID-19, and that changes in 5-hydroxytryptophan levels 
explained significant variation in the production of IL-6 and IFNγ. From our integrated statistical 
modeling, we concluded that the depletion of 5-hydroxytryptophan was potentially mediated by 
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low intestinal abundances of Clostridiales and Faecalibacterium, which is consistent with previous 
findings about the role of the microbiota in controlling the production of 5-hydroxytryptophan by 
colonic enterochromaffin cells52. Interestingly, 5-hydroxytryptophan has also recently been 
described to activate the AhR and to mediate CD8+ T cell exhaustion in antitumor immunity53. 
Thus, it appears reasonable to speculate that 5-hydroxytryptophan contributes to AhR-mediated 
calibration of inflammatory cytokine production during COVID-19, as well as to T cell exhaustion 
characteristic of severe SARS-CoV2 infection54,55.       

Lysophosphatidylcholines are a group of bioactive lipids that have been found to influence e.g. 
immune and endothelial cells43. Low plasma levels of lysophosphatidylcholine have been 
associated with unfavorable outcomes in several chronic diseases43 and sepsis56. Moreover, 
lysophosphatidylcholine treatment was protective in mouse models of sepsis57. We observed 
reduced levels of lysophosphatidylcholines in severe COVID-19 patients, and strong associations 
with enhanced production of IL-6, TNFα, and IFNγ; this is potentially in line with a previous study 
showing that lysophosphatidylcholines inhibit the release of IL-6 by human monocytes in vitro58. 

Another interesting group of metabolites whose production we found to vary with severe COVID-
19 was the secondary bile acids. Secondary bile acids, which are converted from liver-derived 
primary bile acids by the microbiota, are known for their ability to influence various immune cells, 
e.g., via the receptors TGR5 and FXR59. Though we were not able to identify associations 
between secondary bile acids and specific immune features, this does not exclude the possibility 
that other immune mediators or cells in different compartments (such as the lung) are influenced 
by these metabolites. Indeed, a recent study uncovers how secondary acids control immunity 
against Chikungunya virus by enhancing type I IFN production by pDCs36. Further studies are 
required to evaluate the impact of secondary bile acids and other microbiota-derived metabolites 
on the immune response during COVID-19.  

Our multi-omics study explores alterations in the microbiome, metabolome and immune response 
observed in severe COVID-19, and generates several novel testable hypotheses, but is not 
without limitations. First, we included only a relatively small number of patients from a single 
center, which mandates future validation in larger cohorts of patients; however, we performed 
deep phenotyping using various state-of-the-art omics techniques and integrative bioinformatics 
approaches, including extensive testing for confounding factors such as use of antibiotics and 
other medications, which are known to drive contradictory findings in the COVID-19 literature60. 
Second, for practical reasons and similar to probably all previously published work, we were 
unable to collect samples during the first days of infection, making it impossible to draw 
conclusions about mechanisms in the early phase of COVID-19. Third, we did not perform 
analyses of the immune response in the lung as the epicenter of the infectious event in COVID-
19, which would be important for future studies. Overall, our study provides novel insights into the 
interaction between the microbiome, metabolome, and immune system in general, and into the 
pathogenesis of severe COVID-19 in particular. Future work should include animal experiments 
to mechanistically explore and resolve causality among the microbiome-metabolite-immune 
networks in COVID-19, and perhaps other infectious and inflammatory diseases. The disrupted 
microbiome-tryptophan metabolism-immune network described here might represent a potential 
target for novel intervention strategies to protect patients from severe COVID-19.  
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Methods 

Study design and patient inclusion criteria 
In the framework of the Pa-COVID-19, a prospective observational cohort study of patients with 
confirmed SARS-CoV-2 infection treated at Charité-Universitätsmedizin Berlin, we longitudinally 
collected stool, urine, TBS and blood samples as well as oropharyngeal swabs from hospitalized 
patients with COVID-1926. All patients with SARS-CoV-2 infection, as determined by positive PCR 
from respiratory specimens, who were willing to provide written informed consent were eligible for 
inclusion. Exclusion criteria included refusal to participate in the clinical study by patient or legal 
representative or clinical conditions that did not allow for blood sampling. The patients included in 
this study were enrolled between March 21 and June 15, 2020, before vaccinations or variants of 
concern. COVID-19 disease severity was classified to mild or severe disease according to the 
WHO clinical ordinal scale (https://www.who.int/publications/i/item/clinical-management-of-covid-
19). Information on age, sex, medication, and comorbidities is listed in Table S1; unfortunately, 
information on diet and food intake while hospitalized was not recorded. Samples from uninfected 
individuals were collected in the framework of the COV-IMMUN study, a prospective study 
designed to analyze the immune response against SARS-CoV-2 and risk factors in health care 
workers at the Charité-Universitätsmedizin Berlin. The Pa-COVID-19 and COV-IMMUN studies 
are carried out according to the Declaration of Helsinki and were approved by the ethics 
committee of Charité-Universitätsmedizin Berlin (EA2/066/20, EA1/068/20). All patients or their 
legal representatives as well as the healthy individuals provided written informed consent for 
participation in the study. 
 
Metagenomic sample pre-processing, DNA extraction, and sequencing 
Oropharyngeal swabs and stool samples were collected in collection tubes containing DNA/RNA 
shield (Zymo Research Cat# R1107-E and Cat# R1101) and frozen at -80C until further analysis 
was performed. DNA was isolated from the oropharyngeal swabs and stool samples using the 
ZymoBIOMICS™ DNA Miniprep Kit (Cat#D4300). For DNA isolation lysis of microbes was 
performed by mechanical disruption using a Mini-BeadBeater-96 (BioSpec) two times for 2 min. 
Libraries were prepared using the NEBNext Ultra II DNA Library Prep Kit (NEB Biolabs) according 
to manufacturer's instructions. Sequencing was performed on the Illumina NovaSeq platform 
(PE150).  
 
PBMCs isolation and scRNA sequencing 
PBMCs were isolated from heparinized whole blood by density centrifugation over Pancoll and 
cryopreserved in liquid nitrogen until further analysis. Frozen PBMC were recovered by rapidly 
thawing, and T and B cells were depleted by using CD19 and CD3 MicroBeads (Miltenyi Biotec 
Cat#130-097-055 and #130-097-043) to enrich for myeloid cells. Subsequently, the PBMC 
samples were hash-tagged with TotalSeq-ATM antibodies (Biolegend) and scRNA seq was 
performed by using a droplet-based single-cell platform (10xGenomics) as described recently4. 
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ScRNAseq data analysis 
The 10x Genomics CellRanger pipeline (v4.0.0) was used to pre-process the sequencing data. In 
brief, BCL files from each library were converted to FASTQ reads using bcl2fastq Conversion 
Software (Illumina) using the respective sample sheet with the 10x barcodes and TotalSeq 
antibodies utilized. Then, the reads were further aligned to the reference genome provided by 10x 
Genomics (Human reference dataset refdata-cellranger-GRCh38-3.0.0) and a digital gene 
expression matrix was generated to record the number of UMIs for each gene in each cell. Next, 
the expression matrix from each library was loaded to R/Seurat packages61 (v4.0.1) for 
downstream analysis. To control the data quality, we further excluded low-quality cells with >15% 
mitochondrial reads, < 100 or > 3,000 expressed genes, or < 500 UMI counts. In addition, genes 
expressed in less than three cells were also excluded from further analysis. After QC, we 
normalized the gene counts from each cell, where original gene counts were divided by total UMI 
counts, multiplied by 10,000 (TP10K), and then log-transformed by log10(TP10k+1). We then 
scaled the data, regressing for total UMI counts, and performed principal component analysis 
(PCA) based on the 2,000 most-variable features identified using the vst method implemented in 
Seurat. Cells were then clustered using the Louvain algorithm based on the first 20 PC dimensions 
with a resolution of 0.3. For visualization, we applied UMAP based on the first 20 PC dimensions. 
The obtained clusters were annotated by the expression of PBMC marker genes. The expression 
of selected genes was visualized by violin plots. 
 
Quantitative reverse transcription PCR  
For measuring expression of type I and II IFNs in the upper airways, total RNA was isolated from 
oropharyngeal swab fluid using mirVana™ miRNA Isolation Kit (Cat# AM1561). The RNA was 
reverse-transcribed using the high capacity reverse transcription kit (Applied Biosystems, 
Darmstadt, Germany), and quantitative PCR was performed using TaqMan assays (GAPDH: 
Hs02786624_g1, IFNL2: Hs04193048_gH, IFNB: Hs01077958_s1 Life Technologies, Darmstadt, 
Germany) on an ABI 7300 instrument (Applied Biosystems, Darmstadt, Germany). The input was 
normalized to the average expression of GAPDH and relative expression (relative quantity, RQ) 
of the respective gene in the healthy control individuals was set as 1.  
 
Cytokine ELISA 
Plasma concentrations of IL-10, IL-12p70, IL-17A, IL-1α, IL-1β, IL-4, IL-22, IP-10, MCP-1, TNFα, 
IFNγ were measured by using MSD Meso Scale V-Plex assay kits (Meso Scale Diagnostics). 
Plasma concentrations of IFNα and IL-28A were quantified by using Simoa® Technology 
(Quanterix Corporation). 
 
Viral load measurements 
SARS-CoV-2 RNA detection and quantification in respiratory swabs and stool samples was done 
as described before62,63 and by using either the cobas® SARS-CoV-2 test on the cobas® 6800/ 
8800 system or the SARS-CoV-2 E-gene assay from TibMolbiol on a Roche MagNApure 
96/LightCycler 480er workflow. Viral RNA concentrations were calculated by using the CT-Value 
of the E-gen target and by applying calibration curves of quantified reference samples and in-vitro 
transcribed RNA64,65. 
 
Plasma and urine metabolomic sample pre-processing 
Plasma and urine samples were prepared in four different ways depending on the metabolite of 
interest. Urine samples were treated with urease before Biocrates and CCM analyses. For 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.12.02.518860doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.02.518860
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

measuring SCFA, tert-Butyl-Methyl-Ether (MTBE; Sigma 650560) HCl (37%; Roth X942.1) and 
crotonic acid as internal standard (Sigma 113018-500G) were added to the plasma and urine 
samples. Unfortunately, there were technical issues with the analytical measurements resulting 
in the SCFA measurements being excluded from further analysis on quality control grounds. A 
broad metabolite analysis was conducted using a Biocrates MxP Quant 500 kit. For safety 
reasons, samples were measured after adding 100% ethanol (LC-MS grade; Fisher Scientific) to 
the plasma and urine samples. For the analysis of tryptophan derivatives, an extraction solvent 
(89,9% Methanol in 0,2% FA and 0,02% ascorbic acid) was added to the plasma and urine 
samples. The preparation of the plasma and urine samples for CCM GC-MS analysis consisted 
of adding 100% Methanol (LC-MS grade; Fisher Scientific). 
 
Biocrates MxP Quant 500 assay and measurement 
Plasma or urine was added in a 1:2 dilution to ethanol (EtOH, Fisher Scientific, New Hampshire, 
US; 50 µL to 100 µL EtOH) and vortexed for 20 seconds. Samples were stored at -80°C until use. 
The MxP Quant 500 kit from Biocrates Life Science AG is a fully automated assay based on 
phenylisothiocyanate (PITC) derivatization of the target analytes using internal standards for 
quantitation. Plate preparation was done according to the manufacturer’s protocol. Briefly, 30 µL 
of the diluted plasma or urine was transferred to the upper 96-well plate and dried under a nitrogen 
stream. Thereafter, 50 µL of a 5% PITC solution was added. After incubation, the filter spots were 
dried again before the metabolites were extracted using 5 mM ammonium acetate in methanol 
(MeOH, Fisher Scientific, New Hampshire, US) into the lower 96-well plate for analysis after 
further dilution using the MS running solvent A. Quality control (QC) samples were prepared by 
pooling plasma or urine from each sample. 
 
Evaluation of the instrument performance prior to sample analysis was assessed by the system 
suitability test (SST) according to the manufacturer's protocol. The LC-MS system consisted of a 
1290 Infinity UHPLC-system (Agilent, Santa Clara, CA, USA) coupled to a QTrap 5500 (AB Sciex 
Germany GmbH, Darmstadt, Germany) with a TurboV source. Acquisition method parameters 
and UHPLC gradient for LC and FIA mode are shown in Table S9-11. All compounds were 
identified and quantified using isotopically-labeled internal standards and multiple reaction 
monitoring (MRM) for LC and full MS for FIA as optimized and raw data was computed in 
MetIDQTM version Oxygen (Biocrates Life Science AG, Innsbruck, Austria). A script developed in-
house (MetaQUAC) was used for data quality analysis and preprocessing66. Quality assurance 
and control were reported using the recommended standards by mQACC (Table S8). 
 
Gas chromatography mass spectrometry (GC-MS) measurement of key central carbon pathway 
metabolites 
MeOH containing 2 µg/mL cinnamic acid as internal standard (Sigma Aldrich, St. Louis, Missouri, 
US) was aliquoted (112.5 µL) and stored on ice. 25 µL of plasma was added to the MeOH followed 
by addition of 329 µL MeOH, 658 µL chloroform (CHCl3, Sigma Aldrich, St. Louis, Missouri, US), 
and 382.5 µL water (H2O, Fisher Scientific, New Hampshire, US). Samples were vortexed and 
left on ice for 10 minutes to separate into a biphasic mixture. The samples were centrifuged at 
2,560xg for 20 minutes at 4°C and then left to equilibrate at room temperature for 20 minutes. 300 
µL of the upper polar phase was then collected and dried in a rotational vacuum concentrator 
(Martin Christ, Osterode, Germany). To the urine samples (150 µL), 200 µL of 1 mg/mL urease 
solution in water was added, sonificated for 15 minutes and left on ice for 45 minutes. Ice cold 
MeOH (800 µL containing 2 µg/mL cinnamic acid as internal standard) was added, vortexed and 
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centrifuged at maximum speed for 10 minutes at 4°C. The supernatant (750 µL) was transferred 
to a new vial and stored at -80°C until use. Urine samples were normalized to the according 
osmolarity and dried in a rotational vacuum concentrator (Martin Christ, Osterode, Germany). 
Quality control (QC) samples were prepared by pooling the extracts of plasma or urine from each 
sample.  
 
For derivatization the extracts were removed from the freezer and dried in a rotational vacuum 
concentrator (Martin Christ, Osterode, Germany) for 60 min before further processing to ensure 
there was no residual water which may influence the derivatization efficiency. The dried extracts 
were dissolved in 15 µL or 20 µL of methoxyamine hydrochloride solution (40 mg/mL in pyridine, 
both Sigma Aldrich, St. Louis, Missouri, U) and incubated for 90 min at 30 °C with constant 
shaking, followed by the addition of 50 µL or 80 µL of N-methyl-N-[trimethylsilyl]trifluoroacetamide 
(MSTFA, Macherey-Nagel, Düren, Germany) and incubated at 37 °C for 60 min for plasma and 
urine, respectively. The extracts were centrifuged for 10 min at 18,213 xg, and aliquots of 25 µL 
(plasma) or 30 µL (urine) were transferred into glass vials for GC-MS measurements. QC samples 
were prepared in the same way. An identification mixture for reliable compound identification was 
prepared and derivatized in the same way, and an alkane mixture for a reliable retention index 
calculation was included (10.3390/metabo10110457). The metabolite analysis was performed on 
a Pegasus 4D GCxGC TOFMS-System (LECO Corporation) complemented with an auto-sampler 
(Gerstel MPS DualHead with CAS4 injector). The samples were injected in split mode (split 1:5, 
injection volume 1 µL) in a temperature-controlled injector with a baffled glass liner (Gerstel). The 
following temperature program was applied during the sample injection: for 2 min, the column was 
allowed to equilibrate at 68 °C, then the temperature was increased by 5 °C/min until 120 °C, then 
by 7 °C/min up to 200 °C, then by 12 °C/min up to a maximum temperature of 320 °C, which was 
then held for 7.5 min. The gas chromatographic separation was performed on an Agilent 7890 
(Agilent Technologies), equipped with a VF-5 ms column (Agilent Technologies) of 30 m length, 
250 µm inner diameter and 0.25 µm film thickness. Helium was used as the carrier gas with a 
flow rate of 1.2 mL/min. The spectra were recorded in a mass range of 60 to 600 m/z with 10 
spectra/second. Each sample was measured twice (technical replicates). The GC-MS 
chromatograms were processed with the ChromaTOF software (LECO Corporation) including 
baseline assessment, peak picking and computation of the area and height of peaks without a 
calibration by using an in-house created reference and library containing the top 3 masses by 
intensity for 42 metabolites (55 intermediates; Table S12) related to the central carbon 
metabolism. 
 
The data were exported and merged using an in-house written R script. The peak area of each 
metabolite was calculated by normalization to the internal standard cinnamic acid. Relative 
quantities were used. CCM and tryptophan data were batch corrected using the cubic spline drift 
correction from notame67 (v0.0.5, in R v4.0.1) followed by QC-sample median normalization68. 
Urine tryptophan data was only QC-sample median normalized. Quality assurance and control 
were reported using the recommended standards by mQACC (Table S8). 
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Tryptophan metabolite analysis using UPLC-MS: 
For the tryptophan analysis, liquid chromtography – mass spectrometry (LC-MS) analysis was 
performed with a 1290 Infinity 2D HPLC system (Agilent Technologies, USA) combined with a 
TSQ Quantiva triple quadrupole mass spectrometer with a heated ESI source (Thermo Scientific, 
USA). Before starting, an extracting solvent was prepared comprising 90% methanol, 0.15 µg/mL 
mixed internal standards, 0.02% ascorbic acid, and 0.2% formic acid. This was placed at -20°C 
to cool. For urine samples a 1:5 (v/v) dilution was prepared in water prior to a urease digestion at 
37°C for 40min with 10U urease (Sigma Aldrich). For each sample, 280 µL pre-chilled extracting 
solvent was added to 140ul of plasma or urease digested urine. Samples were held at 4°C and 
shaken for 10 min at 1000rpm (Eppendorf ThermoMixer C), incubated at -20°C before being 
centrifuged for 15 min at 11000g and 4 oC. The supernatant was transferred to a dark LC-MS vial 
for LC-MS/MS analysis. 20µl of each plasma sample was pooled, and the pooled plasma was 
also extracted to make quality control (QC) samples. These QC samples were run every 6 
samples. LC-MS analysis of 5µl injection was combined with a triple quadrupole mass 
spectrometer using a 10-min gradient. A reversed-phase column was used (VisionHT C18 Basic; 
L × I.D. 150 mm × 4.6 mm, 3 μm particle size, Dr Maisch, Germany) and held at a constant 
temperature of 30°C. The mobile phase consisted of 0.2 % formic acid in H2O (solvent A) and 
0.2 % formic acid in methanol (solvent B). The following gradient was run with a constant flow 
rate of 0.4 ml min−1: A/B 97/3 (0 min), 70/30 (from 1.2 min), 40/60 (from 2.7 to 3.75 min), 5/95 
(from 4.5 to 6.6 min) and 97/3 (from 6.75 to 10 min). The molecular ion and at least two transitions 
were monitored for the 15 metabolites that are part of the tryptophan pathway.  
 
Data was exported into Skyline (v.19.1, 64-bit) to identify and quantify peak intensity and area. 
Transition settings in the Skyline search were: isotopic peaks included: count; precursor mass 
analyzer: QIT; acquisition method: targeted; product mass analyzer: QIT. Method match 
searching tolerance was 0.6 m/z, and data was manually checked to ensure the correct peaks 
were selected. Cubic spline drift correction was applied per metabolite and to all sample types 
using the pooled quality control (QC) samples as references to fit the splines. The first and the 
last QC samples used to fit the cubic splines are the most critical to the resulting fit. In this case, 
the last conditioning pooled QC sample and the first of two pooled QC replicates at the end of the 
analytical run were used as the first and last QC respectively in the batch correction. Standard 
samples of increasing concentration were used to construct calibration curves using linear fits per 
metabolite in ng/ml. Concentration values less or equal to zero were declared as missing. In this 
study, several study groups featured measurements systematically outside of the calibration 
range for some metabolites (i.e. below or above the smallest or largest standard sample applied 
for a metabolites calibration curve, respectively). Further, calibration of QC standard samples 
resulted in insufficient accuracy. However, precision (%RSD in either standard or pooled QC 
samples) was adequate for most compounds. Hence, metabolites cannot be considered as 
absolutely but as relatively quantified in this study. In-house R scripts were used for internal 
standard normalization, calibration, statistics and plotting. Quality assurance and control were 
reported using the recommended standards be mQACC (Table S8):  
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Taxonomic and functional microbiome profiling 
Whole genome shotgun sequencing reads were analyzed using the NGLess pipeline (v1.3.0). 
Sequences were quality controlled, trimmed and merged using NGLess defaults and 
subsequently filtered for human reads. One stool sample and two TBS samples were of 
insufficient quality and removed from further analysis. Taxonomic assignment was performed 
using the mOTUs profiler (v2.6). Functional annotation was performed by mapping rarefied reads 
to the Global Microbial Gene Catalog (GMGC, v1.0), then binning into either KEGG Modules 
through custom scripts or gut metabolic modules (GMMs) using the Java implementation of the 
Omixer-RPM reference mapper software. 
 
Taxonomic profile post-processing, normalization, and diversity analyses 
Both mOTUs and functionally-profiled metagenomic counts were transformed to relative 
abundances, then filtered to exclude features which were a) nonzero in less than 10% of samples, 
b) with a mean relative abundance less than 10e-4, or c) with zero variance. For most analyses 
with the shotgun metagenomic data, as stated where results are referenced, manually binned 
genus-level mOTU counts were used to increase the strength of the signal, which the integration 
analysis included an additional filtering step to further refine (more detail in that section, below). 
The vegan (v2.5.7) and stats packages were used for alpha and beta diversity calculation. The 
beta diversity principal coordinates analysis used the (species-level) mOTU counts. 
 
Statistical testing of -omics data and post-hoc confounder analysis with clinical variables 
All statistical analysis was performed with R (v4.0.3) using the targets workflow manager (v0.12.1) 
and renv environment manager (v0.12.5) to enhance reproducibility. All figures were generated 
using ggplot2 (v3.3.3) and patchwork (v1.1.1). Testing was performed using the 
metadeconfoundR package (v0.2.7) as described in Forslund et al.69 (especially Extended Data 
Figure 1 for a graphical overview) and briefly described here. 
 
To identify which clinical variables associated with -omics features, standardized, non-parametric 
effect sizes (Cliff’s delta and the Spearman correlation for binary and continuous variables, 
respectively) were calculated and tested for significance in a first step. The full set of clinical 
variables and per-individual values are given in Table S1; variables which had less than three 
nonzero observations in both the patient and control groups (6 total) were not tested. 
 
In a second step, significant clinical variables from the first step were used in an iterative, nested 
regression procedure to assess post-hoc confounding potential. Single -omics feature 
abundances were rank-transformed and regressed onto a disease status label, both 1) with and 
2) without a potentially confounding variable from the first step, followed by a likelihood ratio test 
(LRT) between nested models 1 and 2. Linear mixed-effect models were used to account for 
longitudinal sampling. This was repeated combinatorially across all post-processed -omics 
feature abundances and clinical variables, and integrated to yield a single status for each feature-
clinical variable association (including disease status and severity): robust (not confounded by 
any naively significant covariates), confounded (and if so by what/which), or not significant 
(summary of results shown in Fig. 5A). The Benjamini-Hochberg procedure was used to correct 
for multiple testing in both the naive statistical tests and likelihood ratio tests. 
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Concretely, our software produces a table of results in which each row contains the statistical 
summary for a single -omics feature and clinical variable pair (e.g. alpha diversity and OSCI score, 
respectively). There are identifier columns for each of these (“Y_dep.var” and “X_ind.var” for 
dependent Y and independent X variables in the models, respectively), and columns for naive 
effect size and adjusted p-values (XY_eff.size and XY_p.adj, respectively). The final column 
(“AssocStatus”) is either a status (D for “deconfounded” or NS for “not significant”), or, if 
“confounded”, a list of other clinical variables which resulted in a no-longer-significant association 
between X and Y in the given row when modeled as second independent variable. In our example, 
the gut alpha diversity was “deconfounded” (i.e. robustly associated with the OSCI score), while 
the oropharyngeal alpha diversity was confounded by antibiotic use, which was listed (see Fig. 
S1). Our combined results from analysis with each of the post-processed -omics data tables and 
clinical metadata are given in Table S6. 
 
Cross-omics associations and integrated statistical analysis 
As described above, all individual -omics features were tested for associations with the same set 
of clinical factors including disease status and severity, revealing a subset of features from each 
space which was robustly correlated with the OSCI score (Fig. 5A, B). To examine associations 
and generate hypotheses between different -omics spaces, we reconfigured our statistical 
framework to include robust subsets of severity-associated “cross-omics” features as additional 
independent variables. This produced naive correlations between e.g. severity-associated 
microbial taxa and metabolites or immune parameters, and further expanded our ability to classify 
their robustness via iterative nested model testing. 
As a concrete example of a single step in this extended framework: plasma kynurenine (KYN) 
and IFNγ were both robustly associated with severity, so kynurenine was included as an additional 
independent variable when re-testing IFNγ against disease severity (OSCI). Three models were 
built: 
 
osci_model: rank(IFNγ) ~ OSCI 
kyn_model:  rank(IFNγ) ~ KYN 
full_model: rank(IFNγ) ~ OSCI + KYN 
 
Then two likelihood ratio tests (LRTs) were performed with different nested model comparisons, 
and their results were used to classify the association between IFNγ and the OSCI score: 
 
Test 1: likelihood ratio test between full_model and osci_model 
Test 2: likelihood ratio test between full_model and kyn_model 
 
Test 1 checks whether kynurenine explains significant variation in IFNγ measurements beyond 
that which is already explained by the OSCI score, while test 2 checks the converse. If only test 
1 is significant, then, it can be concluded that the OSCI-IFNγ association is statistically reducible 
to the KYN-IFNγ association, and therefore the OSCI-IFNγ association may be considered 
“confounded” by kynurenine. If only test 2 or both tests are significant, the OSCI-IFNγ association 
is at least partially statistically independent of kynurenine, and may be considered robust (so long 
as it remains statistically independent from the other clinical and cross-omics variables tested).  
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This logic is identical to that used in the framework to test each set of -omics features against 
clinical variables; however, the aim there was to reduce dimensionality in each -omics space to a 
robust severity-associated subset. Here, we broadened the interpretation of post-hoc LRT-
identified “confounders” in this cross-omics context to consider them as potential mediators. Our 
combined results needed to generate Fig. 5C and 5D are given in Table S7. 

 

Data and Code Availability 
Raw sequencing data will be deposited and made publicly available before publication. The 
metabolomics data are available on MetaboLights70 with the unique identifier MTBLS6600 
(www.ebi.ac.uk/metabolights/MTBLS6600). All supplemental, processed data tables are 
uploaded separately and the code to perform the confounder and integrated statistical analyses 
are hosted at https://github.com/sxmorgan/pa-covid-multi-omics. Any further information required 
to reanalyze the data in this manuscript is available from the lead author upon request 
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