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Abstract

Understanding the noncoding part of the genome, which encodes gene
regulation, is necessary to identify genetic mechanisms of disease and trans-
late findings from genome-wide association studies into actionable results
for treatments and personalized care. Here we provide an overview of the
computational analysis of noncoding regions, starting from gene-regulatory
mechanisms and their representation in data. Deep learning methods, when
applied to these data, highlight important regulatory sequence elements and
predict the functional effects of genetic variants. These and other algo-
rithms are used to predict damaging sequence variants. Finally, we introduce
rare-variant association tests that incorporate functional annotations and
predictions in order to increase interpretability and statistical power.
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1. INTRODUCTION

Less than 2% of the human genome is coding—i.e., translated into mRNA and transcribed into
protein or short peptides. The remaining 98% is non-(protein-)coding and contains many regions
that fulfill structural and regulatory functions.Within two decades after the release of the human
genome sequence, next-generation sequencing (NGS) has fundamentally changed the way we
study both the coding and noncoding parts of genomes. Experiments that capture and determine
the sequence of functional nucleotide elements have generated rich annotations of both the human
genome and those of model organisms (1).

While evolutionary sequence conservation across species and the categorization of regions
based on experimental readouts emerged early as important directions of genome research (2), few
could have foreseen the transformative role of machine learning, and specifically deep learning,
in the field. Driven by advances in computer vision and natural language processing (3), deep
learning models have become ubiquitous in the study of the molecular functions encoded in the
genome (4, 5).

NGS is also driving progress in the study of human genetic variation. The falling costs of
whole-genome sequencing (WGS) have made it possible to collect these data for hundreds of
thousands of individuals (6, 7). Recently, the UK Biobank has provided one of the largest and
most widely accessible WGS datasets to date, genotyping about 150,000 individuals (6). These
data contain hundreds of millions of predominantly rare genetic variants, many of which have
never been observed before.

Understanding the role of these rare variants in health and disease relies on our ability to
distinguish neutral variants from those that disrupt the function of the genomic sequences that
contain them. While variant effect prediction (VEP) for coding regions is relatively well devel-
oped (8) and recent algorithms are good at identifying damaging nonsynonymous variants (9),
the prediction and evaluation of variant effects for noncoding regions are lagging behind. How-
ever, understanding noncoding variation is critical for variant prioritization in sequencing-based
genome-wide association studies (seqGWAS) (10, 11) or clinical variant interpretation (12).

Here we present concepts and recent advances in the computational analysis of noncoding
regions and short genetic variants therein.Most examples provided concern the regulation of tran-
scription, although the concepts generalize to other mechanisms of gene regulation as well. Deep
learning is covered as a method to extract important sequence features and predict the functional
effects of genetic variants, but we defer to other articles for detailed descriptions of architectures
and algorithms (4, 5).We cover ways to evaluate functional effect predictions and use them to pre-
dict damaging genetic variants. Finally, we describe the incorporation of functional annotations
into rare-variant association tests in seqGWAS.

2. NONCODING MECHANISMS AND THEIR REPRESENTATIONS
IN DATA

2.1. General Properties and Classes of Regulatory Elements

While the noncoding genome contains many classes of sequences, such as repetitive, structural re-
gions and transposable elements, the analysis of noncoding regions is largely concerned with gene-
regulatory regions.This entails the localization of regulatoryDNA or RNA sequences, identifying
their function, and understanding how their function is determined by the cell machinery. Estab-
lished (albeit simplistic) models place short regions of DNA/RNA into one or more functional
classes, where single class instances are typically hundreds to a few thousands of nucleotides long.

Promoters, enhancers, and insulators [most prominently CCCTC-binding factor (CTCF)
binding sites] are classes that regulate transcription (13, 14). 3′ and 5′ untranslated regions (UTRs)
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Figure 1

Model of transcriptional regulation and its observation through functional genomics data. (a) Two enhancers are brought close to a
promoter, where they activate transcription of a gene. The DNA bends and forms loops. (b) Close-up of an enhancer bound by
transcription factors. The flanking histones bare typical modifications (H3K27ac, H3K4me1). The DNA is nucleosome-free and,
therefore, accessible. (c) Functional genomics data measure processes depicted in panels a and b. The reference sequence provides the
coordinate system (x-axis). A 2D interaction map shows interaction frequencies between regions of the DNA. Contacts between
enhancers and promoters appear as dark regions on the off-diagonal elements. Sequence conservation and the location of genetic
variants are shown together with functional genomics data tracks. Peak calls appear as bars underneath continuous signal tracks. The
enhancer highlighted in gray is conserved, is accessible (measured by DNase-seq), and has elevated H3K27ac (measured by ChIP-seq).
Chromatin states are inferred from functional genomics data. Abbreviations: ChIP-seq, chromatin immunoprecipitation and
sequencing; DNase-seq, DNase I hypersensitive sites sequencing.

and splice-regulatory regions influence posttranscriptional processes, such as RNA processing,
localization, stability, and translation, which are regulated by RNA-binding proteins and RNAs
(e.g., microRNAs) (15). All of these classes constitute cis-regulatory elements (CREs), where “cis”
indicates interaction with nearby genes (i.e., discrete, functional transcribed regions) encoded on
the same chromosome.The functions of CREs are established by the sequence-specific binding of
regulators,which recruit or direct catalytic macromolecular complexes such as RNA polymerase II
(Pol-II) for transcription or the RISC (RNA-induced silencing complex) for RNA degradation.

2.2. Enhancers, Promoters, and the Cis-Regulatory Code

A promoter is the DNA sequence surrounding and immediately upstream of transcription start
sites (TSSs). The core promoter is the region directly at the TSS that serves as a docking plat-
form for Pol-II recruitment; the proximal promoter is the region directly upstream of the TSS.
Promoters interact with enhancers in order to activate transcription (13) (Figure 1).

The specificity of enhancers and promoters depends on the binding of selectively expressed
transcription factors (TFs). A single TF can only bind compatible short sequence elements [∼8–
20 base pairs (bp)] and might interact with other TFs, for example, through cooperative or com-
petitive binding. Typical transcriptional regulatory regions contain several binding sites for the
same or a small subset of TFs (16). Through these mechanisms, the underlying DNA sequence
determines the conditions under which a regulatory region becomes active.

The genome-wide patterns of binding sites constitute the so-called cis-regulatory code. The
logic behind this code imposes evolutionary constraints, leading to conservation of regulatory
elements and TF binding preferences across millions of years of evolution (17). Noncoding
patterns of sequence conservation differ from protein-coding conservation: Constraints may be
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placed not on the precise arrangement of binding sites, but rather on their overall presence and
encoded binding affinity within a certain neighborhood. This often leads to binding site turnover,
meaning that the function of nucleotides that trace back to the same ancestral nucleotide may
differ, resulting in low colinear sequence similarity and the frequent emergence of new regulatory
regions (18).

2.3. Loops and Topologically Associating Domains

On the linear genome sequence, enhancers can be found a few thousand (proximal) to hundreds of
thousands (distal) base pairs away from the promoters with which they interact. Inside the nucleus,
active enhancers are brought into physical proximity of promoters, and the frequency and duration
of these enhancer–promoter contacts are correlated with the strength of transcription (activity by
contact) (19, 20). When enhancer–promoter contacts are established, the nuclear DNA forms
loops, with loop formation in mammals regulated by CTCF (21). A gene may be regulated solely
by its promoter (e.g., in the case of some housekeeping genes), or by dozens of enhancers that
sometimes cluster together as so-called superenhancers [e.g., in the case of developmental master
regulators (22)]. In a specific condition, only a subset of enhancers will contact the promoter, and
each enhancer encodes only part of the global expression pattern of a gene (e.g., its activity in one
specific cell type). Large regions of the genome in which active sequences frequently contact each
other are called topologically associating domains (23). These domains are separated by domain
boundaries, across which contact frequencies are low, but which are dynamically shaped over the
course of development (24, 25).

2.4. The Histone Code and DNA Methylation

TFs compete with histones for DNA binding. Histones are multimeric proteins involved in the
packing of DNA as part of DNA–protein complexes called nucleosomes (26). The complex of
DNA together with nucleosomes is referred to as chromatin. DNA that is occupied by nucleo-
somes is not directly accessible to otherDNA-binding proteins,which limits its regulatory activity.
The functions of histones are tuned by posttranslational modifications.Histones flanking promot-
ers and enhancers are often acetylated at lysine 27 (H3K27ac) (27), histones flanking promoters
are methylated at lysine 4 (H3K4me3) (28, 29), and H3K4me1 is often found at enhancers (30)
(Figure 1). Other histone modifications indicate active repression (H3K27me3) or tight packing
in inactive regions called heterochromatin (H3K9me3) (31, 32).

The DNA itself can also be chemically modified. The methylation of GpG-dinucleotides has
been linked to repression, while demethylation has been linked to activation (33). As methylated
residues are prone to mutational changes, promoters at active regions contain a disproportionally
large number of these dinucleotides (34). Both the chemical modification of histones and theDNA
affect the recruitment of factors that activate or repress transcription. In recent years, a plethora
of chemical modifications of RNA have been identified as well, reportedly influencing diverse
processes ranging from processing to stability and translation (35).

2.5. Functional Genomics Assays and Data

NGS-based assays provide noisy readouts of the gene-regulatory processes and interactions
mentioned above, typically genome- or transcriptome-wide. These assays biochemically enrich
for functional nucleotide fragments, which are then sequenced (36–42). The raw sequencing
data constitute millions of so-called reads, i.e., sequences of typically a few hundred nucleotides
(composed of letters A, C, G, and T) corresponding to the enriched fragments. The reads are
mapped back to the reference genome in order to determine their source of origin. Specialized

194 Monti • Ohler

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
23

.6
:1

91
-2

10
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

W
IB

62
58

 -
 M

ax
 D

el
br

ue
ck

 C
en

tr
um

 -
 B

ib
lio

th
ek

 o
n 

10
/2

6/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



experimental techniques further allow assigning reads to single cells (43, 44). For simplicity, this
review focuses on bulk experiments that lack this level of resolution.

ChIP-seq (chromatin immunoprecipitation and sequencing) enriches for fragments that are
bound by specific proteins of interest (36, 37), such as TFs or histones with specific modifications.
DNase-seq (DNase I hypersensitive sites sequencing) (38) and ATAC-seq (assay for transposase-
accessible chromatin using sequencing) (45) enrich for accessible (i.e., nucleosome-free) sequences
such as enhancers, promoters, and CTCF-binding sites. RNA-seq (RNA sequencing) quantifies
expressed transcripts (39), and CAGE (cap analysis of gene expression) measures transcription
initiation (46). Bisulfite-seq measures CpG methylation (47).

After mapping to the reference genome, the number of reads originating from all positions is
quantified. These per-position counts, also called coverage, are visualized as histogram-like tracks
along the genome (Figure 1c). Statistical methods are used to determine regions with significantly
elevated read counts (peaks) (48), which can indicate, for example, accessible regions (in the case
of DNase-seq or ATAC-seq) or regions bound by specific proteins (ChIP-seq). Other postpro-
cessing steps might include converting discrete counts into relative enrichment over background,
smoothing, and corrections for sequence biases (49).

Specialized methods such as chromatin conformation capture (3C), 4C (circular 3C), andHi-C
(high-throughput 3C) measure contact frequencies between DNA sequences in the nucleus (40,
42). The readouts from these experiments are 2D and symmetric, with both axes corresponding to
locations on the reference. These contact-count matrices are visualized as heatmaps. Again, post-
processing steps are typically applied for visualization and statistical testing (e.g., down-weighting
expected short-range contacts).

Large consortia have made efforts to systematically annotate the genome of model organisms
and humans by collecting functional genomics data across many tissues and time-points in devel-
opment. By combining the signals from many experiments, these efforts have identified millions
of candidate CREs (1). Numerous statistical methods have been developed to integrate experi-
ments and define genome-wide chromatin states (i.e., locations with stereotypical combinations
of histone modifications, accessibility, or methylation) corresponding to the classes of regulatory
elements introduced above (e.g., enhancer-like states) (50, 51).

Reporter assays are used to validate functions of regulatory regions in vivo (in native con-
text within a living organisms) or in vitro (in isolation from regular biological context, e.g., in a
test tube). Typically, this requires cloning or barcoding fragments of interest next to a reporter
gene whose activity can then be measured (e.g., by sequencing or fluorescence imaging) and com-
pared across the fragments assayed. For example, reporter assays have been used to identify single
developmental enhancers in mouse embryos (17). Massively parallel reporter assays measure the
activities of many elements at once (52, 53). STARR-seq (self-transcribing active regulatory region
sequencing) is an in vivo assay that inserts enhancer fragments in gene bodies and hence uses the
RNA-seq readout directly as evidence for functionality (54). Reporter assays that include mutage-
nesis measure the effects of genetic perturbations on regulatory elements (55). However, typically
only a limited set of regulatory elements and cell types can be investigated by a single experi-
ment. Readouts from reporter assays have been used to train models for tissue-specific enhancer
prediction (56) or to train and validate sequence models (57), as introduced in the next sections.

3. HUMAN GENETIC VARIATION IN HEALTH AND DISEASE

Genetic variants naturally occur throughout the genome. They are defined by their location
relative to the reference genome and the reference and alternative sequence (i.e., the reference
and alternative alleles). The more common sequence is defined as the major allele, and the less
common sequence as the minor allele. The average human genome contains over four million
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Figure 2

Functional enhancer variants and their observation through genome-wide association studies (GWAS). (a) An enhancer variant disrupts
the binding of a transcription factor. This leads to fewer contacts with the promoter and, therefore, lower expression of a gene involved
in cholesterol metabolism. The causal enhancer variant is inherited together with nearby noncausal tagging variants. (b) A GWAS
measures the correlation of variants’ alternative allele counts with cholesterol in a large population, shown by allele dosage plots with
regression lines (effect sizes are exaggerated for clarity). All variants are significantly correlated with the trait (∗∗∗p-value < 5 × 10−8),
which hinders identification of the causal variant.

genetic variants, primarily consisting of single-nucleotide polymorphisms (i.e., variants that
change a single base) and short insertions or deletions. The vast majority of these variants
(>99%) lie in noncoding regions, including roughly 300,000 variants in possible enhancers (58).
On the population level, the majority (>90%) of variants are rare, with minor allele frequencies
below 0.1%, and over 40% are only observed in single individuals at current sample sizes (single-
tons) (6, 7). However, on the level of the individual, common variants outnumber rare variants by
a large margin (>95% have minor allele frequencies above 0.5%) (58). Most are inconsequential,
but some variants alter biomolecular function (Figure 2a). While these molecular changes often
go unobserved, they manifest themselves as measurable differences in traits at the population
level (Figure 2b). Here we briefly introduce population genetics, reviewed by Karczewski &
Martin (59), and genome-wide association studies (60) through the lens of the functional analysis
of noncoding regions. We defer to other reviews for a discussion of large structural variants
(61).

3.1. Databases of Human Genetic Variation

Increasing access to genetic sequencing has inspired efforts to catalog the observed genetic vari-
ation in humans and its distribution across populations. In 2010, the 1000 Genomes Project set
out to generate the first freely available reference of human genetic variation (58). While initial
research focused on whole-exome sequencing (i.e., strongly enriching for coding regions), access
toWGS data is increasing, driven by biobanks and other large-scale collaborative efforts (6, 7, 62,
63). The online database gnomAD provides statistics on observed variants across populations (64).
Noncoding variants are placed into potential gene-regulatory contexts through overlap with func-
tional annotations [e.g., UTRs or regions of accessible chromatin (Figure 1c)] or by functional
variant effect prediction, introduced below.

3.2. Genome-Wide Association Studies

Genome-wide association studies (GWAS) quantify the correlation of genetic sequence variants
with heritable traits and disease (i.e., they measure the association of genotype and phenotype).
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Biobanks that systematically collect genotypes and other data of hundreds of thousands of
individuals have become major resources for GWAS (62, 65).

Due to cost and ease of processing, genotypes have mainly been measured using microarrays,
which allow for predefined sets of typically hundreds of thousands of common variants. These are
used to statistically impute millions of variants using variant reference panels (66). Imputation is
possible because neighboring variants are inherited together, and therefore are highly correlated,
a phenomenon termed as linkage disequilibrium (LD).

Phenotypes are derived from physical measurements, blood tests, imaging, questionnaires, or
health records. Quantitative trait locus (QTL) studies are GWAS that use readouts from molecu-
lar assays as their phenotypes. For example, expression QTL (eQTL) studies, reviewed by Flynn
& Lappalainen (67), correlate gene expression with genetic variants. However, even large eQTL
studies like the GTEx (Genotype-Tissue Expression) project (68) have been limited in their
sample sizes (<1,000 individuals).

The most common approach in GWAS independently tests each variant that reaches certain
inclusion criteria (e.g., frequency and imputation quality) for its association with the phenotype.
Specialized software allows these association tests to be rapidly performed, while correcting for
covariates like age or sex and confounding by population stratification (e.g., ancestry) (69–71).
GWAS summary statistics list the strength, direction, and p-values of associations between vari-
ants and the phenotype and can be visualized along the genome, similar to functional genomics
tracks (72).However, LD prevents resolving association signals to the scale of regulatory elements
(Figure 2b). Statistical fine-mapping, reviewed by Schaid et al. and Cano-Gamez & Trynka (73,
74), is necessary to narrow down groups of correlated variants to one or a few candidate causal
variants responsible for the associations at a genetic region. Many of these fine-mapping meth-
ods use functional genomics data because causal variants are enriched in regulatory regions like
enhancers or promoters.

Rare-variant association studies that use sequencing-based genotyping suffer less from issues
related to LD (e.g., signal localization).However, they face challenges with statistical power due to
the large number of variants with very low frequencies and singletons. These issues are alleviated
by variant aggregation and prioritization using variant effect predictions (see below).

The growing number of GWAS has inspired efforts to collect summary statistics and make
them accessible through portals such as the NHGRI-EBI (National Human Genome Research
Institute–European Bioinformatics Institute) GWAS Catalog (75). GWAS have revealed that
common traits and diseases depend on many variants with small effects scattered throughout the
genome (polygenicity) (59), which complicates downstream applications like the identification of
relevant genes, cell types, or pathways through integration with functional genomics data (74).
Besides providing biological insights, GWAS results are used for the construction of polygenic
risk scores, as reviewed by Torkamani et al. and Lambert et al. (76, 77).

4. LEARNING THE REGULATORY CODE

Before quantifying the impact of regulatory variants, one needs to understandwhere the functional
sequence elements are and what function they impart. Going back to the days of the Human
Genome Project, models for gene regulation have been built at levels that range from interactions
of binding sites with the DNA to the function encoded in a single enhancer, to the expression of
the affected gene, and ultimately to the organismal phenotype.

4.1. Biophysical Models of Binding and Position Weight Matrices

Since the early days of computational biology, researchers have been interested in models that
adequately describe the target sequences of proteins binding to nucleic acids. Few features are
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identical across functional instances (restriction enzymes are an exception), and therefore flexible
representations of short sequences of the same functionality (sequence elements), so-called motifs,
have been needed. Looking at a typical TF binding site bound by the same TF, some positions will
be flexible as to their nucleotide preferences, and others will be strict. Early attempts to capture
this took the form of consensus sequences (regular expressions that include characters in addition
to A,C,G, and T, such asW) to describe the presence of a nucleotide involved in a weak hydrogen
bond (A or T). Such representations have the advantage of allowing for very fast string matching
algorithms, but they are obviously limited and do not allow for more nuanced representations
(e.g., that the presence of A or T may not be equally probable).

The most widespread representations of DNA/RNA sequence motifs have long been as matri-
ces of size 4 × N. Given a set of aligned short sequences of length N, in our case target sequences
of a specific TF, a position frequency matrix (PFM) first tabulates how many instances of each
nucleotide are observed at each position and divides the entries byN. Each of theN columns then
represents a multinomial distribution over the alphabet (here, of the 4 nucleotides), meaning that
all N positions are considered independently. To avoid zero probabilities, one typically modifies
the initial counts by including prior information (e.g., in the form of pseudocounts).

Given a longer sequence, the probability of each subsequence of lengthN being a target for the
TF can then be computed by looking up the probabilities of each nucleotide of the subsequence
at the corresponding position in the matrix and multiplying them. This operation of moving a
short pattern (motif ) along a larger signal (a DNA sequence) and recording the resulting scores
is called a convolution. The matrix representation gained traction not least because of its clear
connection to statistical mechanics and binding affinity (78). In practice, the PFM is converted
into a position weight matrix (PWM) (or position-specific scoring matrix), which normalizes the
observed frequencies by a background of, for example, the nucleotide composition of the genome
(79).

Since their introduction, several extensions of PWMs have been proposed, particularly to ad-
dress issues of fixed length (targets of some TFs contain a spacer region of variable length) and
of the independence between positions of a binding site. More intricate probabilistic models such
as hidden Markov models or Bayesian networks have been developed and have shown clear im-
provements for at least some TFs (80). For some time, small amounts of available data limited the
practical applicability of models with a larger number of parameters, a situation that changed
with the availability of ChIP-seq experiments and high-throughput assays for determining in
vitro binding affinities with typically hundreds to thousands of putative TF binding sites (81,
82). Resources such as JASPAR provide precomputed models for large numbers of TFs for several
eukaryotic species (83).

4.2. Deep Learning–Based Sequence Models

Deep neural networks are scalable, flexible, and automatically learn predictive tasks without the
need for feature engineering (3) (i.e., the manual design or selection of informative input vari-
ables).These properties, and state-of-the-art performance, have led to their widespread adaptation
in the field of genomics and elsewhere. The word “deep” in deep learning stems from the many
layers present in these models, which consist of interconnected computational units called neu-
rons. By stacking layers whose neurons perform linear operations followed by nonlinear activation
functions, these models learn highly nonlinear functions of the input data (3).

Soon after deep neural networks began outperforming other methods on image classifica-
tion tasks (84), they started being applied to predict gene-regulatory functions from sequence
(85–87). The majority of sequence models are based on convolutional neural networks (CNNs).
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Figure 3

Sequence models of noncoding regulatory processes. Deep neural networks predict genomics data from the underlying nucleotide
sequences at varying scales and resolutions. Long-range processes are modeled with larger input sequences. Because some models
contain pooling operations, the output length can be shorter than the input length. Output data vary in their level of resolution,
measured in base pairs per position. Splicing and highly resolved data (e.g., ChIP-nexus) can be modelled at base pair resolution. The
model in the bottom row predicts coverage of the center 128-bp sequence from the 1,000-bp surrounding sequence. Abbreviations:
bp, base pairs; ChIP-nexus, chromatin immunoprecipitation with nucleotide resolution through exonuclease, unique barcode, and
single ligation.

Convolutional layers (i.e., the building blocks of CNNs) contain many fixed-size filters, which
are scanned across sequences (4). In the first layer of a network, filters act as short motif finders
(typically, ∼3–25 bp) and can learn sequence patterns capturing known binding preferences of
regulatory proteins (87, 88). However, the deep model structure allows for the representation
of motif variants and combinations, positional dependencies, and multiple pattern occurrences
within a larger sequence. Recent reviews have covered model architectures and applications in
genomics (4, 89), as well as the interpretation of neural networks for genomics using so-called
explainable AI methods (90). Here, we focus on core concepts for the analysis of noncoding
regions using sequence models and highlight recent advances.

Sequence models predict functional annotations like those presented in Figure 1 from
the underlying nucleotide sequence and, optionally, inputs that capture sequence context (e.g.,
gene annotations) (91) (Figure 3). Sequences are typically represented by one-hot encoding on
the nucleotide level (4), and models are trained to predict the presence of either binary features
like peaks (classification) (85, 86) or continuous readouts such as signal strength (regression) (49).
Software packages facilitate transforming genomics file formats into the data types required for
deep learning (92, 93).

Models that predict features from DNA sequence can learn a variety of tasks at different levels
of gene regulation, including binding of individual TFs (85, 86) or RNA-binding proteins (85,
91), accessibility of DNA (87), histone modifications (86, 94), transcription (95, 96), splicing (97),
and 3D genome folding (98, 99) (Figure 4). Models are often trained to predict many outputs
for the same input sequence (called multitarget or multilabel)—for example, readouts from many
functional genomics experiments across time points and tissues. Because the regulatory code is
largely conserved, models can be trained on data from multiple species at once (100). Specialized
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Figure 4

Sequence interpretation with neural networks, and prediction of damaging variants. (a) The variant C → T disrupts binding of a
transcription factor. A deep neural network is presented with both the reference sequence (ref.) and alternative sequence (alt.)
containing G (two forward passes). The model predicts lower probabilities of observing DNase accessibility peaks for the alternative
sequence. The difference � between reference and alternative shows the direction of effects. (b) A gradient-based interpretation
method is applied to the neural network using the reference sequence as input (forward and backward pass). The method highlights
transcription factor binding sites. (c) The prediction of noncoding damaging variants typically relies on functional genomics data.

architectures confer biophysical interpretations to model parameters and components (101), and
prior knowledge (e.g., TF binding preferences) can be used to initialize model parameters, which
can increase performance (94).

The predictive tasks are reflected in the key properties of sequencemodels, including the length
of the input sequence in nucleotides, the choice of output coding and resolution, and the receptive
field (102) of neurons in the output layers (Figure 3). The receptive field measures the number of
nucleotides in the input sequence that can influence the predictions at every position in the output
layer; that is, it captures the ability of the model to integrate long-range interactions. CNNs use
spatial pooling and fully connected layers before the output layer to grow the receptive field. Fully
convolutional CNNs rely on pooling and exponentially dilated convolutions in order to grow the
receptive field to tens of thousands of base pairs (49, 97).Models for processes involving the folding
of DNA or RNA (e.g., transcription or splicing) benefit from larger receptive fields (96, 97).

Recently, transformers (103) have been used to increase the theoretical receptive field to hun-
dreds of thousands of base pairs in order to improve the performance of transcription prediction
(96).Models with larger receptive fields more accurately predict accessibility, ChIP-seq, and tran-
scription (measured by CAGE), showing that the underlying data reflect the results of both local
(∼100 bp) and long-range (>10,000 bp) interactions (49). However, most signals tend to be cap-
tured at short scales (49, 96, 97), and predictive performance may not be the best measure to
determine the utility of a model for downstream tasks (104).

4.3. In Silico Analysis of Regulatory Elements with Sequence Models

Given a trained sequence model, in silico mutagenesis predicts the functional effects of genetic
variants (86, 87) (Figure 4a). Because most models are trained only on the reference sequence,
ignoring genetic variants, this task can be seen as a form of zero-shot transfer learning (i.e., re-
purposing for a different task without adjusting the model’s parameters). First, a model predicts
functional annotations for the reference sequence and the alternative sequence containing the
variant. The difference between reference and alternative prediction is referred to as the allelic
functional variant effect prediction.
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Saturated in silico mutagenesis investigates all possible single-nucleotide substitutions of a
sequence and can highlight important nucleotides. However, this approach is computationally
expensive, as it relies on many predictions (forward passes through the network), and it might not
capture all important parts of the sequence if there is redundancy (105, 106).

Methods for sequence instance interpretation rely on the forward propagation of activation dif-
ferences (e.g., DeepLIFT or DeepSHAP) (105, 107) or backward propagation of gradients (108)
in order to highlight important nucleotides (Figure 4b). While computationally more efficient
than mutagenesis, one drawback of these methods is that they have to compare against a back-
ground, the choice of which can considerably affect the results. Occlusion-based methods such
as the recently proposed Scrambler (106) learn to predict occlusion masks that either completely
destroy or preserve the prediction of a trained model by reshuffling.The occlusion masks (or their
inverses) are used to highlight important subsequences.

Once important short subsequences are identified, downstream algorithms identify common
patterns in these subsequences across instances in order to distill the global knowledge encoded
in the model (91). This approach resembles the search for PWMs, but it is highly nonlinear. For
example,TF-MoDISco (transcription factor motif discovery from importance scores) uses a series
of clustering and other steps to generate consolidated motifs (109).

Learned attention mechanisms allow neural networks to dynamically weigh (attend to) and
combine different parts of a sequence for prediction (110). This allows models to highlight im-
portant parts of sequences from a single forward pass. Co-attention to subsequences has been
used to identify cooperative binding between TFs (111). Self-attention constructs 2D attention
matrices that capture pairwise interactions between even very distant parts of sequences (103), and
these 2D attention matrices can be useful for enhancer–promoter contact prediction (96).

Finally, sequence models allow complex in silico experiments to be performed that are difficult
to perform in vivo. For example, by reversing all short sequences predicted to attract the TF
CTCF,Fudenberg et al. (98) confirmed that theirmodel learned the previously described influence
of CTCF-binding motif directionality on loop formation (113). Avsec et al. (114) utilized a base-
pair-resolution model to perform computational experiments to answer questions about spacing
and cooperativity between TF binding sites.

4.4. Evaluation of Sequence Models

The evaluation of sequence models has focused on both the predictive performance of data held
out for the target task (the task optimized during training) and models’ ability to correctly predict
the effects of genetic variants (transfer task). Holdout data comprise data on genomic regions
not used during model training. Because functional genomics data are noisy, perfect predictions
are never expected. The concordance between experimental replicates serves as a baseline for
achievable model performance (49). Evaluating a model’s performance on the same sequences that
were used for training (data leakage) should be avoided, even for holdout experimental replicates,
as it inflates performance estimates (115). This has been seen as less of a problem, and, in fact,
almost unavoidable, for the transfer task of predicting genetic variant effects. Predicted effects on
gene expression can be evaluated directly using data from reporter assays or fine-mapped eQTL
data from matched cell types (96).

Functional predictions can be linked to association signals from GWAS or QTL studies
through methods such as stratified LD score regression (116) or overlap/enrichment-based
approaches, reviewed by Cano-Gamez & Trynka (74). The results of these analyses should always
be contrasted against direct use of the training data or other strong baselines (104). Finally, the
utility of models can be estimated on transfer tasks such as the prediction of damaging variants
(86), as outlined in the next section.
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5. PREDICTION OF DAMAGING VARIANTS

Damaging variants are functional variants that negatively impact biomolecular function (117).The
majority of algorithms for the prediction of damaging variants have focused on coding variation.
Protein-truncating variants and splice donor/acceptor variants are generally considered damag-
ing (118), while variants that change the amino acid sequence are further contextualized using
sequence conservation and molecular modeling (9, 119, 120). Sequence conservation can be con-
sidered either across species (121) or within the human population (64). The absence of genetic
variation between species or within populations is seen as evidence for variation intolerance, and
variants in variant-depleted regions are considered potentially damaging (64).

In addition to conservation, many algorithms for the prediction of damaging variants in
noncoding regions take into account functional sequence annotations (8) (Figure 4c). These an-
notations include the location relative to transcripts (e.g., promoter, UTR, intron, splice region)
or transcript-agnostic annotations (e.g., CTCF binding site, accessible region, chromatin states).
Annotations can also include functional variant effect predictions derived from sequence models.
For example, the popular variant effect prediction tool CADD (combined annotation-dependent
depletion) has been updated to include predictions from SpliceAI, a deep learning model that pre-
dicts splicing (97, 122). However, most tools for noncoding variants do not yet incorporate allelic
functional effect predictions and therefore lack the ability to distinguish variants with opposing
predicted functional effects at the same location.

Methods that predict damaging variants are optimized or evaluated using verified variants from
databases [e.g., ClinVar (123) or HMGD (Human Gene Mutation Database) (124)] or allele fre-
quency data. The latter approach distinguishes between common variants, which are depleted
of damaging variants by natural (purifying) selection (59, 117), and rare variants like singletons,
which have not been depleted. Generally, constructing appropriate training sets for these meth-
ods is challenging, and independent evaluations have exposed a lack of generalizability (125, 126).
Therefore, algorithms that do not rely on predefined sets of variants have been proposed (9).

6. FUNCTIONAL PREDICTIONS IN RARE-VARIANT
ASSOCIATION STUDIES

We have previously introduced GWAS that test variants individually. For the many rare vari-
ants observed by sequencing-based genotyping in seqGWAS, this approach lacks statistical power:
First, the effect size for any single rare variant would need to be very large in order to reach sta-
tistical significance. Second, LD is low for rare variants, and therefore noncausal rare variants
cannot effectively tag nearby causal variants. Third, the many very rare variants and singletons
would drastically increase the burden of multiple rounds of testing (besides being statistically
inappropriate).

To address these problems, rare-variant association tests increase the weights of potentially
causal variants and aggregate variants in groups (127) (Figure 5). In addition, variant inclusion
criteria based on functional annotations or effect predictions are used to increase the fraction of
potentially causal variants. Filtering and weighting increase power if the causal mechanisms at a
locus are correctly identified and noncausal variants are excluded from the test. As the true biology
of each locus and its influence on the trait are unknown, it is common to vary the inclusion criteria
for variants and performmultiple tests per locus (10, 128, 129).The p-values arising from different
variant groups tested at the same locus can be aggregated, for example, using omnibus tests like
the Cauchy combination test (130).

The two main types of association tests that aggregate variants are variant collapsing tests
(also called burden tests) and kernel-based tests (also called variance-component tests). Variant

202 Monti • Ohler

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
23

.6
:1

91
-2

10
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

W
IB

62
58

 -
 M

ax
 D

el
br

ue
ck

 C
en

tr
um

 -
 B

ib
lio

th
ek

 o
n 

10
/2

6/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



Promotor GeneEnhancerEnhancerCTCF CTCF

Genetic variants

Chromatin states

Functional effect predictions

Damaging prediction

Variant groups
Input for association test

Sliding windows

Kernel matrix Burden
variable

Variant similarity
matrix

Annotation
matrix

Genotype
matrix

Pe
op

le

A
nn

ot
at

io
ns

Variants Variants Variants

or

Va
ria

nt
s

or

+ +

Figure 5

Sequence annotations in rare-variant association studies. Models predict effects for all observed genetic
variants, and variants are grouped by the type of variant effect prediction, their locations (sliding windows),
or their overlaps with predicted functional elements. Each group of variants is tested separately. Functionally
informed rare-variant association tests integrate groups’ genotypes with variant annotations and
variant–variant similarities. Noncollapsing tests construct kernel matrices that capture genetic similarities
between individuals, whereas burden tests (collapsing tests) test single variables. Abbreviation: CCTF,
CCCTC-binding factor.

collapsing tests aggregate all variants within a group into a single variable before testing.They have
high statistical power if the variants affect the phenotype in the same direction (e.g., increasing the
probability of disease) and most included variants are causal. Kernel-based tests are advantageous
if variants have opposing directions of effect or if there are fewer causal variants (131). Tests that
combine collapsing and kernel-based tests in order to universally increase statistical power have
been proposed (132, 133).

In exome-sequencing studies, which currently are still the majority of seqGWAS, variants are
often grouped by gene, and potentially damaging coding variants are readily identified.Collapsing
tests are effective in coding regions because the majority of damaging coding variants lead to a loss
of function, and therefore have aligned effects on the phenotype within the same gene. We have
recently shown that kernel-based tests have advantages if gain-of-function variants are present,
which are typically limited to only few amino acid positions in a gene (129).

For noncoding variants, the grouping of variants is less straightforward, and sliding windows
and groups defined by specific chromatin states have been used (e.g., enhancer-like regions,CTCF
binding sites) (10). Methods that aggregate signal at the gene level by incorporating genome
folding data have also been proposed (134, 135).

Rare-variant tests typically allow for the incorporation of variant weights, which can be derived
using variant annotations such as allele frequencies or functional variant effect predictions (129,
132, 136–138). The directionality of functional variant effect predictions can also be taken into ac-
count, which could enable, for example, the separate collapsing of variants predicted to increase or
decrease expression at a specific locus. The different components (i.e., matrices) used to construct
a functionally informed rare-variant test are depicted in Figure 5. Both variant annotations (e.g.,
functional effect predictions) and variant similarities (e.g., physical proximity between variants)

www.annualreviews.org • Functional Sequences/Variants in Noncoding DNA 203

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
23

.6
:1

91
-2

10
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

W
IB

62
58

 -
 M

ax
 D

el
br

ue
ck

 C
en

tr
um

 -
 B

ib
lio

th
ek

 o
n 

10
/2

6/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



can be taken into account. By incorporating functional variant effect predictions, functionally
informed tests directly provide hypotheses on the implicated cis-regulatory mechanisms.

Reporting standards for aggregated tests are still being established (139). When reporting the
results of grouped tests, it has been recommended to report all the variants that contributed to
the combined test and, ideally, the type of variant effect and algorithm that was used to identify
these variants (if functional predictions were performed). This allows novel variants that appear
in the same sequence context to be contextualized.

7. DISCUSSION

As functional genomics and genotype data keep expanding, driven by advances in experimental and
sequencing technologies, the analysis of noncoding regions is becoming increasingly complex. In
this review, we have introduced topics relevant to the analysis of noncoding regions, with a focus
on functional genomics data for gene expression, variant effect prediction with sequence models,
and the integration of these predictions with (seq)GWAS. We focused on single short genetic
variants; however, phased genotype data could allow variant interactions to be investigated.

We showed how deep learning has become a valuable tool to perform in silico experiments and
predict the functional effects of variants through transfer learning. We see great promise in im-
provements of model interpretability (90), as well as in architectures that allow for the integration
of large sequence contexts (103).

In order to make use of these advances in the context of rare variants, software for rare-variant
association tests needs to be flexibly designed to accommodate the many types of variant annota-
tions and effect predictions available. Reporting standards for associations found by such methods
need to be established (139). This is critical for their application in personalized healthcare or for
the inclusion of variants in polygenic scores.

While genomics deep learning has greatly profited from advances in natural language pro-
cessing and image analysis, algorithms tailored to the specific properties of genomics data could
further increase performance and interpretability. There is a need for models that more accurately
predict cell type–specific effects by incorporating new types of data or combining existing datasets.
Single-cell data analysis, reporter assays using CRISPR (19), and the analysis of complex structural
variants provide promising avenues for future research.

In general, the linkage of functional variant effect predictions for noncoding variants to as-
sociation signals from GWAS, their incorporation into rare-variant association tests, and their
application in clinical settings require further research. We observe a lack of consensus in eval-
uation strategies and independent benchmarks, which makes it difficult to assess the utility of
predictions for downstream applications (125, 126).

When designing algorithms for tasks like variant effect prediction, ethical considerations in-
creasingly need to be taken into account. For example, if data used to train models come only from
individuals of a specific ancestry, models may not generalize well to other ancestries, which could
increase disparities in care. The reporting of results from such algorithms on the personal level
also needs to be scrutinized (140).

Finally, self-supervised learning could help create powerful zero-shot models for noncoding
variants, as has been shown for large corpora of text in natural language processing (141), and
recently applied to protein variation (9).
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