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Abstract 
There is a growing interest in inferring context specific gene regulatory networks from single-cell RNA sequencing (scRNA-seq) data. 
This involves identifying the regulatory relationships between transcription factors (TFs) and genes in individual cells, and then 
characterizing these relationships at the level of specific cell types or cell states. In this study, we introduce scGATE (single-cell gene 
regulatory gate) as a novel computational tool for inferring TF–gene interaction networks and reconstructing Boolean logic gates 
involving regulatory TFs using scRNA-seq data. In contrast to current Boolean models, scGATE eliminates the need for individual 
formulations and likelihood calculations for each Boolean rule (e.g. AND, OR, XOR). By employing a Bayesian framework, scGATE infers 
the Boolean rule after fitting the model to the data, resulting in significant reductions in time-complexities for logic-based studies. 
We have applied assay for transposase-accessible chromatin with sequencing (scATAC-seq) data and TF DNA binding motifs to filter 
out non-relevant TFs in gene regulations. By integrating single-cell clustering with these external cues, scGATE is able to infer context 
specific networks. The performance of scGATE is evaluated using synthetic and real single-cell multi-omics data from mouse tissues 
and human blood, demonstrating its superiority over existing tools for reconstructing TF-gene networks. Additionally, scGATE provides 
a flexible framework for understanding the complex combinatorial and cooperative relationships among TFs regulating target genes 
by inferring Boolean logic gates among them. 
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INTRODUCTION 
TFs play a critical role in regulating gene expression and con-
trolling cellular behavior. In recent years, there has been growing 
interest in reconstructing TF-gene networks using single-cell gene 
expression data. This involves inferring the regulatory relation-
ships between TFs and genes in individual cells, which can provide 
insights into the complex regulatory networks that govern cellular 
behavior and function at the cell type level. To infer TF–gene 
interaction network, a variety of computational algorithms are 
proposed based on information theory [1], correlation analysis 
[2, 3] and machine learning [4, 5]. Logic-based models are a 
powerful tool for understanding the complex relationships among 
regulatory TFs to regulate their target gene. These models use 
Boolean logic, e.g. AND, OR and XOR operators, to describe the 
cooperative or competitive relationships among TFs, for details 
see [6]. The available tools for inferring Boolean logic have limited 
applications in single-cell gene expression data from quantitative 
real-time reverse-transcription PCR (qRT-PCR) [7, 8] or microarray 
[9] technologies, mostly due to the high computational complex-
ity. The available logic-based tools have limited capacity to model

regulatory networks with more than two TFs, e.g. Loregic [9], Log-
icTRN [10], and they require a priori-specified network structure 
for the Boolean logic inference in order to reduce the complexity 
of the problem to a feasible computational cost. Additionally, 
some of these tools require data binarization to infer the Boolean 
logic among TFs [11], which is a threshold-dependent process 
that may result in information loss. While recent studies such as 
CellOracle [12] have focused on inferring the directed graph of TF-
gene (linear) interactions, logic-based models provide a flexible 
framework for understanding more complex relationships (i.e. 
second-order interactions) among TFs. By using Boolean logic to 
describe these relationships, researchers can gain insight into 
the precise mechanisms underlying gene expression and identify 
potential therapeutic targets for diseases. Here, we propose a tool 
(scGATE) for inferring the directed TF-gene network and, at the 
same time, to infer the Boolean logic gates among any number of 
TFs that regulate their targets. scGATE does not require scRNA-seq 
gene expression binarization and it models the continuous data 
by using a Hill activation function instead. This approach helps to 
avoid the potential information loss associated with binarization 
and enables more accurate modeling of regulatory relationships.
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In scGATE, the likelihood of the target gene is determined by 
fitting a mixture density of possible TF combinations to the 
target gene expression profile. A prior probability is considered 
for each combination among TFs in target regulation. Unlike 
other approaches, scGATE does not require a separate formulation 
and likelihood calculation for each Boolean logic (e.g. AND, OR, 
XOR) among candidate TFs in regulating their target. Instead, 
scGATE applies a Bayesian framework to update prior probabil-
ities based on the data and infers the most probable Boolean 
rule a posteriori. While this approach can be generalized to other 
logic-based studies, it dramatically reduces the computational 
cost. In contrast to the other logic-based models that are limited 
to two TFs [8–10], scGATE can unravel the Boolean logic gate 
within a practical subset (<5) of TFs, where overfitting is not a 
concern. 

We focus on the reconstruction of context specific gene reg-
ulatory networks (GRNs) [13] that consider regulatory relations 
in one or a few closely related cell types by using external hints 
such as TF binding site motifs and scATAC-seq data available 
from those cell populations. The context specific GRN inference is 
more reliable because (i) by focusing on specific cell types or cell 
states, we can increase the statistical power of the analysis, as it 
reduces the complexity and heterogeneity of the gene expression 
data being analyzed. (ii) Context-specific regulatory relationships 
can provide meaningful insights into regulatory relations and the 
molecular mechanisms that underlie a specific biological pro-
cess of interest, e.g. cell differentiation, development or disease 
propagation. 

By integrating external hints with scRNA-seq data, it is pos-
sible to infer context specific regulatory networks that reflect 
the unique regulatory relationships in specific cell types or tis-
sues. This can provide a more accurate and biologically rele-
vant representation of the regulatory networks that govern cellu-
lar behavior. For example, scATAC-seq data provide information 
about chromatin accessibility and TF binding site motifs provides 
additional information about the specific TFs that are binding 
to these accessible regions. By using this information to filter 
or prioritize potential regulatory relationships, it is possible to 
alleviate computational costs and also reduce the number of 
false positive and false negative edges in the inferred network. 
In absence of chromatin accessibility data, TF binding site motif 
data alone can also provide partial evidence for direct TF–gene 
interactions, and exclusion of non-relevant TFs in the model. 
One may also consider other sources of external information 
such as protein–protein interaction databases. We have evaluated 
the performance of scGATE using several synthetic and real tis-
sue and cell-type–specific scRNA-seq datasets from mouse and 
human. Importantly, the case studies utilizing synthetic scRNA-
seq data were conducted without any prior knowledge of the true 
underlying network structure. In analyses of real scRNA-seq data, 
chromatin accessibility data were utilized as the external hint to 
refine the list of candidate TFs. Benchmarking of scGATE against 
several other tools demonstrates that scGATE achieves superior 
performance. 

METHOD 
As Figure 1 shows, scATAC-seq and TF binding motif data 
can be used to generate a list of candidate TFs denoted by 
{TF1, ..., TFk} for each target gene, see Supplementary Figure S1 (see 
Supplementary Data available online at http://bib.oxfordjournals.org/) 
for a detailed data processing pipeline in scGATE. The scGATE 
algorithm then uses scRNA-seq data to refine this list by removing 

any irrelevant TFs and to identify the logical relationships 
between the remaining TFs for the purpose of regulating the tar-
get gene. In scGATE, to account for read depth variations among 
cells in scRNA-seq studies, library size normalization is performed 
by dividing the raw unique molecular identifier count data of each 
cell by its total number of reads and then multiplying the result by 
a scaling factor, see Supplementary Figure S1 (see Supplementary 
Data available online at http://bib.oxfordjournals.org/) for details. 
This transforms the raw read count scRNA-seq data into the (0,1) 
interval. To identify the optimal expression level of a TF that 
maximizes the activation of its target genes, both the TF and 
target gene expression profiles are further transformed using a 
Hill climbing function. For TF1, the Hill function is expressed as 

H(tf1) = (kh 
sat + 1) 

tf h 
1 

kh 
sat + tf h 

1 
, (1)

where tf1 represents the expression level of TF1, and  ksat and h are 
parameters in the Hill function. ksat is a saturation constant that 
indicates the TF activity level at which the regulation nears maxi-
mal effect and h is hill coefficient that represents the cooperativity 
or sigmoidicity of the TF regulatory response. This transformation 
enables the model to learn complex and nonlinear relationships 
between input TFs and target gene expressions while also selec-
tively accounting for the importance of the input TFs in regulating 
their target genes [14]. In scGATE, gene regulation is modeled 
as a Boolean logic gate, where the expression levels of TFs that 
regulate a target gene are treated as inputs to the gate, and 
the expression level of the target gene is treated as the output 
of the gate. The logic gate can be set up to model different 
types of interactions between the input TFs, such as coopera-
tive (AND, OR) or competitive (XOR) regulation. For AND, scGATE 
combines the input signals from the TFs using a logical AND 
operator, such that the output is high only if all the input signals 
are high. 

For XOR, scGATE combines the input signals from the TFs 
using a logical XOR operator, such that the output is high if 
only one of the input signals is high. With two candidate TFs 
(k = 2), there are four (2k) distinct ’logic combinations’ of the 
two TFs that can be made using logical operators, since each 
TF can activate or inhibit the target gene [15]. These logic com-
binations that are {TF1 ∧ TF2, TF1 ∧ TF2, TF1 ∧ TF2, TF1 ∧ TF2} are 
represented by distinct partitions in Venn diagram and generate 
{H(tf1)H(tf2), H(tf1)[1−H(tf2)], [1−H(tf1)]H(tf2), [1−H(tf1)][1−H(tf2)]} 
outputs, respectively. Here, ’∧’ represents the logical AND or the 
cooperative relationships between TFs, and the over-line, e.g. TF1, 
represents logical NOT or the inhibitory effect of the TF. These 
logic combinations are the possible ways to combine the input 
signals from the TFs to model gene regulation. In the scGATE, each 
scRNA-seq observation from the target gene could be generated 
from the vth logic combination with a prior probability of wv, for  
v = 0, . . .  , 2k −1. Then, the likelihood of T = (t1, ..., tn), as  n samples 
from the target gene, is as follows: 

L(T) = 
n∏

s=1 

Pr(H(ts)) = 
n∏

s=1 

2k−1∑
v=0 

ωvPr(H(ts)|vth combination) (2) 

with
∑2k−1 

v=0 ωv = 1. Due to the typical bimodal gene expression 
patterns in scRNA-seq datasets (mainly corresponding to the pop-
ulation of cells in which a gene is expressed versus not expressed), 
we fit a zero-inflated distribution to calculate the probability
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Figure 1. Pipeline for scGATE (single-cell gene regulatory gate). (A) scATAC-seq data were utilized to identify accessible chromatin regions potentially 
targeted by TF binding. A motif analysis on these regions identified putative TF binding sites, generating a list of candidate TFs for regulating downstream 
target genes. (B) scRNA-seq data were used to refine the candidate TF list by removing non-functional TFs and infer the Boolean logic among regulatory 
TFs. For two TFs (k = 2), logical combinations are represented by distinct partitions in a Venn diagram, i.e. {TF1∧TF2, TF1∧TF2, TF1∧TF2, TF1∧TF2}. Over-line, 
e.g. TF1 stands for the inhibitory effect of TF1 on target and ’∧’ shows the AND operator. The outputs from these partitions, i.e. {H(tf1)H(tf2), H(tf1)[1 − 
H(tf2)], [1 − H(tf1)]H(tf2), [1  − H(tf1)][1 − H(tf2)]}, defined the location parameters for normal densities, which generated observations for target gene 
expression with prior probabilities, i.e. wi for i = 3, 2, 1, 0. The TF-gene network and logical relationships are then inferred a posteriori within a Bayesian 
framework. (C) We use a zero-inflated normal distribution to calculate the target gene probabilities under distinct normal densities. (D) A Hill climbing 
function (H) is applied to transform the gene expression profile. 

of H(ts) being generated from the vth logic combination. Lowly 
expressed genes may also constitute a ’dropout’ measurement, 
thus also considered in the zero-expression mode. Then, with 
a zero-inflated distribution, we can more accurately estimate 
the probabilities of different logic combinations generating the 
observed gene expression levels in scRNA-seq data. With fitting 
a zero-inflated distribution [16] 

Pr(H(ts)|vth combination) = πδH(ts) 

+ (1 − π)  norm(output ofvth combination, σ 2 ) (3) 

δH(ts) = 

⎧⎨ 

⎩ 
1, if H(ts) = 0 
0, if H(ts) >  0. 

(4) 

For non-zero target values, equation (3) fits a normal density 
that is centered on the output from the vth logic combination. The 
width of the normal density that is determined by a scale param-
eter σ 2 and the dropout percentage π are estimated empirically 
based on data. Prior probabilities wv, for  v = 0, ..., 2k − 1, are also 
estimated with Expectation-Maximization (EM) algorithm [17]. In 
scGATE, the likelihood significance is evaluated using the Bayes 
Factor (BF) [18]. The BF is calculated by dividing the maximized 
likelihood (L1) in equation (2) by the base likelihood (L0) obtained 

by setting the prior probabilities wv to 
1 
2k for v = 0, ..., 2k − 1, 

and fixing the location parameters of Pr(H(ts)|vth combination) 

at 
1 
2k . After identifying a subset of candidate TFs with the most 

significant likelihood, as evaluated by the BF, the Boolean logic 
gate is identified. A logic gate is defined as a set of active (ON) logic 
combinations that have generated observations of a target gene. 
For this aim, scGATE calculates the posterior probability of each 

logic combination given observations of the target gene. Indeed, 
observation ts is generated from the logic combination v� if 

Pr(v∗|H(ts), �̂) > Pr(v|H(ts), �̂) for allv �= v∗ (5) 

with Pr(v∗|H(ts), �̂) = 
wv� Pr(H(ts)|v∗, �̂)∑

v wvPr(H(ts)|v, �̂) 
and �̂ representing the 

estimated parameter vector � = (σ 2, π , w0, . . . , w2k−1). Due  to
the low signal-to-noise ratio in scRNA-seq data [19, 20] and to
control the False Discovery Rate, a logic combination (partition) 
is considered active (ON) if it has generated more than 5% of the 
target gene observations. 

Figure 1 summarizes the inference of logic gates between k = 2 
candidate TFs for descriptive purposes. While scGATE has the 
capability to infer Boolean logic gates among any number of 
candidate TFs involved in the target regulation, we recommend 
fitting logic gates among subsets with up to k = 5 factors of the 
candidate TF lists. This approach helps prevent overfitting of the 
model and reduces the number of false positive predictions. In 
this manuscript, we utilize scGATE to evaluate logic gates among 
subsets with up to k = 3 factors from the candidate TF list, 
see Supplementary file (see Supplementary Data available online 
at http://bib.oxfordjournals.org/) for results with k > 3. For  the
inference of the directed TF-gene network, the predicted logic 
gates are sorted based on the BF confidence score. Subsequently, 
each candidate TF is scored using the BF value from the most 
significant logic gate that includes it. 

In our Bayesian inference framework, the prior probabilities, 
which are updated using data, serve to quantify the relative 
significance of distinct combinations of TFs in regulating their 
downstream targets. For example, in XOR logic gate Target = 
(TF1 ∧TF2)∨ (TF1 ∧TF2) with weight intensities w1 and w2 assigned 
to these combinations, we can assess the relative importance of
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(TF1 ∧ TF2) versus (TF1 ∧ TF2) in the regulation of the target gene. 
While both combinations contribute to the regulation process, a 
larger value of w1 compared with w2 (i.e. w1 ≫ w2) implies  a more  
substantial contribution from (TF1 ∧ TF2) relative to (TF1 ∧ TF2) 
in the target regulation, and vice versa. Then, scGATE offers the 
potential for a better fit to datasets, particularly when distinct 
TF combinations such as (TF1 ∧ TF2) and (TF1 ∧ TF2) in the XOR 
logic gate have varying contributions to the regulation of down-
stream genes across different tissues or cell types. This variability 
could arise from imbalanced data or differences in the underlying 
biological processes present in different datasets. Moreover, in 
contrast to other Boolean-based models that require distinct for-
mulations and likelihood calculations for each Boolean rule (e.g. 
AND, OR, XOR, NAND or NOR), scGATE utilizes a unified likelihood 
calculation for all possible Boolean rules among candidate TFs. 
In scGATE, the likelihood function is based on fitting a mixture 
density of possible TF combinations with corresponding prior 
probabilities, as in equation 2. By updating the prior probabilities 
based on data, scGATE infers the Boolean logic that is most 
consistent with the observed data within a Bayesian framework 
in equation 5. Specifically, for cases involving k candidate TFs 
with 22k 

possible Boolean rules, the scGATE Bayesian framework 
reduces the number of required likelihood calculations from 22k

to 1. This reduction in calculations simplifies the computational 
burden and enables efficient inference of the underlying Boolean 
rules. 

RESULTS 
The performance of scGATE in reconstructing the context-specific 
TF-target networks and the associated Boolean logic gates is 
assessed using synthetic datasets from: (i) a network with 14 
genes involving a series of toggle switches that produce 8 cell 
types. The BoolODE package [21] was utilized for simulating 
scRNA-seq data and demonstrating context specific network 
inference. (ii) Three networks with 15 TFs and 65 target genes, 
designed to mimic the evolutionarily related structures of three 
cell types in the differentiation process. The BoolODE and 
GeneNetWeaver (GNW) [22] packages were used for simulating 
data. In synthetic datasets from (i) and (ii), we perform the anal-
yses without incorporating any prior knowledge or external hints 
regarding the network structure. The performance of scGATE is 
also assessed on three real datasets: (i) mouse haematopoiesis 
scRNA-seq dataset from Dahlin’s work [23] to study the blood 
cell differentiation toggle switch, where external hints on the 
network structure were obtained from Krumsiek’s work [24]; 
(ii) mouse scRNA-seq datasets from five tissues (Spleen, Lung,
Liver, Kidney and Heart) obtained from the Tabula Muris project
[25] (GSE109774), along with scATAC-seq datasets from the same
tissues obtained from Cusanovich’s work [26] (GSE111586) serving
as external hints; and (iii) human haematopoiesis scRNA-seq
and scATAC-seq datasets from Buenrostro’s work [27] (GSE96772).
See Supplementary Table S1 (see Supplementary Data available
online at http://bib.oxfordjournals.org/) for the metadata, such as
information about the sequencing platform, the origin tissue or
cell type of the samples, and the number of cells sequenced for
each dataset.

Synthetic toggle switch 
We demonstrate an example use of scGATE to reconstruct context 
specific TF-gene network jointly with the underlying Boolean logic 

gates in toggle switches. A toggle switch is a type of genetic 
regulatory circuit that consists of two genes that mutually repress 
each other, forming a double-negative feedback loop. Figure 2A 
shows a toy GRN with 14 nodes that consists of a series of 
toggle switches with 8 different steady states. In each steady 
state, one of the eight extreme genes will be active, resulting in 
a distinct cell type and gene expression pattern. We considered 
’AND’ relationships between any two genes that jointly regulate 
their target, e.g. AND(gB, NOT(gF)) ≡ gB ∧ gF in regulating gE. 
We then utilized the BoolODE package [21] to generate synthetic 
gene expression profiles of 3000 single cells undergoing a dif-
ferentiation process with a model type hill and 8 steps for the 
simulation time. These synthetic data are visualized with the 
t-distributed stochastic neighbour embedding (tSNE) graphs in
Scanpy [28]. Cells are initially clustered using Louvain method
[29]. In Figure 2B, the Louvain annotation identifies the stem cells
in cluster 8 and differentiated cells in other clusters. DPT, an
algorithm based on diffusion mapping, is utilized to calculate
differentiation pseudotime [30] in  Figure 2C. In the pseudotime-
sorted cells, stem cells are shown in dark blue, while other cells
along the differentiation trajectories are shown in light colors.
Figure 2D depicts the expression patterns of genes gA, gB, gC, gD, gE 

and gF along the differentiation trajectory, with gA expressed on
one side and gB on the other side of the plot. To demonstrate
how scGATE can be used to reconstruct context specific logic
gates, we applied it for the joint inference of the network and
underlying Boolean logic gates in two separate clusters (Clusters
I and II) of cells along a differentiation trajectory, i.e. the net-
work structure and gene–gene interactions were not specified a
priori. As illustrated in Table 1, scGATE has identified the con-
text specific regulatory gates for both clusters. For example, in
cluster I, scGATE has identified the gate gE ∧ gE2 that regulates
gE1. In cluster II, scGATE has identified the gate gC ∧ gC2 that
regulates gC1.

Blood cell differentiation toggle switch 
scGATE is assessed for its ability to reconstruct the cell-type– 
specific networks and logic gates using mouse haematopoiesis 
scRNA-seq dataset [23]. Figure 3A displays a tSNE plot for 44 802 
hematopoietic cells from this dataset with annotated cell types 
such as HSCs (Hematopoietic Stem Cells), Meg (Megakaryocytes), 
Ery (Erythrocytes), Gran (Granulocytes), Mono (Monocytes), 
MPP (Multipotent Progenitor), GMP (Granulocyte-Monocyte 
Progenitor), LP (Lymphoid Progenitor), MEP (Megakaryocyte-
Erythrocyte Progenitor), Bas (Basophil) and Mas (Mast). See 
Supplementary Figure S2 (see Supplementary Data available 
online at http://bib.oxfordjournals.org/) for the expression 
patterns of marker genes. Figure 3B illustrates the pseudotime-
sorted cells along with the differentiation trajectories of HSCs 
into Meg, Ery, Gran and Mono. This differentiation process is 
previously modelled with a Boolean network of switch-like 
decisions [24], Figure 3C. The genes on the left side of this 
literature-derived network, namely Gata1, Gata2, Fog1, Scl, Fli1 
and Klf1, play active roles in myeloid differentiation into Meg 
and Ery cells. Fli1 and Klf1 form a mutually inhibitory gene pair 
that are activated by Gata1 and determine the final cell fates, 
see Figure 3D for expression patterns. Klf1 is a transcription 
factor (TF) specific to erythrocytes, up-regulated in Ery cells 
and represses Fli1. In the megakaryocyte lineage, Fli1 acts as 
an antagonist counteracting the activity of Klf1. Boolean update 
rules for these genes are represented as Fli1 = Gata1 ∧ Klf1 
and Klf1 = Gata1 ∧ Fli1, respectively. Gata1 and Gata2 are 
early megakaryocyte-erythrocyte (MegE) factors with multiple

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
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Table 1: scGATE infers directed edge networks and logic gates among regulators in Clusters I and II of cells, unveiling context specific 
expression patterns in the synthetic toggle switch 

Cluster I Cluster II 

Target gene −log10L0 −log10L1 log10BF Logic gate Target gene −log10L0 −log10L1 log10BF Logic gate 

gE 173.9 −268.57 442.47 gF gC 167.69 −266.17 433.87 gD 
gE1 51.85 −234.65 286.50 gE ∧ gE2 gC1 45.2 −225.69 270.89 gC ∧ gC2 
gE2 38.43 −235.48 273.91 gE ∧ gE1 gC2 58.18 −212.02 270.19 gC ∧ gC1 
gF 170.38 −278.57 448.95 gE gD 165.53 −273.5 439.03 gC 
gF1 80.36 −215.32 295.68 gF ∧ gF2 gD1 53.9 −232.89 286.80 gD ∧ gD2

gF2 67.6 −217.88 285.48 gF ∧ gF1 gD2 64.5 −237.56 302.06 gD ∧ gD1

Note: −log10L0 and −log10L1 represent the negative of the logarithm (base 10) of the likelihood in scGATE, corresponding to the default parameters and the 
estimated parameters with data, respectively. log10BF denotes the logarithm (base 10) of the Bayes Factor. 

Figure 2. scGATE reconstructs both the network and logical relationships among regulatory TFs or genes in a context specific manner. (A) A regulatory 
network with a series of toggle switches controlling the cell differentiation process, considering ’AND’ relationships between any two genes that jointly 
regulate downstream targets. (B) scGATE utilizes Louvain clustering to group cells along differentiation trajectories and then infers the directed network 
and underlying Boolean update rules per cell cluster. (C) Cells are sorted by dpt pseudotime, with stem cells shown in dark blue and differentiated cells 
in light colors. (D) Gene expression levels are visualized along the trajectories. 

Boolean update rules (OR relationships), denoted by black circles 
connecting edges in Figure 3C. Specifically, the Boolean update 
rule for Gata2 is Gata2 = (Gata1 ∧ Pu1) ∨ (Fog1 ∧ Pu1), indicating 
that Gata2 is synergistically inhibited by Gata1 and Fog1, as well 
as being inhibited by Pu1. The Boolean update rule Gata1 = 
(Gata2 ∧ Pu1) ∨ (Fli1 ∧ Pu1) indicates that Gata1 is activated 
by both Gata2 and Fli1, in the absence of Pu1. Please refer to 
Supplementary Figure S2 (see Supplementary Data available 
online at http://bib.oxfordjournals.org/) for the expression 
patterns of all genes on tSNE plots. The Boolean logic gates 
controlling the differentiation process into Meg and Ery cells are 
also summarized in Supplementary Table S2 (see Supplementary 
Data available online at http://bib.oxfordjournals.org/). 

scGATE is applied for the network and gate inference for 
all genes involved in MegE differentiation using scRNA-seq 
data from MegE cells. As an example, Figure 3E displays the 
confidence scores associated with various candidate Boolean 
logic gates that involve Gata1 and Klf1 in the regulation of 
Fli1. Out of the 16 potential logic gates that investigate diverse 
cooperative and competitive relationships, scGATE has identified 
the logical rule Fli1 = Gata1 ∧ Klf1 with the utmost confidence 
score. scGATE has also successfully predicted other interactions 
and logic gates, as indicated on the left side of Figure 3C, see
Supplementary Table S2 (see Supplementary Data available 
online at http://bib.oxfordjournals.org/) for further details. 

Cell-type specific network inference in synthetic 
scRNA-seq datasets 
We benchmarked the performance of scGATE against other well-
known algorithms for the network inference on the synthetic 
scRNA-seq datasets. For this purpose, we employed a probabilistic 
framework for network evolution to generate the network 
structure for 3 cell types consisting of 15 TFs and 65 target genes, 
resulting in networks with 214, 214 and 233 edges, Figure 4A. 
We have also considered Boolean logic gates among regulatory 
TFs when they are jointly controlling their target genes. We used 
BoolODE to synthesize scRNA-seq data with 0%, 25% and 50% 
dropouts from cell-type-specific networks that included logic 
gates among TFs. We then applied scGATE to infer the cell-type-
specific network using the synthesized datasets and compared 
the predicted network to the ground-truth network used in the 
data generation process. We benchmarked the performance 
of scGATE compared with well-known methods for network 
inference using AUROC (Area Under the Receiver Operating 
characteristic Curve), EPR (Early Precision Ratio), AUPRC (Area 
Under the Precision Recall Curve), Accuracy (ACC) and Kappa-
coefficient metrics. AUROC is calculated with ROCR package 
[31] and it ranges between 0 and 1, where 1 represents perfect
classifier performance. We also calculated the EPR to evaluate the
precision among l top-ranked predicted regulatory edges, where
l is the number of edges in the ground-truth network [21]. To

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
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Figure 3. Cell-type–specific logic gate inference in the mouse haematopoiesis scRNA-seq data [23]. (A) Cell-type annotated tSNE plot. (B) Pseudotime-
sorted cells representing stem and differentiated cells are plotted along with distinct trajectories of HSCs differentiating into Meg/Ery and Gran/Mono 
cells. (C) Regulatory network with Boolean update rules controlling the cell differentiation process. Black circles connecting edges indicate the multiple 
possible update rules (OR relationships) between genes. (D) The expression profiles of Gata1, Klf1 and Fli1 are depicted. (E) The inference of the most 
probable logic gate between Gata1 and Klf1 in the regulation of Fli1, based on the scRNA-seq data from the MegE trajectory. 

calculate ACC and Kappa-coefficient metrics, we used a similar 
approach as in the EPR calculation to binarize the predictions, as 
the edge weights (confidence scores) in the predicted networks 
are on the continuous scale in the benchmarked algorithms. As 
shown in Figure 4B, scGATE outperforms other tools in terms of 
both AUROC and EPR metrics across all cell types and dropout 
levels. While other tools, e.g. GRNBOOST2, LEAP and CellOracle, 
reach a lower AUROC in cell type 3, scGATE consistently 
achieved an AUROC > 0.98 for all cell types. The superiority 
of scGATE is particularly evident in terms of the EPR metric, 
which suggests that scGATE was able to make more true positive 
predictions among its top-ranked predictions compared with 
other tools. See Supplementary Figure S3 (see Supplementary 
Data available online at http://bib.oxfordjournals.org/) for 
comparisons in terms of the AUPRC, ACC and Kappa-coefficient 
metrics. In Figure 4C, we evaluated the performance of scGATE 
on the downsampled datasets with cell numbers reduced to 
2000, 1000, 500 and 250. With 15 regulatory TFs, a minimum 
of 1000 cells, which is very common in many scRNA-seq 
datasets, guarantees an AUROC > 0.9 and an EPR > 0.6. See 
Supplementary Figure S4 (see Supplementary Data available 
online at http://bib.oxfordjournals.org/) for evaluations in terms 
of the AUPRC, ACC and Kappa-coefficient metrics for the 
downsampled datasets. Subsequently, the prediction accuracy 
is assessed by examining the impact of varying numbers of 
TFs involved in the target gene regulation. Evaluations are 
repeated for 50 Bootstrap samples of regulatory TFs from the 
original candidate TF list. Figure 5A illustrates the AUROC 
and EPR values when 15, 10, 6 and 4 regulatory TFs are 
implicated in regulating the target genes. See middle panel in 
Supplementary Figure S5 (see Supplementary Data available 
online at http://bib.oxfordjournals.org/) for results on other 
metrics. We also examined the effects of incorporating non-
functional TFs, defined as TFs that do not modulate target 

gene expressions, on the performance of scGATE. As Figure 5B 
shows, the inclusion of non-functional TFs in the candi-
date list can decrease EPR considerably. See middle panel in 
Supplementary Figure S6 (see Supplementary Data available 
online at http://bib.oxfordjournals.org/) for further details. 
Figure 5C displays the scGATE runtime per target gene for 
candidate TF lists of sizes 15, 10, 6 and 4. The results in this 
section were obtained by fitting Boolean logic gates that include 
up to k = 3 factors from the candidate TF lists. For scGATE results 
obtained by fitting logic gates among larger subsets of candidate 
TFs, such as k = 4, refer to Supplementary Figure S5 (considering 
regulatory TFs in the network) and S6 (see Supplementary Data 
available online at http://bib.oxfordjournals.org/) (considering 
both regulatory and non-functional TFs in the network). 

In our study, scGATE is also evaluated with datasets synthe-
sized by GNW (GeneNetWeaver) [22], which does not specifically 
account for the Boolean rules among regulatory TFs in target 
regulations. We employed GNW to generate datasets comprising 
3000 multi-factorial time series for each cell-type-specific net-
work with 15 TFs and 65 targets that were used previously. Each 
time series consisted of 2000 time steps (t_max = 2000) and  201
measured points. In order to incorporate noise into the simulated 
data, we followed the DREAM4 (Dialogue for Reverse Engineering 
Assessments and Methods) settings [32]. Subsequently, we 
randomly selected one time point from each time series and 
extracted the corresponding gene expressions for that time point. 
This selection process aimed to obtain a representative scRNA-
seq dataset capturing the gene expression profiles at a specific 
moment in time for each individual cell. In summary, using 
the described process, we simulated scRNA-seq data consisting 
of 3000 individual cells for each of the 3 previously analyzed 
cell-type-specific networks, see Supplementary Figure S7 (see 
Supplementary Data available online at http://bib.oxfordjournals. 
org/) for scGATE results. In the GNW simulated dataset in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
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Figure 4. Benchmarking scGATE predictions on synthetic scRNA-seq datasets. (A) Synthesizing cell-type-specific scRNA-seq data. I. Cell-type-specific 
GRNs are constructed with a probabilistic framework for the evolution of the network structure. II. The regulation of target genes by multiple TFs is 
modeled using Boolean logic, such as AND, OR and XOR. The BoolODE package is used to generate scRNA-seq datasets that match the GRN structures, 
with different levels of dropouts (dp) (0%, 25% and 50%) included. (B) The performance of scGATE is then compared with other tools using AUROC 
and EPR measures. (C) scGATE is evaluated by reducing the number of cells in the datasets to 2000, 1000, 500 and 250, to assess its performance and 
robustness on scRNA-seq datasets of varying sizes, with 0% dropout in the data (similar results for other dropouts). 

Figure 5. scGATE is evaluated considering different numbers of regulatory and non-functional (decoy) TFs. Logic gates among up to k = 3 factors from 
the candidate TF list are fitted for the edge inference. (A) only regulatory TFs are included in the data, (B) with both regulatory and non-functional TFs 
in the data. (C) scGATE runtime per target gene for candidate TF list of different sizes. 

Supplementary Figure S7 (see Supplementary Data available 
online at http://bib.oxfordjournals.org/), where Boolean rules 
among regulatory TFs are not specifically accounted for in target 
regulations, scGATE outperforms other tools in terms of AUROC, 
EPR, ACC and Kappa-coefficient metrics. Additionally, it is among 
the top-performing tools in terms of AUPRC. However, as seen in 
Figure 4 for the BoolODE simulated dataset, in the same cell-type 
specific networks where Boolean rules among TFs are accounted 
for, scGATE exhibits significantly improved performance. This 
suggests that scGATE performs better in experimental conditions, 
biological contexts or data types where target genes are regulated 
by complex combinatorial Boolean rules among TFs. Indeed, mod-
eling such complex scenarios in gene regulation is an advantage 
of scGATE over existing tools that solely rely on pairwise TF–gene 
interactions. 

Context specific network inference in mouse 
scRNA-seq datasets 
To further assess the performance of scGATE, we utilized 10X 
Genomics scRNA-seq datasets from five different mouse tissues 
(Spleen, Lung, Liver, Kidney and Heart) obtained from the Tabula 
Muris project [25]. The scRNA-seq dataset from each tissue was 
subjected to the conventional processing pipeline in Seurat [33]. 
This involves applying quality control metrics to select and filter 
cells, specifically based on RNA count and the percentage of 
mitochondrial genes, to exclude low-quality cells. The data are 
then normalized and scaled, and highly variable features (genes) 
are identified. To narrow-down the candidate set of regulatory 
TFs for each target gene, we construct base GRNs for each tis-
sue by identifying (i) accessible or open chromatin regions and 
(ii) TF binding site motifs within these regions. Here, accessible

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
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regulatory regions (enhancer or promoter of genes) are first iden-
tified with scATAC-seq data [34] from the same tissues where 
scRNA-seq data are available. This data profiles chromatin acces-
sibility in around 100 000 single cells from 13 adult mouse tissues. 
We use Cicero [35] to predict cis-regulatory interactions that are 
co-accessible in scATAC-seq peaks and likely to be physically 
close to each other in the nucleus, such as interactions between 
enhancers and promoters. By running Cicero with default param-
eters, we identify pairs of peaks within a 500 kb distance that 
have a co-accessibility score ≥ 0.8. We retain peaks that are 
located within the Transcription Start Site (TSS) or that have 
an interaction with a cognate peak located in the TSS of a tar-
get gene. After identifying the scATAC-seq peaks that meet the 
criteria for co-accessibility and proximity to the TSS, the DNA 
sequences of these peaks are scanned for TF binding motifs. For TF 
motif analysis, we employed the gimmemotifs package in python 
(https://gimmemotifs.readthedocs.io/en/master/). This generates 
a list of tissue specific candidate regulatory TFs (base GRNs) for 
each target gene. The average number of candidate TFs per target 
gene varied within the range of 211–214 across different tissues. 
It should be noted that these base GRNs may contain connections 
that are not functional or are inactive, as the gene regulation 
can be affected by various factors beyond the accessibility of TF 
binding sites. Then, we applied the scGATE to further refine the 
base GRNs with tissue– or cell-type–specific scRNA-seq data. 

Similar to CellOracle [12], ground-truth GRNs for these tissues 
were generated from the mouse TF chromatin immunoprecip-
itation with sequencing (ChIP-seq) data available in ChIP-Atlas 
database (https://chip-atlas.org). To obtain tissue– or cell-type– 
specific ground-truth data for 80 TFs, a total of 1298 experimental 
datasets were utilized. The following steps were taken: (i) the 
mouse TF ChIP-seq data in bed file format were downloaded from 
the ChIP-Atlas database (https://chip-atlas.org). (ii) Data with 
fewer than 50 peaks and data obtained under non-physiological 
conditions, such as gene knockouts or adeno-associated virus 
treatment, were excluded. (iii) Peaks detected in multiple studies 
were selected. (iv) Data were grouped by TF, and TFs with less 
than 10 detected target genes were excluded. (v) The data were 
transformed into a binary network, where each network edge 
was assigned either 1 or 0 to indicate the presence or absence 
of ChIP-seq binding between genes. In the Spleen, Lung, Liver, 
Kidney and Heart, the ground-truth networks consist of 4, 4, 29, 
11 and 12 TFs, respectively, regulating 1642, 329, 13 776, 10 405 and 
2987 target genes. By default, scGATE is fitted with parameters 
ksat = 0.7 and h = 7 of the Hill climbing functions, for the scRNA-
seq data from all tissues. However, it is possible to use the BF 
(Bayes Factor) as a guideline for parameter setting and choose the 
optimal parameters based on models with the highest BF rates. 
Figure 6A illustrates this process for a specific tissue from the 
kidney, where scGATE was fitted with various values of h, ranging 
from 1.75 to 12, while keeping ksat fixed at 0.7. As depicted in 
Figure 6A, the scGATE achieved the highest AUROC (in red) or 
EPR (in blue) when fitted with h ≥ 4. This corresponds to the 
point where the model achieved the highest BF (as indicated by 
the green curve). As shown in Figure 6B, scGATE outperforms the 
other tools in 7 out of 8 scRNA-seq datasets based on AUROC and 
EPR measures. See Supplementary Figure S8 (see Supplementary 
Data available online at http://bib.oxfordjournals.org/) for 
comparisons in terms of the AUPRC, ACC and Kappa-coefficient. 
Figure 7 shows the ROC and PR curves for TF-gene network 
inference in Spleen-10X_P7_6 sample from mouse tissue. See 
Supplementary Figure S9 (see Supplementary Data available 
online at http://bib.oxfordjournals.org/) for the ROC and PR 

curves plotted for other samples. In Supplementary Table S3 (see 
Supplementary Data available online at http://bib.oxfordjournals. 
org/), the running time and memory usage of scGATE and other 
compared tools are reported for Spleen-10X_P7_6 sample (similar 
result for other samples). 

Context specific network inference in human 
haematopoiesis scRNA-seq dataset 
scGATE was further assessed using 10X Genomics scRNA-seq 
datasets from human HSCs derived from CD34+ bone marrow 
[27]. Similar to the approach employed for the mouse tissues 
dataset, the HSCs dataset, consisting of 14 432 cells, underwent 
a processing pipeline in Seurat. This pipeline involved filtering 
out low-quality cells, performing data normalization and scaling 
to identify the highly variable features within the dataset. To 
refine the selection of potential regulatory TFs for each gene, 
we utilized a human haematopoiesis scATAC-seq dataset from 
the same study [27]. This scATAC-seq dataset enabled the iden-
tification of accessible cis-regulatory chromatin regions specific 
to haematopoiesis. Subsequently, these regulatory regions were 
scanned for TF binding site motifs, which allowed us to generate 
a comprehensive list of candidate regulatory TFs, serving as the 
base GRN, for each target gene. The average number of candidate 
TFs per target gene was 164. The performance of the predicted 
network was assessed by comparing it to the ground-truth 
network, which was derived from TF perturbation experiments 
(Cus_KO) and ChIP-seq (Cus_ChIP) assays conducted in the 
GM12878 lymphoblastoid cell line, as reported by Cusanovich’s 
work [36]. Additionally, the intersection of the perturbation and 
ChIP-seq studies (Cus_KO_ChIP) was utilized to enhance the 
reliability of the ground-truth network. In Cus_KO, Cus_ChIP 
and Cus_KO_ChIP, the ground-truth networks consist of 50, 
149 and 26 TFs, respectively, regulating 6108, 6179 and 2124 
target genes. In Figure 8, scGATE is compared with the other 
tools on a subnetwork with 217 genes, including 25 TFs and 
200 target genes, where 8 TFs could also play a role as target 
for other TFs. The genes in this sub-network were selected 
randomly from highly variable features as derived from Seurat 
analysis. See Supplementary Figure S10 (see Supplementary Data 
available online at http://bib.oxfordjournals.org/) for more details. 
Figure 9 shows the ROC and PR curves for TF-gene network 
inference for human haematopoiesis dataset, with Cus_KO_ChIP 
as the ground-truth network. See Supplementary Figure S11 (see 
Supplementary Data available online at http://bib.oxfordjournals. 
org/) for the ROC and PR curves plotted considering other ground-
truth networks in evaluations. In Supplementary Table S3 (see 
Supplementary Data available online at http://bib.oxfordjournals. 
org/), the running time and memory usage of scGATE and other 
tools are reported for human haematopoiesis dataset. Compared 
with the mouse tissues, with an increased cell numbers in the 
human haematopoiesis dataset, scGATE requires more time and 
memory for the network inference than the other tools. 

DISCUSSION 
In this article, we propose scGATE as a reliable tool for infer-
ring Boolean logic gates on TF-gene networks that represent the 
combinatorial interactions among regulatory TFs that control 
target gene expression. By modeling gene regulation as a logic 
gate, scGATE enables the identification of complex and nonlinear 
relationships between TFs and their target genes and provides a 
powerful framework for predicting the effects of perturbations, 
such as TF knockouts or overexpression, on gene expression and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
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Figure 6. Comparison of scGATE with other tools for TF-gene network inference in five mouse tissues. (A) Evaluation of scGATE predictions in a kidney 
dataset using different parameters in activation functions, measured by AUROC, EPR and BF values. (B) Comparative analysis of scGATE predictions with 
other tools. CellOracle and scGATE rely on the base GRNs derived from external hints to infer the network. 

Figure 7. ROC and PR curves are plotted for TF-gene network inference in the Spleen-10X_P7_6 sample from mouse tissue. 

regulatory networks. Although case studies utilizing synthesized 
toggle switches and real scRNA-seq datasets validated the reli-
ability of scGATE for reconstructing Boolean logic relationships 
in small-scale networks, our work highlights opportunities to 
further develop computational methodologies for inferring com-
plex combinatorial gene regulation. Specifically, decoding high-
order Boolean logic involving a greater number of transcriptional 
regulators (e.g. >5) governing a common target remains chal-
lenging, where overfitting is a major concern. Because of this 
computational limitation, scGATE shall currently be applied on 
a relatively small set of pre-selected TFs based on prior biological 
knowledge, or for refining combinatorial interactions at smaller 
parts of coarse-grained GRN constructions (e.g. models based on 
TF-gene coexpression or other linear relationships). While recon-
structed networks depicting TF–gene or gene–gene interactions 
are informative, they do not convey details on the combinatorial 
relationships among regulating factors. This is because target 
genes are often modulated by complexes of TFs binding pro-
moter and enhancer regions in a collaborative fashion. Thus, even 

directed TF-gene networks delineating activatory or inhibitory 
regulation fail to provide insights into the intricate collaborative 
interactions governing target gene expression. To more fully eluci-
date the mechanistic underpinnings of gene regulation, computa-
tional methods must move beyond modeling simple pairwise TF– 
gene relationships and work toward unraveling multipartite TF 
complexes that synergistically activate or repress transcriptional 
programs. 

Our results on synthetic data suggest that reducing the num-
ber of regulatory TFs (lowering network complexities) leads to a 
significant increase in both AUROC and EPR, when using scGATE. 
This observation suggests that the reconstruction of context-
specific networks with simplified structures enhances the reli-
ability of the predictions. The presence of non-functional decoy 
TFs in the input TF repertoire can substantially deteriorate the 
accuracy of network reconstruction, in terms of EPR. Therefore, 
the integration of external hint data or prior biological knowledge 
is critical for filtering out irrelevant TFs. By refining the candidate 
TF pool, we enable an accurate inference of GRNs using a minimal
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Figure 8. Comparison of scGATE with other tools for TF-gene network 
inference in human haematopoiesis scRNA-seq dataset. 

set of bona fide regulatory TFs. We utilized scATAC-seq data to 
identify the accessible chromatin regions that are potential tar-
gets for TF binding. We then conducted a motif analysis on 
these regions to identify putative TF binding sites, which in turn 
allowed us to generate a list of candidate TFs for regulating down-
stream target genes. In scGATE, we then incorporated context-
specific scRNA-seq data to further refine the regulatory interac-
tions among those candidate TFs. 

Among several other existing Boolean models, we also showed 
that scGATE provides a few advantages in terms of (i) computa-
tional complexity, (ii) consideration of continuous gene profiles 
without binarization, (iii) utilization of the Hill climbing function 
to tailor specific parameters to the dataset or context being stud-
ied, allowing for a more precise and customized representation of 
gene expression levels and activatory thresholds in the regulatory 
network under investigation, (iv) incorporation of prior network 
information derived from external hints and knowledge to 
improve the accuracy of network inference, and (v) the collective 
modeling of a reasonable number of regulatory TFs within a 
Boolean logic gate. The flexible maximum likelihood framework 
as we proposed has the potential of including higher order 
interactions and recognizing how multiple TFs can work together 
to control the target. Unlike correlation-based approaches that 
primarily focus on identifying statistical associations between 
variables, accounting for combinatorial control with Boolean 
rules can be more effective in capturing the non-linear causal 
relationships and interaction directionalities in a biological 
network. 

We have demonstrated the ability of scGATE on predicting 
known combinatorial TFs regulatory relations on two simulated 
datasets and three real datasets. Our results justify the scope 
of reliability (as well as limitations) of scGATE’s predictions in 
application to new data with unknown regulatory interactions. 
We show that scGATE performs generally better when the search 
space is effectively reduced by usage of external hints such as 
mechanistically approved associations from ATAC-seq or ChIP-
seq experiments. A comprehensive manual of data processing 
procedure and running the scGATE algorithm on new data is 
provided for users on the GitHub repository. scGATE is currently 

applicable to a rather small (<200) subset of genes with a refined 
list of candidate regulatory TFs based on external hints, prior 
information and speculative hypotheses, rather than attempt-
ing to infer the regulatory interactions from scratch in a large-
scale dataset. Moreover, on large datasets with millions of cells, 
a cell downsampling strategy should be applied to reduce the 
scGATE’s runtime. To obtain statistically reliable inference, there 
should be a relationship between the numbers of genes and 
cells used in the analysis. To illustrate this, consider cell-type– 
specific networks in Figure 4 as example. These networks have an 
average number of 3.39 regulatory TFs (excluding non-functional 
TFs) acting per target gene. By considering 10 levels as a good 
approximation for the continuous expression profiles in the (0,1) 
interval, there are 10#TFs states among regulatory TFs per target 
gene. In order to adequately sample this TFs’ state space, the 
cell numbers (n) should be proportional to the TFs’ state num-
bers. Then, log10(n) ≈ log10(10#TFs), which gives log10(n) ≈ #TFs. 
This is evident in Figure 4, where we observe that the inference 
quality for this gene set saturates at around 3000 cells, with 
log10(3000) ≈ 3.39. As described before, 3.39 is the average number 
of regulatory TFs (input edges) per target gene in the synthesized 
cell-type–specific networks. Figure 5C also shows the scGATE’s 
runtime on 3000 cells considering all TFs (regulatory and decoy). 
As mentioned above, for an effective cell downsampling strategy 
on large datasets, the logarithm (base 10) of cell numbers should 
be at least equal to the average number of regulatory TFs (input 
edges) per target gene. The rough estimate of the input edge 
numbers per target gene can be obtained based on prior knowl-
edge, speculations or association-based methods, e.g. Pearson 
correlation. 

The ground-truth GRNs from ChIP-seq experiments that we 
used in the mouse tissues and human haematopoiesis, are con-
sistent with our focus on identifying cooperative binding of TFs 
to the cis-regulatory regions of target genes, by incorporation of 
chromatin accessibility data as the external hint. However, several 
other types of interactions such as in large protein complexes 
will be missed both in our current model as well as the ground-
truth. Then, besides scATAC-seq and TF binding motif data, incor-
porating protein–protein interaction networks as an additional 
source of external cues can enhance the effectiveness of the 
network inference algorithm. Another crucial avenue for future 
research involves the development of scGATE to effectively handle 
pseudotime-sorted single-cell data along differentiation trajecto-
ries. This approach would enable the modeling of temporal delays 
[37, 38] between dynamic alterations in epigenomic states, such 
as changes in chromatin accessibility and histone modifications 
within cis-regulatory elements such as enhancers, and the corre-
sponding transcriptional profiles of target genes. Notably, during 
development, poised enhancers, which are known to exert crucial 
regulatory functions, exhibit changes in chromatin states and 
histone modifications prior to the activation of their target genes. 
By incorporating pseudotime-sorted single-cell data into the anal-
ysis, it would be possible to capture the temporal relationships 
and unravel the intricate interplay between epigenomic dynam-
ics and gene expression during cellular differentiation. As com-
putational approaches become increasingly vital for supporting 
experimental research in systems biology, these methodologies 
must continue to progress. Advancing the inference of intricate 
Boolean relationships among numerous factors with both high 
accuracy and computational efficiency represents an important 
future direction. 

Even though, in this study, we focused on cooperative binding 
of TFs to the cis-regulatory regions of target genes, scGATE’s
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Figure 9. ROC and PR curves are plotted for TF-gene network inference in human haematopoiesis scRNA-seq dataset. Cus_KO_ChIP is utilized as the 
ground-truth network. 

application can be extended to infer other types of regulatory 
interactions, by using knowledge from databases such as 
protein–protein affinity database STRING [ 39] or drug–target 
interaction DrugBank [40] for specific biological questions 
of interest. Specifically, employing scGATE for reconstructing 
higher order interactions, similar to those observed in large 
protein complexes involved in transcriptional regulation, would 
be an interesting research avenue. Moreover, scGATE enables 
researchers to unravel the effects of perturbations, such as 
gene knockout or overexpression experiments, on cellular states 
with greater precision. Unlike models that solely rely on first-
order TF-gene interaction networks, scGATE employs Boolean 
logics to offer more reliable predictions regarding the state of 
target genes when their regulators are perturbed. This is crucial 
as it allows for a more comprehensive understanding of the 
intricate regulatory mechanisms governing gene expression in 
single-cell data [41]. scGATE can characterize the differential 
TF–gene interactions commonly observed between normal and 
diseased conditions. It provides insights into disease mecha-
nisms and aids in identifying potential therapeutic targets for 
interventions. 

Key Points 
• We introduce scGATE (single-cell gene regulatory gate)

as a novel Boolean-based model for reconstructing con-
text specific TF-gene networks using single-cell multi-
omics data.

• scGATE relies on the continuous scRNA-seq data,
without binarization, to unveil complex combinatorial
(higher order) interactions among regulatory TFs.

• scGATE eliminates the need for individual formula-
tions and likelihood calculations for each Boolean rule.
Instead, it infers the Boolean rule within a Bayesian
framework a posteriori, after fitting its specific model to
the data.

• scGATE outperforms other state-of-the-art tools in net-
work inference.

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxfordjourn 
als.org/. 
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CODE AND DATA AVAILABILITY 
The mouse haematopoiesis scRNA-seq dataset is available 
from https://gottgens-lab.stemcells.cam.ac.uk/adultHSPC10X/. 
The processed file for the mouse haematopoiesis scRNA-seq 
dataset is also available at Zenodo https://doi.org/10.5281/zenodo. 
8353409. The base regulatory network associated with mouse 
haematopoiesis cell differentiation can be found in Krumsiek’s 
work [24]. Mouse tissues scRNA-seq dataset from Tabula Muris 
Consortium is downloaded from Gene Expression Omnibus 
(GEO) with accession ID GSE10974. This dataset is additionally 
available at https://github.com/czbiohub-sf/tabula-muris. Mouse 
tissues scATAC-seq dataset is downloaded from GEO with 
accession ID GSE11158. The ground-truth networks used in mouse 
tissues are derived by analyzing the TF ChIP-seq datasets in 
https://chip-atlas.org. Human haematopoiesis scRNA-seq dataset 
was downloaded from Supplementary file S2 from Buenrostro’s 
work [27] and human haematopoiesis scATAC-seq dataset is 
downloaded from GEO with accession ID GSE96772. The ground-
truth networks (Cus_KO and Cus_ChIP) used in the human 
haematopoiesis study are available in Cusanovich’s work [36]. 
The ground-truth networks for the mouse tissue and human 
haematopoiesis studies are additionally deposited at the GitHub 
page of this project at https://github.com/CompBioIPM/scGATE. 
All Jupyter and R notebooks for (synthesized and real scATAC-
seq and scRNA-seq) dataset analyses are deposited at our 
GitHub page. The R package of scGATE, compiled in R version 
4.1.3 and tested under both Windows and Linux environ-
ments, is available at our GitHub page. A detailed guideline

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae180#supplementary-data
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with several example usages of scGATE is available in the 
Supplementary file (see Supplementary Data available online 
at http://bib.oxfordjournals.org/) and GitHub page https://github. 
com/CompBioIPM/scGATE. The base GRNs reconstructed with 
external hints in mouse tissue and human haematopoiesis 
datasets, together with other intermediate and processed files 
are available at Zenodo https://doi.org/10.5281/zenodo.8353409. 
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