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Abstract

Advances in neuroimaging acquisition protocols and denoising techniques, along with

increasing magnetic field strengths, have dramatically improved the temporal signal-

to-noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits

spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution

and opens a route toward performing precision fMRI in the brains of individuals. Yet

ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, there-

fore, the sensitivity to the blood oxygen level-dependent (BOLD) effect and other func-

tional contrasts across the brain. Here we investigate the potential of various

smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy

of activated clusters in single-subject analysis. We introduce adaptive-weight smooth-

ing with optimized metrics (AWSOM), which addresses this challenge extremely well.

AWSOM employs a local inference approach that is as sensitive as cluster-corrected

inference of data smoothed with large Gaussian kernels, but it preserves spatial

details across multiple tSNR levels. This is essential for examining whole-brain fMRI

data because tSNR varies across the entire brain, depending on the distance of a

brain region from the receiver coil, the type of setup, acquisition protocol, preproces-

sing, and resolution. We found that cluster correction in single subjects results in

inflated family-wise error and false positive rates. AWSOM effectively suppresses

false positives while remaining sensitive even to small clusters of activated voxels.

Furthermore, it preserves signal integrity, that is, the relative activation strength of

significant voxels, making it a valuable asset for a wide range of fMRI applications.

Here we demonstrate these features and make AWSOM freely available to the

research community for download.
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Practitioner Points

• Ultrahigh field functional magnetic resonance imaging (fMRI) (≥7 T) allows for submillimeter

spatial resolution acquisitions. This can reduce temporal signal-to-noise ratio and sensitivity

to blood oxygen level-dependent (BOLD) effects.
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• Adaptive-weight smoothing with optimized metrics (AWSOM) enhances BOLD sensitivity

while preserving the spatial accuracy of detected voxel clusters. AWSOM utilizes a local

smoothing approach that balances sensitivity with preserving spatial detail and signal integ-

rity of activated voxels.

• AWSOM effectively suppresses false positives by controlling family-wise error rates in

single-subject fMRI, which is not the case for cluster correction. It is made freely available for

the research community.

1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a mainstay of neuro-

science. The advent of ultrahigh field MRI (UHF, B0 ≥ 7 Tesla),

improvements in pulse sequences (Huber et al., 2018; Huber

et al., 2021) and denoising techniques (Beckers et al., 2023; de Che-

veigné & Nelken, 2019; Vizioli et al., 2021), have significantly

enhanced the sensitivity to the blood oxygen level-dependent (BOLD)

effect (Ogawa et al., 1992) and other neurovascular contrasts used in

fMRI (Dowdle et al., 2023; Huber et al., 2021). This progress has ush-

ered in a new era in fMRI, enabling examinations of individual sub-

jects' brains at submillimeter spatial resolution (Harmer et al., 2012;

Yacoub et al., 2001). This advancement is crucial for identifying fine-

grained neural circuits and elucidating their roles in complex cognitive

functions and neurological disorders (De Martino et al., 2018;

U�gurbil, 2018).

The superior resolution of UHF fMRI permits the capture and

analysis of the intrinsic details of activated neurovascular units down

to the cortical layer level (Shamir et al., 2022; Viessmann &

Polimeni, 2021) and the depths of brain stem nuclei (Gizewski

et al., 2014; Sclocco et al., 2018; U�gurbil, 2021). The ability to resolve

the unique aspects of functional activity in the individual brain permits

the profiling of functional signatures and an understanding of neural

mechanisms and their variations (Besle et al., 2013; Dubois &

Adolphs, 2016), often masked out in group-level analyses (Feredoes &

Postle, 2007). An individualized approach is necessary to enhance the

precision of cognitive and neurological research and provides a spring-

board for personalized treatments and interventions in clinical settings

(Chen et al., 2012; Jabakhanji et al., 2022).

At the same time, high spatial resolution fMRI is challenged by

the temporal signal-to-noise ratio (tSNR) due to the reduction of the

image voxel size in order to further nominal spatial granularity

(Tabelow et al., 2009; Vizioli et al., 2021). This lowers the BOLD sensi-

tivity (BS) and raises the detection threshold for profiling subtle neu-

rovascular activity (Runge et al., 2007; Zhu et al., 2022). The tSNR is a

fundamental metric in fMRI, reflecting the precision with which the

BOLD signal can be discerned from the background noise over time

(Liu, 2016; Murphy et al., 2007; Welvaert & Rosseel, 2013). The

spatial aspect of noise involves high-frequency random fluctuations

and lower-frequency drifts that obscure the BOLD signal, eventually

leading to a reduced identification of brain activity patterns or even

incorrect results (Caballero-Gaudes & Reynolds, 2017; Greve

et al., 2013). By enhancing tSNR, a more accurate representation of

the BOLD signal can be achieved (Tabelow et al., 2009; Van Der

Zwaag et al., 2012; Vizioli et al., 2021), which is essential for reliable

detection and localization of brain activity, particularly when exploring

fine-grained neuroanatomical structures in the individual brain.

So there is a need for spatio-temporal filtering in high-fidelity

fMRI. In pursuit of reliability, it is also essential to discriminate true

neurovascular activation from false positive (FP) signals (Eklund

et al., 2016). This distinction remains to be established with single-

subject fMRI, as FPs may be averaged out in group analysis but not in

a single brain. Compounding the problem, higher resolutions have

been shown to inflate the FP rate (FPR; Mueller et al., 2017). This

work examines approaches to smoothing and statistical inference

regarding their ability to enhance tSNR while preserving the fine-

grained spatial details that are crucial for accurate brain activity map-

ping in UHF fMRI in the individual subject. To meet this need, we con-

ducted an in-depth evaluation and validation of three types of spatial

smoothing.

First, we examined the Gaussian smoothing for cluster-corrected

statistical inference, which is the most common approach in fMRI

analysis (Eklund et al., 2016; Woo et al., 2014). This method is known

to enhance BS (Woo et al., 2014). Gaussian smoothing employs the

convolution of the image with a Gaussian kernel function with a fixed

size (bandwidth) to reduce noise (Kruggel et al., 1999; Mikl

et al., 2008). This approach has a significant drawback, however, due

to its tendency to blur fine spatial details, including anatomical bound-

aries. This can lead to the inclusion of confounding effects from neigh-

boring non-active voxels. Gaussian blurring may be beneficial at the

group level by increasing the overlap of “representative” population

effects. Single-subject fMRI respects the divergent architectures and

functionalities across brains (Westlin et al., 2023), focusing on the

fine-grained idiosyncrasies of individual processing structures in pur-

suit of resolving cortical layer profiles or specific subdivisions of brain-

stem nuclei. To mitigate spatial blurring, we specifically chose small

Gaussian kernel sizes of 1� and 1.5� times the spatial resolution, aim-

ing to reduce noise while preserving as much spatial detail as possible

(Friston et al., 1995; Mikl et al., 2008). This approach was contrasted

with the traditional use of a Gaussian kernel at 2.5� the spatial reso-

lution (Liu et al., 2001; Poldrack et al., 2011). While this is effective at

noise reduction, it is known to heavily blur fine details, potentially

attenuating critical neurofunctional information.

Second, the spatial adaptive nonlocal means (SANLM) filter

(Manjón et al., 2010) has been introduced into fMRI to locally smooth

the data while preserving fine-grained details (Bernier et al., 2014).
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Here, we test its suitability for cluster correction as an alternative to

Gaussian smoothing. The SANLM filter reduces noise by examining

each voxel in the image, finding voxels with similar intensity values

throughout the entire brain volume, and then averaging these to

smooth out the noise (Bernier et al., 2014; Tellez Ceja et al., 2022).

SANLM was originally intended to denoise anatomical MR images; by

leveraging information redundancy in spatially distributed patterns,

the SANLM filter aims to maintain the integrity of edge details while

reducing noise, with the intensity levels governing the trade-off

between detail preservation and noise reduction (Manjón et al., 2010).

In fMRI, activation patterns exhibit a higher level of detail with

SANLM compared to Gaussian smoothing (Bernier et al., 2014; Tellez

Ceja et al., 2022). Yet, it is not clear whether these patterns corre-

spond to underlying BOLD effects or whether they are biased by local

anatomical contrasts.

The adaptive weights smoothing (AWS) filter emerged as an evolu-

tion of spatial adaptive fMRI filters (Tabelow et al., 2006). As SANLM,

the AWS filter focuses on finding a balance between noise suppres-

sion and spatial resolution. AWS stands apart from Gaussian and

SANLM filters by smoothing the statistical parametric maps (SPMs)

instead of the original volumes of the time series. This contrasts with

cluster correction, which relies on a uniform Gaussian smoothness of

the data to determine the significance of voxel clusters. Instead, AWS

defines locally adaptive weighting schemes that are based on local dif-

ferences in the data: it incorporates information on spatial correlation

in the data by considering the residuals obtained by the general linear

model (GLM) in unfiltered data (Tabelow et al., 2011). In addition to

exploring the AWS filter in default settings, we examine optimal

parameter settings for AWS to customize to the specific demands of

decoding fine-grained functional signatures in the individual brain at

7 T, which we termed AWS with optimized metrics (AWSOM).

This study systematically evaluates and compares the perfor-

mance of Gaussian, SANLM, and AWS filters, compared to unfiltered

data, as a means of finding an optimal balance between noise reduc-

tion and the preservation of high-resolution detail in UHF fMRI. We

developed an analytical framework, that employs a synthetic fMRI

dataset as a ground truth. This framework allows us to evaluate how

effectively different filter types preserve BOLD-related information

by using three metrics: BS, reflecting BOLD effect detectability across

tSNR levels; spatial accuracy (SA) of activated voxel clusters; and sig-

nal integrity (SI) of the hemodynamic response function (HRF) based

on magnitude distribution within these clusters. We applied our

insights in a proof-of-principle pilot study where we acquired and ana-

lyzed task-based 7 T fMRI data for a finger-tapping paradigm. Finally,

we performed a null-hypothesis test using resting-state 7 T fMRI data,

for which we modeled different block and event-related designs, as

proposed by Eklund et al. (2016), to determine the family-wise error

rate (FWER), and FPR produced by each filter for data obtained from

in the brains of individual subjects.

Our work contributes to the fields of neuroimaging and neurosci-

ence by providing an in-depth analysis and demonstration of the pre-

cision and efficacy of fMRI smoothing filters and their respective FPR

for 7 T fMRI in the individual brain. The improved AWS filter

outperforms previously available filters by enhancing tSNR across the

brain without sacrificing the high-resolution details of 7 T fMRI. En

route to unveiling fine-grained functional neurosignatures at the single

subject level, we share the advanced AWSOM filter with the commu-

nity in an open access git repository.

2 | METHODS

2.1 | Synthetic datasets

The creation of synthetic fMRI datasets involved several steps. First, a

single volume from a task-based fMRI dataset acquired at 7.0 T (single

shot EPI, TR/TE = 1200/33.2 ms, spatial resolution = 1.5 mm isotro-

pic) was selected and duplicated 599 times as anatomical reference

for the synthetic time series. Next, four spatial masks with different

shapes and sizes were created to delineate the regions of activation

(ROA), as ground truth. Then, eight activation onsets, each separated

by an interstimulus time of 90 s, were convolved with a double

gamma function (Friston et al., 1998; Glover, 1999) to simulate the

HRF. The HRF was set with a time to peak of 4.8 s, an initial dip at

1.2 s, poststimulus undershoots at 8.4 s, and return to baseline after

20 s since the onset. Two types of noise distributions were simulated:

Gaussian and Rician. Gaussian noise was generated in Python using a

function to produce pseudorandomized values matching the data's

dimensions, each with a variance set to 1. Rician noise was computed

as the square root of the sum of two squared and independent Gauss-

ian noises.

To explore the filter's efficiency at different noise levels, the two

types of noise were amplified to five magnitudes, 1, 2, 4, 8, and 16%,

the percentages are relative to the baseline. Finally, the noises were

added to the synthetic BOLD signal time series.

Two types of data sets were designed with ROAs comprising

either homogeneous or heterogeneous BOLD magnitudes. For homo-

geneous ROAs, the same magnitude in all voxels was set within the

ROAs. The BOLD magnitudes used were 0.5, 1, 2, 3, 4, 5, and 6%. For

heterogeneous ROAs, three BOLD magnitudes were mixed within the

ROA, 1.5, 3, and 6%. Ten time series were created for each noise

level, BOLD magnitude, and type of noise distribution. The results

shown are based on the average of the time series, with standard

deviation represented by error bars.

The time series were simulated across all five noise levels. How-

ever, due to the negligible detection of activations at higher noise

levels (8 and 16%), the comparison of filter performance in the results

section is limited to data up to the 4% noise level.

2.2 | Data processing and analysis

Preprocessing was performed using NeuroImaging PREProcessing toolS

(fMRIPrep) (Esteban et al., 2019), which included structural MRI pro-

cedures: brain extraction, tissue segmentation, and spatial normaliza-

tion. For BOLD sequences, preprocessing involved image estimation,
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head motion correction, slice time adjustment, susceptibility distortion

correction, and registration to anatomical and standard spaces.

Gaussian smoothing was carried out at 1.5, 2.5, and 3.5 full width

at half maximum millimeter, which correspond to kernel sizes of 1�,

1.5�, and 2.5� times the voxel resolution. The Analysis of Functional

NeuroImages (Cox, 1996) tool was employed for Gaussian filtering.

FSL FEAT was used for first-level analysis by GLM regression. Statisti-

cal inference was conducted based on cluster correction with a

threshold of 3.1 and a p-value of <.05.

SANLM filtering of fMRI data was performed via the Computational

Anatomy Toolbox (Gaser et al., 2022) in SPM (Penny et al., 2007) 12 at

three intensities: light, medium, and strong. The filter strength in the

context of the nonlocal means denoising algorithm, as discussed by

Manjón et al. (2010) is regulated by the parameter ℎ2. This parameter

determines the degree of smoothing applied during the denoising pro-

cess. Essentially, ℎ2 controls how much influence neighboring voxels

have on the denoised value of a given voxel of interest. A higher value

of ℎ2 results in stronger smoothing because it increases the weight of

the differences between intensity values in the averaging process, lead-

ing to more aggressive noise reduction. The optimal value for ℎ2 has

been experimentally found to be σ2, where σ represents the standard

deviation of the noise (Buades et al., 2008; Lee, 1980). This setting is

based on the assumption that the noise is stationary (uniform across

the image). In this scenario, a global variance (σ2) effectively guides the

smoothing process, balancing noise reduction against the preservation

of image details. The SANLM algorithm estimates the ℎ2 value to be

used based on the selected filtering strength. The medium strength per-

forms the nonlocal adaptive filtering less intensively than the standard

form. Medium uses a single iteration and evaluates the possibility of

applying low resolution filtering, which down samples the volume to

the double resolution size, filters and then resamples to the original

resolution. This option is only applied on submillimeter data. The light

strength filters with the half intensity of the medium strength, but with-

out applying the sub-resolution filtering. The Strong option uses the full

adaptive nonlocal filter strength, forces sub-resolution filtering and

applies an additional iteration (Gaser et al., 2022). Statistical inference

was conducted based on cluster correction with a threshold of 3.1 and

a p-value of <.05.

The AWS filter runs in R environment, as part of the fmri and aws

libraries (Polzehl et al., 2020; Tabelow et al., 2011). AWS employs the

contrast beta weights, also called contrast parameter estimates

(COPEs), variance contrast beta weights, and the residuals as inputs.

Those files were computed by the FSL GLM analysis (Jenkinson

et al., 2012; Smith et al., 2004). AWS filter operates through an itera-

tive process that utilizes a series of incrementally increasing band-

widths. These bandwidths establish adaptive, or data-dependent,

weighting schemes for conducting local averaging within specified

vicinities. The calculation of weights within these vicinities incorpo-

rates two components: a traditional, non-adaptive kernel filter part,

and an additional factor that assesses the discrepancy in values

between two voxels. This assessment is based on the extent of vari-

ance reduction achieved in preceding iterations. Consequently, this

iterative process leads to a progressive decrease in the variance of the

estimated denoised values, enhancing the signal's clarity. To prevent

the inclusion of outlier values in the local averages, the AWS method

automatically reduces the weights, thereby excluding such outliers

from the averaging process. The steering parameter in this procedure

is λ, which governs the adaptation process. A high λ value, approach-

ing infinity, reverts the process to that of classical, non-adaptive ker-

nel smoothing like the Gaussian filter, while a λ value close to zero

maintains the data in its original, unaltered state. The selection of the

optimal λ value is not contingent upon the specific dataset but is

determined prior to analysis, based on the anticipated noise distribu-

tion. It is important to note, however, that inaccuracies in the assumed

noise distribution or the presence of spatial and temporal correlations

may necessitate fine-tuning of the λ parameter.

The λ value for AWSOM is refined by reducing it by 20% from

the default AWS setting (from λ = 1 to λ = 0.8). This adjustment

enhances the method's sensitivity to detect smaller activated clusters

while concurrently minimizing FPs. A λ of 0.8 is estimated to be the

threshold for detecting small clusters at an intermediate noise level

(2%), such as mask 1 with a size of 33 voxels (Figure 1a). This resulted

in a reduction in SA and SI of less than a 2%. Reducing λ by more than

20% would significantly increase the number of FPs, thereby

adversely affecting accuracy and SI—key metrics that we strive to

maintain. Furthermore, AWSOM is distinct from AWS by generating

statistical parametric output maps that show the magnitude of the

BOLD signal at the statistically significant voxels. These are generated

by applying a mask of Z maps to the COPE file.

AWS and AWSOM filters are based on the propagation-

separation approach proposed by Polzehl et al. (Polzehl &

Spokoiny, 2005) and later suggested for fMRI analysis (Polzehl

et al., 2010; Tabelow et al., 2006). Further information on the filter

operation is described by Tabelow et al. (Polzehl & Tabelow, 2019;

Tabelow et al., 2009). AWS and AWSOM have been extracted from R

and binaries have been compiled for use under Bash and Python. We

publish the pipelines, scripts, and packages for download in our

GitHub repository.

2.3 | Evaluation metrics

All the active voxels that coincide with the location of the ground

truth are considered true positives (TPs). Similarly, all voxels that are

not part of the ground truth are true negatives. All the non-active vox-

els that are within the ROA are false negatives (FNs), and all the active

voxels outside the ROA are FPs. The SA was calculated with the

Sørensen-Dice coefficient formula, defined as two times TP divided by

the sum of two times TP plus FN plus FP and multiplied by 100, as

seen in (1). BS: TP divided by the sum of TP and FN and multiplied by

100, as seen in (2). SI: is calculated as the correlation between the

ROA, used as ground truth (Gt) in space and magnitude, and

the COPEs βmð Þ, calculated from the GLM, and masked with the thre-

sholded activity map (z map), and multiplied by 100, as seen in (3). If

there were no identified activations to compare, the correlation was

designated as 0.
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SA¼ 2�TP
2�TPð ÞþFNþFP

� �
�100 ð1Þ

SA¼ TP
TPþFN

� �
�100 ð2Þ

SI¼Corr Gt,βmð Þ�100 ð3Þ

The results of the three metrics are presented in three-

dimensional graphs. This allows for a comprehensive comparison of

the filters, including the average values across trials and their respec-

tive standard deviations. The averaged values are additionally dis-

played in numbers as heat maps in the supplementary Figures 1–6.

2.4 | Task-based fMRI data

Three right-handed, healthy participants were included after receiving

approval by the local ethical committee. Informed, written consent

was obtained from each volunteer before the study. A finger-tapping

paradigm was employed, which consisted in tapping each finger

(index, middle, ring, and small) against the thumb of the right hand,

with an approximate frequency of 3 times/second.

The tapping activity was requested for 30 s for each finger, and

15 s of rest between fingers. Tapping the 4 four fingers consisted of

one cycle. The run consisted of 5 cycles, with a total time of 15 min

and 15 s, including 15 s of rest before the first tapping.

The fMRI time series (GE-EPI, TR/TE/FA = 2000 ms/28 ms/66�,

FOV/matrix = 240 � 244 mm/160 � 160, 80 slices, 1.5 mm isotro-

pic, 458 volumes) were acquired on a MAGNETOM 7 T scanner

(Siemens Healthcare, Erlangen, Germany) with a single-channel-

transmit/32-channel receive head coil (Nova Medical, Wilmington,

MA, USA). The datasets were pre-filtered with NORDIC (Vizioli

et al., 2021), preprocessed with fMRIPrep (Esteban et al., 2019), fil-

tered and processed using the same software tools that were used for

the synthetic datasets.

2.5 | Resting-state fMRI data

Seven healthy participants underwent two resting-state fMRI scans

within a single session, while two additional healthy participants were

subjected to only one resting-state fMRI scan each. All subjects

were included after receiving approval by the local ethical committee.

Informed, written consent was obtained from each volunteer before

the study. This resulted in a total of 16 time series. Participants

received no specific instructions during the scanning process. Each

scanning session lasted for 10 min.

The resting-state fMRI time series (GE-EPI, TR/TE/FA =

2000 ms/28 ms/66�, FOV/matrix = 240 � 264 mm/160 � 160, 80

slices, 1.5 mm isotropic, 300 volumes) were acquired on a MAGNE-

TOM 7 T scanner (Siemens Healthcare, Erlangen, Germany) with a

single-channel- transmit/32-channel receive head coil (Nova Medical,

Wilmington, MA, USA). The datasets were preprocessed with

F IGURE 1 Synthetic fMRI time series creation. (a) Four different masks were created to define the regions of activation (ROA) as ground
truth. The voxels within the activation regions were convolved with a double gamma function to model the hemodynamic response function
(HRF). (b) Gaussian and Rician noise distributions were simulated and amplified to five magnitudes (1–16%). To contextualize the simulated noise
levels, the temporal signal-to-noise ratio (tSNR) was measured in the frontal lobe of the simulated time series, indicated in green. The tSNR values
observed for varying noise levels were consistent for both noise distributions: 40 at 1% noise, 20 at 2%, 10 at 4%, 5 at 8%, and 2 at 16%. The
noises were added to the synthetic BOLD signal time series. Two types of datasets were created: One with homogeneous BOLD magnitudes for
each level, and another heterogeneous, combining the three magnitudes. (c) Homogeneous magnitude: The simulated BOLD magnitude was the
same across all the voxels in the ROA. Seven magnitudes (0.5, 1, 2, 3, 4, 5, and 6%) were used for each simulation. (d) Heterogeneous magnitudes:
Three magnitudes were combined on each mask (1.5, 3, and 6%).
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fMRIPrep (Esteban et al., 2019) and denoised using FSL's Melodic

(Jenkinson et al., 2012; Smith et al., 2004). First-level analyses with

FSL FEAT (Jenkinson et al., 2012; Smith et al., 2004), and registration

with ANTs (Avants et al., 2011).

We used the acquired resting-state data to investigate FPR in

task-based fMRI for the smoothing filters that were applied. Following

the protocol of Eklund et al. (2016), we analyzed the resting-state data

as if it were task fMRI, where no activations should ideally be present,

modeling four different paradigms. Any detected activations were

considered FPs, indicating the unreliability of statistical inference

under the tested conditions. Eklund et al. (2016) used this approach

to demonstrate inflated FPRs produced by different software pack-

ages in fMRI on a group level; we here focus on the FPRs obtained for

different smoothing filters in single-subject fMRI at high resolution.

Four paradigms were designed, two block activity paradigms (B1 and

B2) and two event-activity paradigms (E1 and E2), as used by Eklund

et al. (2016). The B1 paradigm consisted of 10-s on and 10-s off

cycles. B2 in cycles of 30-s on and 30-s off. The E1 event activity par-

adigm consisted of 2 s of activity and 6 s of rest. E2 between 1 and

4 s of activity and between 3 and 6 s of rest, in a pseudorandom man-

ner. In our study, to increase the number of analyses and thus statisti-

cal power, we designed variations of each of the paradigms. We

shifted the activity times by 5 s for B1 and B2, creating four para-

digms for B1 and 13 for B2. Following the same logic, E1 was shifted

by 4 s, creating an additional paradigm. With E2 we took advantage of

the use of the pseudorandom function of its activity and rest times,

creating 16 paradigms. With the 16 time-series and the paradigm vari-

ations, 64 analyses were performed with B1, 208 with B2, 32 with E1

and 256 with E2. This gives a total of 560 different analyses for each

filter.

The FWER was calculated by dividing the number of analyses

with at least one active voxel by the total number of analyses of each

paradigm type. The FPR was calculated as the number of active voxels

divided by the total number of voxels in the brain, averaged over all

analyses of each paradigm type. In addition, we calculated the mean

number of active clusters and the mean number of active voxels for

each paradigm type. FP distribution maps were produced by calculat-

ing the sum of all thresholded binarized z-maps for each filter and for

each paradigm type, after being registered to standard MNI space

(MNI152NLin6Asym).

3 | RESULTS

3.1 | Overview of the synthetic data sets

The synthetic fMRI dataset, with an isotropic voxel size of 1.5 mm,

exhibited four ROA with diverse shapes and sizes that served as our

ground truth, in which HRFs were modeled as BOLD signal changes

over time with magnitudes ranging from 0.5% to 6% (Figure 1a). To

simulate different tSNRs acquired for different MRI setups Gaussian

and Rician noises were added to the synthetic BOLD signal time series

at a broad range of magnitudes (Figure 1b). Higher noise levels were

presumed to increasingly obscure the HRFs, challenging their detec-

tion by the GLM regression model. Most evaluations were performed

based on datasets with homogeneous ROAs comprising similar BOLD

magnitudes across all voxels (Figure 1c). To model a more realistic sce-

nario, a dataset with heterogeneous ROAs contained a mix of three

magnitudes—1.5, 3, and 6% (Figure 1d). We used this dataset to eval-

uate the filters' abilities to preserve the integrity of relative BOLD

magnitudes at a later stage of our study.

3.2 | Comparative analysis of filtering effects on
BOLD activity

We first investigated the distinct effects of the applied filtering

methods on BOLD activity clusters within the synthetic data set,

with noise levels ranging from 1 to 16%. The results were so similar

for all noise types that we continue to show results only for

Gaussian noise in the manuscript (Figure 2). The results for the

Rician noise are to be found in the supplementary section (Supple-

mentary Figures 4–7).

Gaussian smoothing filters enhanced the BOLD effect but at the

cost of spatial detail within BOLD clusters. This effect became pro-

nounced with increasing kernel size, with larger kernel sizes of 1.5�
and 2.5� voxel sizes depicting the shape of the ROAs more accurately

at higher noise levels. Data filtered with SANLM showed an amplified

BOLD effect. However, this amplification resulted in an arbitrary

deformation of the original shapes of the BOLD clusters with increas-

ing filter strength. The AWS and AWSOM filters, on the other hand,

effectively preserved the geometry of the ROAs at lower noise levels

(1 and 2%). At higher noise levels, all filtering methods, including

AWS, led to distortion in the shapes of ROAs and failed to identify

active voxels.

Gaussian and SANLM filters exhibited a decrease in z-scores as

the noise levels increased. In contrast, AWS and AWSOM filters main-

tained a consistent range of z-scores across all noise levels, depicting

all BOLD clusters at their highest value (6.36). It is important to note

that the z-scores obtained from AWS filtering are not directly compa-

rable to those from other filters due to differences in calculation

methodologies. Nevertheless, these z-scores exceeded the threshold

of 3.1, corresponding to a p-value of .001 after cluster correction,

indicating their statistical significance.

3.3 | Metrics for evaluating simulated fMRI data

To assess the filters' performances in preserving the BOLD signals for

different noise levels, we evaluated them based on three metrics: the

sensitivity to detect the BOLD signal change of activated voxels, the

SA with which activated voxel clusters were preserved, and finally,

the integrity of relative BOLD magnitudes within an activated voxel

cluster. We initially focused on ROAs with a homogeneous BOLD

magnitude of 6% across five noise levels ranging from 1 to 16%.

To measure SA and BS, we quantified the number of FNs, FPs, and
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TPs across the entire brain. FPs are defined as voxels that have not

been generated as showing BOLD signals over time in the synthetic

datasets but have been detected as being activated, while FNs are

active voxels within the ROAs that have not been detected as acti-

vated (Figure 3a).

BS, expressed in percentages, was calculated by the formula for

statistical sensitivity (Figure 3b). At a noise level of 1%, corresponding

to a tSNR of 40 (Figure 1b), all activated voxels have been detected

across all filters, and even for unfiltered data we calculated a BS of

100%. The filters begin to effectively amplify lost BOLD signals at a

noise level of 2% (tSNR of 20), where the BS of unfiltered data

dropped to 82%, while BS was maintained at 97–100% across all

filters. Although all filters' BS remained consistently high across the

first three noise levels, the BS for 1� Gaussian filter dropped consid-

erably at 4% noise (SNR of 10). The 2.5� Gaussian was the only filter

to obtain a high value at 8% noise.

SA was determined using the Sørensen-Dice coefficient formula,

with results also converted to percentage values (Figure 3c). The

resulting plots reflect the effects displayed in the example slice above

(Figure 2). In contrast to the BS in unfiltered data of 100% at 1%

noise, the SA in unfiltered data was only 85%, indicating the detection

of FP across the brain when no filters were applied. The strong

SANLM filter and Gaussian filters with 1.5� and 2.5� kernel sizes

obtained the lowest SA values (70%<) at a noise level of 1%, attrib-

uted to an increase in FPs around the ROAs—emphasizing BS comes

at the cost of SA for these filter types. Gaussian 1�, SANLM light and

medium filters exhibited the highest SA at a noise level of 2%, Gauss-

ian 2.5� at 8%, where most other filters, except AWS and AWSOM,

failed to detect any activity. AWS and AWSOM showed the highest

SA across all filters; they were the only ones that achieved an SA of

100% at a noise level of 1%, an SA of 98% at 2% noise, and still

ranked among the highest SA with about 90% at a noise level of 4%

together with Gaussian 1.5�. AWS was the only filter that produced a

proportional decrease in SA as the noise level increased. This pattern

would generally be expected and was also observed with unfiltered

data, whose SA dropped to 75% at 2% noise and to 21% at 4% noise.

We also introduced SI as a metric to assess the impact of the filters

on the representation of relative activity strength within an activated

region. SI is calculated as the correlation between the ROA (used as

ground truth in space and magnitude) and the COPEs derived from the

GLM, for the voxels that have been found significant based on z statistics

(z map), thresholded at 3.1 and cluster corrected (Figure 3d). This allowed

us to assess BOLD magnitudes of statistically significant voxels. The dis-

tortion effects of the filters on the BOLD signal magnitudes were already

evident at a noise level of 1%, indicating that all filters impact SI, with

AWS and AWSOM filters appearing to be exceptions, preserving SI to

100%. Both AWS and AWSOM performed the best across all filters at

noise levels of 1–2% and the second best at a noise level of 4%, preserv-

ing SI to 88%, slightly below Gaussian 1.5� with 91.

3.4 | Detailed evaluation of individual ROA masks
and the whole brain across BOLD magnitudes

In the previous sections, we found that the filters that were applied

were feasible to principally preserve and amplify large BOLD effects

F IGURE 2 Averaged BOLD activity cluster comparison across 10 synthetic datasets with homogeneous magnitude. Gaussian noise at 1, 2,
4, 8, and 16% noise levels, 6% BOLD. Unfiltered data compared to Gaussian and SANLM and AWS filters. Gaussian smoothing amplifies the
BOLD effect but blurs the spatial details of BOLD clusters. SANLM filtered data (especially strong SANLM) show amplification of BOLD effects,

deforming the shapes of the original BOLD clusters. AWS and AWSOM showed similar results. Both preserved the geometry of the BOLD cluster
at 1 and 2% noise levels. The BOLD shapes are distorted for higher noise levels for all filter methods. Gaussian and SANLM filters z-scores
decrease extensively for greater noise levels. Both AWS filters keep the same range of z-scores along all the noise levels, depicting all the BOLD
clusters with their highest value (≈6). AWS and AWSOM z-scores are not comparable to those of other filters due to their specificities in the
calculation. Nevertheless, they surpass the 3.1 threshold, after cluster correction.
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of 6% magnitude across the first three noise levels, with a tSNR rang-

ing from 40 to 10, the lowest. Below a tSNR of 10 (4% noise), all

filters, except Gaussian 2.5�, heavily distorted the shape of complex

ROAs or did not detect any signal at all. Therefore, we performed the

following evaluations at the first three noise levels (1–4%≙tSNR

40–10), but for decreasingly lower BOLD magnitudes. We evaluated

BS, SA, and SI individually for each ROA mask—comprising homoge-

neous BOLD magnitudes, as well as for the whole brain. The results

described below correspond to the simulated noise with Gaussian

distribution. Results for Rician noise are found in the supplementary

section. Again, the results were consistent across the two types of noise.

When noise levels were down to 1% (tSNR 40) and BOLD magni-

tudes around 3% and higher, BS was nearly perfect (≈100%) for all fil-

ters across all masks and the whole brain (Figure 4, supplementary

Figure 1). Unfiltered data, however, suffered impaired BS already at

BOLD magnitudes of 4%, while BS was down to one third for BOLD

magnitudes of 3%, demonstrating that smoothing fMRI data can have

tremendous effects on BS even at comparably high tSNR.

At 2% noise (tSNR 20), the filters that best amplified BS across

the whole brain were Gaussian 2.5�, AWS and AWSOM (BS >80%).

The lower the BOLD magnitude and the higher the noise level, the

better these filters performed compared to others. This was true for

the whole brain and all individual masks. However, for strong noise

levels of 4% (tSNR 10), AWS performed decreasingly well for detect-

ing the small spheric ROA of mask 1 at lower BOLD magnitudes, while

Gaussian 2.5� suddenly failed to detect it for BOLD magnitudes of

≤3%. AWSOM, which we optimized to detect small clusters of subtle

BOLD effects at low tSNR, preserved mask 1 with decent BS to BOLD

magnitudes of ≥3%.

Mask 1 was the most challenging for the filters to detect, as it

had the smallest cluster size, with 33 voxels. At 1% noise, decent SA

results (>70%) were obtained from a BOLD magnitude of 2% for

Gaussian 1� and 1.5�, light and medium SANLM, and AWS filters

(Figure 5, supplementary Figure 2). At higher BOLD magnitudes, the

SA increased considerably for Gaussian 1� and AWS, reaching values

close to 100%. The trend was similar for the 2% noise level, which

required BOLD magnitudes of 4% and higher to obtain optimal

results. At the 4% noise level, only Gaussian 1.5� and AWSOM

obtained an SA above 75%, requiring a BOLD magnitude of 6%.

AWSOM performed remarkably well compared to other filters in pre-

serving the SA of the small spheric ROA with decreasing BOLD mag-

nitude and increasing noise levels.

F IGURE 3 Simulated time series evaluation metrics. BOLD homogeneous magnitude of 6%, five levels of noise (1, 2, 4, 8, and 16%) with
Gaussian noise distribution, assessing the whole brain. To calculate the spatial accuracy and BOLD sensitivity, the number of false negatives (FN),
false positives (FP), and true positives (TP) were quantified. (a) First row: Graphical description of FP and FN compared to the ROA mask 2. All
voxels that presented activations that were not active in the synthetic datasets are considered FP. The missing active voxels within the ROA are
FN. Second row: Number of FP and FN voxels counted, using each filter (horizontal axis) for each noise level (vertical axis) displayed in 3D. The
black bars above represent the standard deviation. Third row: Heat maps presenting the same information as in the second row, but in 2D.
(b) Spatial accuracy (SA) was calculated using the Sørensen-Dice coefficient formula (first row) and multiplied by 100 to obtain values in
percentages (second row). The SA for the five noise levels depicts low values to the SANLM strong filter and Gaussian 1.5� and 2.5� kernel sizes
due to the inflated FP. AWS and AWSOM obtained the same results; they achieved the highest spatial accuracy. (c) First row: BOLD sensitivity
(BS) formula in percentage. Second row: BS values. The BS was approximately similar between all the filters. (d) Signal Integrity (SI) is a metric
defined to evaluate the effect of the filtering methods on the representation of relative activity strength within an activated region. The SI is
calculated as the correlation between the ROA, used as ground truth in space and magnitude, and the contrast parameter estimates (COPEs),
calculated from the general linear model (GLM) and masked with the cluster corrected activity z map. At 1% noise level, the distortion effects that

the filters have on the BOLD signal become visible, indicating that denoising affects the signal. However, this is not the case for the AWS and
AWSOME filters, which exhibit minimal distortion, thereby demonstrating their superiority.
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Mask 2 had an irregular shape that was therefore challenging

to preserve. It was the largest of all masks, with 903 voxels. For this

mask, Gaussian 1�, medium SANLM, and AWS filters preserved the

best SA (>80%) from a BOLD magnitude of 3% at noise levels

of 1%. For BOLD magnitudes of 3% and 2% and noise levels of

4%, AWS maintained the best SA, along with AWSOM and

Gaussian 2.5�.

Masks 3 and 4 have the same spheric shape and number of vox-

els, 257, but were positioned at different locations in the brain with

distinct anatomical contrasts. The results were very similar between

these two masks, where AWS was the best filter for preserving SA at

all three noise levels from a BOLD magnitude of 2%. This was fol-

lowed by AWSOM, and matched by Gaussian 2.5�, which preserved

SA better with decreasing BOLD magnitudes and increasing noise

levels. Evaluating the whole brain, AWS showed the best SA score

overall, followed by AWSOM, and Gaussian 1� for higher BOLD mag-

nitude and at lower noise levels.

3.5 | Signal integrity

The SI metric was employed to quantitatively assess the underlying

BOLD signal magnitude of activated voxels post-filtering. This process

entailed the calculation of correlations in spatial and magnitude

dimensions between the ROA masks and the COPEs, which are

thought to reflect the relative BOLD magnitude per voxel. This

approach allowed us to assess the fidelity of the BOLD signal repre-

sentation across ROAs after applying noise filters, providing insights

into the effectiveness of each filtering technique in maintaining SI

under varying conditions.

To illustrate the logic behind the SI metric, the COPEs, which

have been masked with the area of the thresholded z statistical map,

to consider only significant voxels (z ≥ 3.1), were plotted in 3D and

compared with the ROAs as a reference and ground truth (Figure 6).

We used mask 2 (complex shaped ROA) and its respective activation

cluster with 3% BOLD magnitude for each filter at a noise level of 2%

(tSNR 20) to challenge the filters' performances and emphasize their

idiosyncrasies.

Despite the homogeneous distribution of BOLD magnitudes

across the ROA, all filters tend to suppress the signal unevenly, enfor-

cing their characteristic shapes onto the SI landscape (Figure 6a).

Gaussian filters, in particular, showed notable signal attenuation

toward the peripheries. The shapes produced by the SANLM filters

were irregular and lacked a clear pattern. AWS and AWSOM pro-

duced a COPE cluster that strongly resembled the ROA but with a

slightly convex surface. AWSOM also displayed some voxel tiles that

protruded relative to their neighbors despite the homogeneous mag-

nitude distribution in the ROA.

F IGURE 4 Sensitivity evaluated on simulated fMRI data sets using seven homogeneous BOLD magnitudes (0.5–6%) and three noise levels
(1, 2, 4%) of Gaussian noise distribution. The error bars correspond to the standard deviation. The performance of all filters is comparably high at
1 and 2% noise levels. The 2.5� kernel size is shown as the best except for mask 1 at the 4% noise level, similarly as the accuracy results, the
signal is removed along with the noise.
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We next determined the correlation coefficient between COPEs

and z-maps within significant voxel clusters, to estimate the extent to

which the relative BOLD magnitude distribution was already reflected

in the z-scores (Supplementary Figures 8 and 9). This was interesting

because z-maps and not COPEs are conventionally used in fMRI.

Barely differences between z-scores and COPEs were found for

Gaussian filters, as indicated by high correlation coefficients, espe-

cially at lower noise levels. For SANLM, we found random voxel peaks

that differed for COPEs and z-scores. AWS and AWSOM showed low

correlation coefficients between COPEs and z-scores. The ROAs with

flat surfaces of homogeneous magnitudes were resembled when using

z-maps, but not for COPEs.

For ROAs comprising heterogeneous BOLD magnitude levels

(Figure 6b), neither Gaussian nor SANLM filters could maintain the

mask's original shape or magnitude distribution. In contrast, AWS and

AWSOM preserved the mask shape and magnitude distribution with

high fidelity for COPEs. The z-maps of AWS-based filters heavily flat-

tened the integrity landscape, making differentiation of heteroge-

neous magnitude distributions impossible.

In analyzing homogeneous ROAs across noise levels and BOLD

magnitudes, AWS and AWSOM demonstrated superior SI at all noise

levels across all masks (Figure 7, supplementary Figure 3). AWSOM

performed particularly well for the small cluster mask (mask 1), which

AWS could not detect properly. For BOLD magnitudes of 1% or

higher, AWSOM consistently yielded SI values exceeding 70%. With

AWSOM applied to mask 1 at a noise level of 4%, the method exhib-

ited significant variability at smaller magnitudes (3% or less), as evi-

denced by the standard deviation indicated by the error bars in the

figure.

3.6 | Evaluation of SA, BS, and SI on
heterogeneous data

To identify high- and low-performing filters in a near-realistic sce-

nario, we evaluated SA, BS, and SI for heterogeneous ROAs (with

BOLD magnitudes of 6, 3, and 1.5%) across all masks and the entire

brain at a tSNR of 40, 20, and 10. The results are summarized in spi-

der plots (Figure 8).

AWS achieved the best stable and superior outcomes for BS, SA,

and SI at 1 and 2% noise levels in the analysis of the entire brain, as

well as masks 2, 3, and 4. This was tightly followed by AWSOM.

Gaussian 1� performed especially well for high tSNR. At low tSNR of

10, Gaussian filters with 2.5� kernel size outperformed other filters,

ranking as the most effective, with AWSOM following closely in sec-

ond place.

F IGURE 5 Accuracy evaluated on simulated fMRI data sets using seven homogeneous BOLD magnitudes (0.5–6%) and three noise levels
(1, 2, 4%) of Gaussian noise distribution. The average of 10 simulations was calculated for each case. The error bars correspond to the standard
deviation. The strong SANLM filter yielded the poorest results in all comparisons, followed by the Gaussian 2.5�. AWS and AWSOME performed
the best for both whole-brain analyses and for complex and large sphere clusters. The results for AWS and AWSOME are again similar, yet a
notable difference emerges when comparing the outcomes for the small sphere cluster (mask 1). AWSOME demonstrates higher accuracy than
both AWS and all other filters.
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In evaluating the very small spheric mask 1, the 1� Gaussian filter

demonstrated equilibrium among high BS, SA, and SI at noise levels of

1 and 2%. At a higher noise level of 4%, the Gaussian filter with a

1.5� kernel size emerged as the most effective, although it registered

SA and BS values under 65%. In contrast, the AWS filter exhibited the

least favorable outcomes across all three metrics in mask 1. AWSOM,

on the other hand, showed an optimal balance between the three

metrics. The SANLM filters displayed intermediate performance, with

the strong SANLM variant showing the least favorable results.

3.7 | Filter evaluations in task-based single-subject
fMRI data at 7 T

We next conducted a feasibility study on three volunteers to test the

filter performances in task-based fMRI data. The study involved a

comparative analysis of the BOLD response in the primary motor cor-

tex (M1) during a finger-tapping task, where participants tapped their

right-hand fingers against the thumb (Figure 9). The data were

acquired with an isotropic voxel size of 1.5 mm and denoised using

NORDIC (Vizioli et al., 2021).

Gaussian filters with 1�, 1.5�, and 2.5� kernel sizes displayed a

considerable number of significant voxels in regions neighboring M1

(Figure 9a,b) and beyond the brain's confines (Figure 9c). The SANLM

filters at light and medium intensities yielded more accurate BOLD

clusters, effectively preserving the boundaries of the M1 region

(Figure 9a). The strong SANLM filter resulted in substantial deviations

of the BOLD cluster's shape in participants 1 and 2 compared with

the cluster shapes preserved by all other filters. AWS and AWSOM

delineated a slender, continuous BOLD cluster along the M1 cortex in

all three participants. The differences in the z-scores for each filter

compared to that of unfiltered data are presented to facilitate the

comparison of the effects of the applied smoothing filters (Figure 9c).

The unfiltered data led to detect some voxels that are potentially FPs;

these are indicated as negative values in the difference maps of the

smoothed data. For SANLM and AWS-based filters, the negative clus-

ters along M1 occur because their z-values are lower than those of

the unfiltered data. As observed in Figure 6, the z maps of AWS-based

filters flattened out all gradual differences in BOLD magnitudes. We,

therefore, replaced significant voxels with COPEs to display the SI

(Figure 9b). The gradations exhibited coarser increments compared to

those of the Gauss and SANLM filters. AWS-based filters, and SANLM

light and medium, displayed their maxima without introducing addi-

tional gradations tapering around them, as seen with all Gaussian

filters.

In addition to the clusters in the contralateral M1, other BOLD

effects in the somatosensory-interoceptive-motor pathway—such as

the contralateral primary somatosensory cortex (S1), thalamus,

F IGURE 6 Comparison of the 3D BOLD magnitudes between the ground truth (here of mask 2) and the BOLD magnitudes obtained from the
contrasts parameter estimates (COPEs) after applying the noise filters. (a) Homogeneous BOLD magnitudes at 3 and 2% of noise level
(tSNR = 20). The first column shows the ground truth as a reference. This visualization allows us better to understand the filters' effects on the
BOLD signal. The Gaussian filters have a more visible attenuation effect on the sides, while the SANLM filters mitigations do not follow a clear
pattern. (b) Z-maps of homogeneous BOLD activity at 2% of noise level. (c) COPEs of heterogeneous BOLD magnitudes (1.5, 3, and 6%) at 2% of
noise level. (d) Z-maps of heterogeneous BOLD activity at 2% of noise level. Utilizing the signal integrity metric, we quantitatively evaluate the
underlying signal post-filtering by calculating both spatial and magnitude correlations between the absolute truth masks and COPEs. The Z maps
for AWS and AWSOME show identical values within the cluster, but the COPEs reveal their strong preservation of the reference shape. These
3D representations confirm that both AWS filters effectively minimize signal disruption during denoising.
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F IGURE 7 Signal integrity was measured on seven homogeneous BOLD magnitudes (0.5–6%) and three noise levels (1, 2, 4%) of Gaussian
noise distribution. The error bars indicate the standard deviation. BOLD magnitudes of 0.5% were too small to be distinguished from noise, even
after filtering, resulting in very low values for all filters. Overall, the AWSOME filter best preserves the integrity of the BOLD signal across the
four masks and the whole brain.

F IGURE 8 Spatial accuracy, BOLD sensitivity, and signal integrity were evaluated on simulated fMRI data sets using heterogeneous BOLD
magnitudes (1.5–6%) and three noise levels (1, 2, and 4%) of Gaussian noise distribution. Each axis corresponds to the analysis performed, which
are the separate masks and the whole brain. The plotted lines correspond to the metrics spatial accuracy, BOLD sensitivity and signal integrity.
The Gaussian filters performed well as a function of kernel size and noise level. On the other hand, AWSOM performs equally well to the
Gaussian filters regardless of noise level, being the best-balanced filtering method. The 2.5� Gaussian filter obtained the highest sensitivity,
although its accuracy was among the worst, especially at 1% noise, where it displayed low values. The AWSOM filter had the best and most
balanced performance, including the very small patterns of ground truth mask 1, for which the standard AWS had the worst performance across
the three metrics—revealing its deficiency in detecting small voxel clusters.
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posterior insula, cingulate cortex, and ipsilateral M1—that were

vaguely discernible through other filters were further accentuated

by AWS and AWSOM, as exhibited in the last files in panels a and b

of Figure 9. tSNR maps are displayed to indicate variability across

brain regions before and after applying NORDIC denoising

(Figure 9d).

3.8 | Evaluating FPR and distribution in
single-subject resting-state fMRI at 7 T

In the previous sections, we evaluated the advantages and disadvan-

tages of each filter on synthetic fMRI data. We then tested the filters

for experimental task-based 7 T fMRI results in the individual brain,

F IGURE 9 Comparison of the BOLD response in the primary motor cortex (M1) and primary somatosensory cortex (S1). A finger-tapping
experiment, right-hand fingers against the thumb, was performed on three healthy participants. (a) The first column displays the reference for the
expected regions of activation in M1 (green), S1 (pink). The subsequent columns present the resulting activity z maps obtained after applying each
of the filtering techniques. The 2.5� Gaussian filter's smoothing effect resulted in an increased number of FP in neighboring regions and
significantly blurred the image. SANLM light and medium intensities showed reasonable BOLD clusters that maintained the M1 boundaries.
SANLM's strong intensity on participants 2 and 3 produces excessive FP. Both AWS filters revealed a thin continuous BOLD cluster along the M1
cortex in all three participants. The Z scores for AWS are lower, approximately 6, compared to other filters. However, these Z values are above
the significance threshold (≥3.1), confirming their statistical significance. Fourth row: Axial view of the entire brain of participant 3. Fifth row:
Coronal view of the entire brain. Displaying the whole brain allows for a comprehensive visualization of all activity within the brain and, in certain
instances, activity detected outside the brain, as observed with Gaussian 1.0�, SANLM strong, and unfiltered data. (b) COPE maps masked with
z maps. By utilizing both Z maps and COPEs, we can ascertain which voxels are statistically significant and comprehend the magnitudes of BOLD
activity. These maps illustrate areas of stronger brain activity. The COPEs maps use arbitrary units that are based on the relative change from the
baseline. (c) The difference between each filter and the unfiltered results in panel (a) are shown. The unfiltered after NORDIC denoising is

considered as a reference to show the variations in the activation produced by each filter. (d) Temporal signal-to-noise ratio (tSNR) maps. These
maps present the spatial distribution of tSNR in axial and coronal view, using the same slices as in (a) of participant 3. For reference, a comparison
of the tSNR obtained before and after applying the NORDIC denoising is presented.
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F IGURE 10 Legend on next page.
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observing significant voxels that may or may not be related to the

applied task. To assess whether the applied filters produce inflated

FPRs in single-subject analysis for 7 T fMRI data under the assump-

tion that the null-hypothesis is true, we employed the tests proposed

by Eklund et al. (2016). These tests evaluated FP results across two

block (B1, B2) and two event-related paradigms (E1, E2) on resting-

state data (Figure 10).

Block paradigm B1 presented interleaving stimulus and resting

periods of 10 s each, B2 of 30 s. For event-related paradigm E1, we

modeled a stimulus duration of 2 s, followed by 6 s of rest; E2 had

varying stimulus periods of 1–4 s, interleaved by 4–6 s rest. We ascer-

tained the empirical FWER for each condition and filter, which reflects

the percentage of trials showing at least one FP voxel (Figure 10a).

This was compared against the FPR, comprising the ratio of falsely

activated voxels to the total voxel count within the brain (Figure 10b).

These observations were contextualized with the average number of

FP clusters (Figure 10c) and voxels per condition and filter

(Figure 10d).

The FWERs for the tested filters in single subjects were remark-

ably high. Excluding block paradigm B2, the FWER averaged around

70% for unfiltered data, decreasing to around 50% for Gaussian 1�,

approximately 35% for Gaussian 1.5�, and between 20 and 30% for

Gaussian 2.5�, depending on the paradigm. Therefore, for Gaussian

filters, the reduction in FWER can be read as a function of the

smoothing kernel size. The SANLM filters presented the highest per-

centage of FWER, approaching the values obtained by the unfiltered

for B1, E1, and E2, and even surpassing the values for B2. AWS and

AWSOM produced substantially lower FWER than other filters, falling

below the nominal 5% rate for the event-related paradigms E1 and

E2. FWER tended to generally increase with the duration of a para-

digm's on–off periods, with event-related E1 and E2 producing lower

FWER than the block paradigm B1. B2 produced strikingly high FWER

for all methods, with about 90% for unfiltered data, 80, 72, and 58%

for Gaussian filters 1�, 1.5�, and 2.5�, respectively, 50% for AWS,

and 55% for AWSOM (Figure 10a).

Although the FWER was high, the FPR showed that the identified

activations constituted less than 3% of the total brain volume for all

the filters and paradigms (Figure 10b). While FWER decreased with

the extent of smoothing, for FPR this relationship was reversed,

with larger smoothing kernels FPR ranging for block-paradigm B2

from 0.17 for unfiltered data to 0.3 for Gaussian 2.5�. The FPR of the

SANLM filters were less than 0.05% for all paradigm types, except for

B2, where the ranges were less than 0.2%. Other paradigms produced

substantially lower FPR, ranging from 0.01 to 0.07. AWS and

AWSOM obtained the lowest FPR across all filters.

Increasing the kernel size of the Gaussian filter reduced the aver-

age number of clusters (Figure 10c), but increased the number of

active voxels (Figure 10d). The Gaussian filter at 2.5� produced the

largest number of active voxels with a considerably large standard

deviation. AWS and AWSOM maintained the average number of clus-

ters and voxels lower than all other filters, showing their superiority in

suppressing FPs. Figure 10e illustrates the distribution of FPs in the

brain with a conjunction map across all trials per filter and paradigm.

The B2 paradigm shows active voxel clusters distributed throughout

the brain, heavily adding up across multiple trials for all three Gaussian

filters, and SANLM in its three intensities. AWS and AWSOM filters

exhibited tremendously fewer FPs that barely occurred at the same

position for two trials.

4 | DISCUSSION

In this work, we developed a framework to examine the efficacy of

different smoothing and inference methods for high spatial resolution,

single-subject fMRI at 7 T. The overall goal and achievement of our

work is to enhance BS while preserving SA and SI of identified BOLD

clusters across the brain under the premise of keeping FP activations

in check. Our main finding is that AWSOM best balanced the

demands of high spatial resolution fMRI for all noise levels in the brain

and overcame the three key challenges of single-subject fMRI at high

spatial resolution. The first challenge lies in enhancing the BS for large

and small clusters while preserving the SA over a considerable range

of tSNR. The second challenge focuses on SI—in other words, a filter's

effect on the relative BOLD magnitudes of activated voxels within a

detected cluster. The third challenge concerns our overall capacity to

distinguish signal from noise while keeping the likelihood of producing

FPs to a minimum to ensure that the inferences made from the analy-

sis are correct.

To address the first challenge, we aimed to improve BS while

maintaining SA across the varying tSNR present throughout the brain.

Large Gaussian filters strongly increased BS but came with a loss of

SA. This could be improved using small Gaussian kernels (1�, 1.5�) at

higher tSNR. The lower the tSNR and BOLD magnitude, the more

Gaussian smoothing was necessary to balance sensitivity and

F IGURE 10 Analysis of family-wise error rate (FWER) and false positive rates in fMRI data. (a) FWER, following the methodology established
by Eklund et al. (2016). Two block paradigms (B1, B2) and two event related paradigms (E1, E2) were used on resting-state fMRI time series,
presuming cero activity, therefore, all active voxels are false positives. B1 consisted in 10 s on and 10 s off (10 on/off). B2: 30 s on/off. E1: 2 s

active and 6 s' rest. E2: Active between 1 and 4 s, and 3–6 s rest, pseudorandomized. The nominal FWER of 5% is indicated with a black line. The
SANLM filters displayed the highest FWER. (b) The false positive rate was quantified by the ratio of falsely activated voxels to the total voxel
count within the brain. Despite the elevated FWER depicted in (a), (b) reveals that the proportion of falsely activated voxels did not exceed 0.3%
of the total brain volume. This panel further elucidates the impact of Gaussian smoothing on the inflation of false positives, in contrast to AWS
filters, which significantly mitigate such false activations. Notably, AWS filters achieved a zero false positive rate for the E1 paradigm and
maintained rates near zero for E2, underscoring their efficacy in enhancing data fidelity. (c) Average number of active clusters. (d) Average number
of active voxels. (e) Distribution of false positives. The maps in panel (e) provide insight into the spatial distribution and extent of activation.
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accuracy. tSNR can vary drastically depending on the type of study,

especially when the exact location and size of the expected activa-

tions are not known (Colizoli et al., 2020). The problem with this trivia

is the inhomogeneous sensitivity profile of the radio frequency

(RF) head array used for signal reception (Avdievich et al., 2009). The

tSNR in the cortex—which is close to the receive elements of the RF

head array—is approximately twice as high as in subcortical regions

such as the thalamus, whereas the tSNR of deeper regions such as the

brainstem easily drops to about one-third (Colizoli et al., 2020; Mileti�c

et al., 2020; Vizioli et al., 2021). This means that a Gaussian filter of

1�, which perfectly enhances both BS and SA in the cortex, may

already lose weaker BOLD signals in the thalamus and might not

detect anything in the brainstem. Using large Gaussian kernels to sig-

nificantly enhance subcortical BOLD effects comes at the expense of

SA of cortical BOLD patterns at high tSNR. Attempts to improve tSNR

based on thermal denoising and increasing magnetic field strengths

have been suggested to render smoothing obsolete (Vizioli

et al., 2021). This might be true when examining high-magnitude

BOLD effects in cortical regions with a tSNR well above 40. Yet, this

is not advisable for lower tSNR or whole-brain examinations. In

this regard, AWSOM proved itself a commendable asset, exhibiting

strong BS and SA across all noise and BOLD magnitude levels that

were tested. Its sensitivity to smaller clusters represents the initial

improvement over AWS.

To tackle the second key challenge, we introduced SI as a new

metric. With the advent of decoding functional neurosignatures, the

research questions shifted from which areas are activated to how

areas are activated (Caballero-Gaudes & Reynolds, 2017;

Ekstrom, 2010; Logothetis & Pfeuffer, 2004). Thus, assessing the rela-

tive BOLD magnitudes of activated voxels becomes highly relevant.

Since significance has generally played a major role in fMRI, little

attention has been paid to the effects of smoothing on the BOLD sig-

nal magnitudes. To investigate this adverse effect, we used the COPE

maps—which reflect the magnitude of the BOLD signal when con-

trasted with the baseline or resting period (Smith, 2004; Smith

et al., 2007)—and masked them with the z-maps to ensure only statis-

tically significant voxels were considered. Gaussian filters imprinted a

characteristic bell-shaped curve on the BOLD clusters that were

detected, with central voxels exhibiting high relative activities that

decay toward the periphery. This effect intensified with increasing

kernel size. In contrast, AWS and AWSOM algorithms do not involve

any global smoothing of the time series, but target the COPE maps,

where smoothing is conducted locally depending on the relative

BOLD magnitudes and the variances of neighboring voxels (Polzehl

et al., 2010; Polzehl et al., 2020; Tabelow et al., 2006; Tabelow

et al., 2011). SI complemented our precision analysis by assessing the

preservation of the relative magnitudes of the BOLD signal.

AWS-based filters showed superior signal handling by preserving the

relative BOLD magnitudes across the significant voxels.

The third challenge was addressed by employing the null-

hypothesis test proposed by Eklund et al. (2016). This challenge is

particularly relevant for high-resolution single-subject fMRI, as FPs

are not averaged out, unlike in group analyses. Furthermore, it was

shown that the FWER substantially increases with higher resolution

(Mueller et al., 2017). We modeled various task paradigms on resting-

state data, defining every significant voxel as a FP. The goal was to

estimate FWER, the chance of one or more FPs anywhere in the brain,

and FPR, the percentage of FP voxels relative to the brain volume.

AWS and AWSOM outperformed all other methods regarding FWER

and FPR. When we searched for event-related paradigm-like signal

changes with brief on–off periods in resting-state fMRI data, we

found that AWS and AWSOM were the only methods that kept

FWER in single subjects below the expected nominal value of 5%.

Thus, they posed no significant risk of detecting FPs, as assessed by

the procedure proposed by Eklund et al. (2016). AWS-based methods

smooth the statistical landscape locally based on the beta contrasts

and variances of neighboring voxels, flattening noise, and emphasizing

activated clusters (Tabelow et al., 2006; Tabelow et al., 2009; Tabelow

et al., 2011; Tabelow & Polzehl, 2011). AWS still estimates a global

statistic threshold based on the data's smoothness; but due to the

amplified differences of detected signals versus noise the exact

thresholding is less critical compared to more conventional methods

in fMRI, including cluster correction. Conventional inferences rely on

exact estimation of smoothness to determine the statistical signifi-

cance of voxel clusters, which requires Gaussian smoothing (Tabelow

et al., 2006; Tabelow et al., 2009; Tabelow & Polzehl, 2011). In theory,

Gaussian kernels of at least double the voxel size are required to over-

write the intrinsic correlation structure of acquired data and deter-

mine significance (Poldrack et al., 2011). Our data provides

experimental insights into FWER of single subjects across several

Gaussian kernel sizes, including voxel-sized kernels to improve

SA. Smaller kernels have a higher probability of detecting at least one

FP per trial (higher FWER) but show fewer FPs per trial (lower FPR)

than larger kernel sizes. In practice, failure to respect the FWE can

have various complex causes that stem from a more complicated local

correlation structure across voxels or deviations from distributional

assumptions (Eklund et al., 2016; Kriegeskorte et al., 2008; Noble

et al., 2020). This highlights the importance of assessing the FWER

from acquired data over synthetic datasets. The high FWER and FPR

across all filters, except AWS and AWSOM, illustrate the inflated clus-

ter correction failure in high-resolution single-subject fMRI.

Remarkably, we found dramatically heightened FWER and FPR

for modeling block paradigms with longer on–off periods in the

resting-state data. The extremely high FWER across all filters for B2,

with long on–off periods of 30 s, indicates that low-frequency peri-

odic signal changes have been modeled in the time series of multiple

subjects. Low-frequency oscillations can be caused by scanner-related

artifacts (Jamil et al., 2021; Vizioli et al., 2020; Vizioli et al., 2021),

aliasing frequencies of periodic physiological signals such as respira-

tion or heartbeat (Hutton et al., 2011; Triantafyllou et al., 2005; Van

Der Zwaag et al., 2015). Another cause may be actual neurovascular

activities such as functional networks emerging in the resting state

(Caballero-Gaudes & Reynolds, 2017; Vigotsky et al., 2020). The pos-

sibility of modeling slow-oscillatory functional networks in a resting

state distinguishes an approach like the one introduced by Eklund and

colleagues from real task-based experiments, as the functional
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network landscape adapts to the task and does not run independently

in parallel (Cole et al., 2021). However, the block paradigms that were

used are prone to lead to an inflated FWER for single subjects, which

would be averaged out for group analysis.

The performance of individual filters in preventing FPs was partic-

ularly evident in the FPR. Here, AWS and AWSOM were extremely

strict, with a near-zero FPR for B2 and even lower rates for B1 and

event-related paradigms. FPRs of other methods were substantially

elevated and skyrocketed for B2, increasing with Gaussian smoothing

kernel size. Our assessments demonstrate how Gaussian kernel size

affects FWER and FPR of high-tSNR fMRI data in the individual brain.

We strongly advise against using large smoothing kernels in single-

subject fMRI with high tSNR for the sake of keeping the FPR at bay.

Depending on the research question, it may be preferable to interpret

single false-positive voxels scattering of unfiltered data than large arti-

ficial blobs produced by Gaussian smoothing. Nonetheless, it is essen-

tial to distinguish FPs from true activations (Desco et al., 2001; Noble

et al., 2020). The AWS-based filters offer remarkable reliability in this

regard.

The SANLM filters warrant a brief summary in their own right.

They yield the highest FWER across all filters for all paradigms and a

remarkable FPR, both in the range of unfiltered data. This can be

explained by the non-Gaussian correlation structure of the data that

led to failure in determining significance using cluster correction

(Bansal & Peterson, 2018; Woo et al., 2014). Strong SANLM filtering,

designed to remove high amounts of noise from submillimeter struc-

tural data, performs poorly in terms of SA and SI and only became

interesting at extremely high noise levels. At a tSNR as low as 2.5,

strong SANLM detected complex activation structures as the only fil-

ters, albeit in the form of amorphous blobs, as well as large spherical

clusters also identified by AWS-based filters. At high tSNR, medium

SANLM filters perform roughly in the mid-range between unfiltered

and Gaussian 1� in SA and BS, showing impressively detailed gradua-

tions of cortical activations in finger tapping. However, it becomes

evident how the shape of activation clusters fray toward subcortical

regions, while Gaussian and AWS-based filters represent thalamic

nuclei as rounded structures. This effect may be expected to be pro-

nounced with other data, as our example fMRI scan exhibited unusu-

ally homogeneous tSNR across the coronal section, which is

uncommon in the literature (Colizoli et al., 2020; Mileti�c et al., 2020;

Vizioli et al., 2021). The usage of SANLM filters in fMRI is fundamen-

tally problematic because their spatial smoothing properties are

guided by anatomical contrasts of the time series (Gaser et al., 2022;

Manjón et al., 2010), potentially causing significant voxels to conform

in their shape to the anatomy. Moreover, the resulting non-Gaussian

smoothing violates the criteria of Gaussian random field theory

(Flandin & Friston, 2019; Hayasaka & Nichols, 2003; Worsley, 2003).

Principally, SANLM filtering could be applied in the temporal dimen-

sion, raising the question of how to determine statistical inference.

We included the current versions of SANLM (Gaser et al., 2022) in

our tests due to previous application of SANLM filtering in the fMRI

(Bernier et al., 2014) and their fidelity and gradations of cortical clus-

ters at high tSNR levels for medium SANLM.

AWSOM exhibits a somewhat stepped graduation of BOLD mag-

nitudes for experimental data. We recognize the limitation that we

tested SI only for three steps of magnitudes and did not take finer

graduations into account. Yet, our findings are a testament to the

overall superiority of AWSOM over the other filters that we have

tested. Our acquired data examples cover the motor cortex during fin-

ger tapping and do not involve a task that specifically engages subcor-

tical areas. Using data from the Human Connectome Project (Marcus

et al., 2013; Van Essen et al., 2012), which covers 7 T fMRI data in

emotion regulation tasks, provides a valuable source and use case for

analyzing subcortical areas. This would allow the use of subtle regions,

such as the amygdala or nucleus accumbens, as region-of-interest for

precise comparison. We did not evaluate the performance of

AWSOM for extremely high tSNR, where voxel-based inference

methods may suffice to capture BOLD effects, and smoothing may

not be necessary (Vizioli et al., 2021). Nevertheless, such high tSNR is

typically assessed in the cortex and decreases toward deeper brain

structures. Generally, extremely high tSNR will be translated into

voxel size reduction and enhanced spatial resolution in exchange for

tSNR reduction. Also, weak BOLD magnitudes may well be lost with-

out any amplification. Finally, AWSOM sets a threshold for signifi-

cance, which always comes at the risk of losing signals that cannot be

distinguished from noise; they may be present, although insignificant,

across many subjects. This is a general problem for single subject anal-

ysis. It will therefore be intriguing to look below the threshold. Yet, it

will be essential to distinguish signal from noise. AWSOM has proven

its ability to prevent type I errors by effectively suppressing false-

positives, while achieving a high sensitivity for the BOLD effect, thus

minimizing type II errors.

5 | CONCLUSION

To support precision fMRI at single-subject level we introduced

AWSOM, to balance the demands on the quality precision metrics

that were tested for a large range of noise levels. Using small Gaussian

smoothing kernels is a viable option since their performance can be

very accurate depending on the noise level. However, it is crucial to

consider both the noise level and the expected activation size to

ensure optimal performance. Furthermore, Gaussian filters are gener-

ally prone to detect FP activations in the brains of single subjects at

high spatial resolutions. AWSOM offers a one-size-fits-all solution to

detect BOLD signals of varying magnitudes across the wide range of

tSNR throughout the brain with high BS, SA, and SI. AWSOM allows

for a balance between sensitivity to weak BOLD signals and the sup-

pression of FPs, thus effectively managing the trade-off between type

I (false-positives) and type II errors (false-negatives). AWSOM is being

made available to the community.
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