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Abstract

Single-cell analyses can be confounded by assigning unrelated groups of cells to

common developmental trajectories. For instance, cancer cells and admixed normal

epithelial cells could adopt similar cell states thus complicating analyses of their

developmental potential. Here, we develop and benchmark CCISM (for Cancer Cell

Identification using Somatic Mutations) to exploit genomic single nucleotide variants

for the disambiguation of cancer cells from genomically normal non-cancer cells in

single-cell data. We find that our method and others based on gene expression or

allelic imbalances identify overlapping sets of colorectal cancer versus normal colon

epithelial cells, depending on molecular characteristics of individual cancers. Further,

we define consensus cell identities of normal and cancer epithelial cells with higher

transcriptome cluster homogeneity than those derived using existing tools. Using the

consensus identities, we identify significant shifts of cell state distributions in

genomically normal epithelial cells developing in the cancer microenvironment, with

immature states increased at the expense of terminal differentiation throughout the

colon, and a novel stem-like cell state arising in the left colon. Trajectory analyses

show that the new cell state extends the pseudo-time range of normal colon stem-

like cells in a cancer context. We identify cancer-associated fibroblasts as sources of

WNT and BMP ligands potentially contributing to increased plasticity of stem cells in

the cancer microenvironment. Our analyses advocate careful interpretation of cell
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heterogeneity and plasticity in the cancer context and the consideration of genomic

information in addition to gene expression data when possible.

K E YWORD S

cellular heterogeneity, single-cell genomics, somatic variants

What's new?

Single-cell transcriptomics is a standard means of assessing cell heterogeneity and cell hierar-

chies in cancer tissues. However, single-cell datasets are complex and contain cancer and non-

cancer lineage cells. Here, the authors compared different strategies to analyze gene expression

and genomic information and retrace the origins of epithelial cell transcriptomes in colorectal

cancer (CRC) cells. Haplotype-aware copy number inference combined with a novel method to

assess somatic single nucleotide variants exhibited high accuracy in differentiating between can-

cerous and genetically normal cells found within cancer tissue. The findings offer a novel

approach to account for biological and genetic features of CRC.

1 | INTRODUCTION

Cancer cells mix and interact with their microenvironment.1,2

In colorectal carcinoma (CRC) and in other epithelial cancers, trans-

formed cells intermingle with non-cancer epithelial cells in areas

known as the invasive front (IF).3 Furthermore, normal tissues adja-

cent to tumors are re-shaped beyond the cancer's boundary, influ-

enced by local immune responses and inflammation,4 paracrine

signals,5 and genetic aberrations preceding malignant transformation,6

as has been shown by multiplexed tissue imaging,7 single-cell8 and

bulk transcriptomics.9 This gradual change in cell composition from

normal to cancer poses challenges for single-cell transcriptomics, as it

is not immediately apparent from the transcriptome whether certain

cells arise from malignant or normal lineages.

In CRC, single-cell transcriptome analyses revealed two overarch-

ing intrinsic consensus molecular subtypes (iCMS), termed iCMS2

and iCMS3.10 These transcriptome subtypes are linked to patient

characteristics such as localization of cancer, and to molecular

features such as microsatellite stability, mutational burden, the extent

of copy number aberrations, and patterns of driver mutations.11–14

That means, left-sided tumors frequently arise due to the loss of the

tumor suppressor gene APC and additionally harbor mutations in

KRAS, SMAD4, and TP53; these mutational patterns lead to WNT

and MYC signaling pathway activation. Furthermore, CRCs in this

context are most frequently microsatellite-stable (MSS), display

extensive copy number aberrations and gene expression patterns

characteristic of intrinsic molecular subtype iCMS2. In contrast, CRCs

progressing via serrated precursors are found mainly in the right

colon, carry mutations in KRAS or BRAF, display activation of the

TGF-beta signaling pathway, can be microsatellite-instable (MSI) or

MSS, have a higher mutational burden but fewer copy-number

changes, and show gene expression patterns of metaplasia and intrin-

sic molecular subtype iCMS3. We expect that the different cancer cell

characteristics could also lead to a variable accuracy of cell type calling

in single-cell analysis.

Numerous studies have conducted single-cell level analyses of

CRC.15–17 These investigations were either performed under the

assumption that all epithelial cells derived from the cancer tissue

samples are bona fide cancer cells, or they have relied solely on

transcriptome-derived characteristics to differentiate between cancer

and normal epithelial cells. Broadly applicable and robust methods to

confidently distinguish genomically normal epithelial cells from geno-

mically aberrant cancer cells remain elusive, especially for datasets

derived from regions where both types of cells coexist, such as at

the IF.

Here, we use different computational tools to disambiguate

cancer and non-cancer epithelial cells in single-cell transcriptome data

of 10 CRC patients across a range of clinical and molecular character-

istics, using additional information derived from associated whole-

genome sequencing data. Analysis of consensus sets of cancer and

normal cells shows that genomically normal epithelial cells adjacent to

the cancer can adopt cell states that are unlike those of epithelial

cell populations in normal tissue. Developmental trajectories of

non-cancer epithelium were altered in the cancer neighborhood, as

stem-like and immature differentiation states were overrepresented

among genomically normal cells in cancer tissue samples. We identify

multiple new paracrine interactions potentially modulating normal cell

development in the tumor microenvironment, including cancer-

specific fibroblasts as a source of the key stemness factor WNT.

2 | MATERIALS AND METHODS

2.1 | Sample collection and data preprocessing

The sample collection and experimental processing of the clinical

specimen for single-cell RNA sequencing data has been described

before16 and the new data for patient P35 was collected and

processed using the same protocols. In short, tissues were

processed using the Miltenyi Human Tumor Dissociation Kit
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(Miltenyi, no. 130-095-929) and a Miltenyi gentleMACS Tissue

Dissociator (Miltenyi, no. 130-096-427), using program 37C_h_

TDK_1 for 30–45 min. Single-cell libraries were generated using

the Chromium Single-Cell 30Reagent Kits v3 and the Chromium

Controller (10� Genomics). Libraries were sequenced on a HiSeq

4000 Sequencer (Illumina) at 200–400 Mio reads per library.

Whole genome sequencing (WGS) data was performed using

genomic DNA isolated from microdissected material of snap-frozen

(�80�C) CRC tissue, adjacent to material used for single-cell sequenc-

ing. DNA was isolated using Qiagen Allprep Kits and sequenced on

the Illumina NovaSeq 6000 platform using 2 � 150 bp reads.

Between 230 and 360 m reads were generated per sample. Reads

were mapped using bwa-mem18 version 0.7.17 against release

GRCh38 of the human genome with decoys and virus sequences. For

single-cell RNA sequencing data, UMIs were quantified using CellRan-

ger 3.0.219 with reference transcriptome GRCh38. See Table S1 for

sequencing statistics.

2.2 | Single-cell data quality control

All analyses on single-cell data were conducted with Python 3.9.10,

Scanpy 1.8.0,20 Numpy seed set at 123, R 4.1.2, and Seurat 4.1.1,21 if

not specifically mentioned. CellBender v0.2.222 was used to remove

ambient RNA with default parameters, 5000 expected cells, and FDR

rate at 0.01. We used Scrublet23 for doublet removal and chose the

score threshold at 0.3 after inspecting the observed and simulated

doublet scores distributions of all the samples. The detected

doublet rates ranged from 0.7% to 2.9%. For quality control, cells with

min_counts <1000, min genes <500, or mitochondrial percentage

>80% were removed, resulting in a total number of 73,294 cells. The

count matrix was then normalized and log1p transformed. The top 2000

highly variable genes (HVGs) were identified with “patient” as the batch

key. Principal component analysis (PCA) was conducted, and we calcu-

lated a UMAP using 50 neighbors and 20 principal components.

2.3 | Somatic variant calling in WGS and
genotyping of single-cell RNA-seq

Somatic variants in whole genome sequencing data were called by

Mutect2 from GATK version 4.2.0.024 using default parameters. The

GATK public resources were used for germline variant loci, common

biallelic loci were used to estimate possible contamination, and for the

panel of normals. CellSNP-lite25 1.2.2 was used to count somatic vari-

ants in single-cell RNA sequencing data against WGS filtered.vcf files

with parameters --genotype -p 22 --minMAF 0.001 --minCOUNT 1.

2.4 | CCISM model and data simulation

Cancer Cell Identification using Somatic Mutations (CCISM) is a tool

for the classification of single-cell expression data based on the

expectation–maximization method in Cardelino.26 Given the total

number dij of (UMI-collapsed) reads covering variant i in cell

j (reference and variant allele), and the number aij of UMIs supporting

the alternative allele, we evaluate the likelihood pT,j that cell j is a

tumor cell using a binomial model:

pT,j /
Y
i

dij
aij

� �
θ
aij
T 1�θTð Þdij�aij :

Here, θT is the “success probability” for the somatic variants,

measuring how likely it is to observe UMIs supporting the variant

allele. Similarly, we compute pN,j as the likelihood that cell j is normal,

with a fixed nonzero parameter θN = 0.01 allowing for sequencing

errors and uncertainties in the variant calls. We calculate pT,j and pN,j

in the E-step and estimate the parameter θT in the M-step as

weighted sum over the counts dij and aij:

θT ¼
P

j 1þpN,j=pT,j
� ��1P

iaijP
j 1þpN,j=pT,j
� ��1P

idij
:

E- and M-steps are iterated until convergence of the likelihood

lnℒ¼
X
j

ln pT,jþpN,j
� �

:

Finally, the likelihoods are normalized to give the posterior cancer

cell assignment of a particular cell pj = pT,j/(pT,j + pN,j) and a cutoff

pj > .5 is used to define likely cancer cells.

For the benchmark simulations (see also McCarthy et al.26), we

take the matrix dij from a given dataset and simulate values aij using a

binomial distribution with parameters θT = 0.4 and θN = 0.0001 for

randomly assigned tumor and normal cell identity, respectively. We

used the R package cardelino (v0.6.5) and the BinomMixtureVB func-

tion from the vireoSNP package (v0.5.6) for comparison.

2.5 | Methodology for consensus cancer calls and
trajectory assignments

Epithelial, immune, and stromal cell identity was scored and assigned

using previously published cell type markers.27 We ran a separate

PCA for the epithelial cell compartment and chose 20 neighbors and

15 PCs for the UMAP visualization.

Copy number inference from gene expression profile was per-

formed using inferCNV v1.3.328 with default parameters on all the

epithelial cells with CellBender-processed22 counts (filtered_h5).

The input gene expression profiles were smoothed with a window of

101 genes. The generated dendrograms were cut at k = 2 for each

patient, and clones were assigned as copy number-aberrant if their

averaged smoothed gene expression profile deviated by more than

3 SD from that of clones containing cells of normal samples.

Numbat29 v1.0.3 was run with the epithelial cells from the matched
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normal samples and using default parameters, which included

cellSNP-lite v1.2.2 for pile up and Eagle v2.4.1 for phasing the reads.

The four samples from P09 (n1, n2, t1, t2) were piled up and phased

together, and P26t and P35t were piled-up and phased separately as

there were no matched normal samples. The rest of the samples were

processed as paired normal and tumor samples.

For iCMS label transfer, we downloaded the CellRanger-

processed count matrix (“Epithelial_Count_matrix.h5”), and the cell-

level metadata (“Epithelial_metadata.csv”) from the source data10

(Synapse accession code: syn26844071, https://www.synapse.

org/#!Synapse:syn26844071/), filtered by min_genes = 500 and

min_counts = 1000, and concatenated this count matrix with ours.

The resulting matrix was integrated by scVI with data source as

covariate and passed to scANVI to learn the iCMS labels. We found

that learning with only the Joanito et al.10 gene list (1318 genes

including a signature for normal cells obtained by personal request

from the authors) was suboptimal since it only captured a small

proportion of gene expression variance. Therefore, we used the

union of all highly variable genes in either dataset and the iCMS

signature genes. The resulting matrix was integrated by scVI with data

source as covariate and passed to scANVI to learn the iCMS labels.

For the consensus cell identity assignment, we extracted the

assignment probability from the outputs of Numbat (p_cnv) and

CCISM (CCISM_p), and assigned the cell identity by the following

rules: A cell is annotated as genomically cancer cell if (1) p_cnv and

CCISM_p are both >0.5; or (2) CCISM_p = 0.5 and p_cnv >0.5; or

(3) p_cnv >0.5 in MSS samples; or (4) CCISM_p >0.5 in MSI sam-

ples. A cell is annotated as genomically normal cell if p_cnv and

CCISM_p are both <0.5. A cell that does not fit into any of the cat-

egories above is annotated as “unclear” and removed from the

downstream analysis.

For detailed epithelial cell type annotation, we used scVI and

scANVI to integrate datasets and learn cell type labels from Uhlitz

et al.16 The scVI models were trained on the raw count matrix

(adata.layer[“count”]) of 2000 highly variable genes using scvi-

tools v0.19.0 with patient and percent_ribo as covariates. These

models were used by scANVI as input to predict cell type labels of

newly included cells based on the annotation of previously anno-

tated cells.

The linear mixed model for cell type composition was com-

posed using the “glmer” function with binomial distribution from

the lmer package.30 For each cell type, we tested if there is a dif-

ference between genomically normal cells and healthy cells from

normal samples, where patient was included as a random effect

variable.

To enhance concrete transcriptomic contrasts between cancer

and normal cells, 1498 cells from normal samples that were

assigned as tumor-centric cell type, namely TC1-4, were removed

from the downstream analysis. The epithelial cell type of genomi-

cally cancer cells was then assigned as “cancer-like” in transcrip-

tomic analysis. Diffusion maps were calculated with 15 neighbors

and CytoTrace pseudotime as implemented in CellRank 1.5.2.

dev236 + gab03900.31

2.6 | Methodology for scoring CRC signaling
pathways and inferring paracrine interactions

We curated a list of known ligands and receptors of key signaling

pathways in CRC and a list of CRC signature genes for specific pheno-

types from literature (Table S2). The expression levels of CRC signa-

tures were calculated using “score_gene” function in Scanpy. The

paracrine interactions within normal and tumor samples were inferred

by CellChat v1.6.1.

2.7 | Re-analyzing lung adenocarcinoma data

For the lung adenocarcinoma data,32 we performed whole-genome

sequencing followed by calling of somatic mutations as described

above. We then used scRNAseq bam files for these samples to run

cellsnp-lite and CCISM. We finally merged CCISM cancer cell calls into

an R object with cell type annotation and inferCNV results provided

by the authors.

3 | RESULTS

3.1 | Transcriptome information is insufficient for
cancer cell calling in CRC

To reliably distinguish cancer from normal cells in single-cell RNAseq

data, we complemented single-cell data of 10 treatment-naive CRC

patients of a previous study16 with whole-genome sequencing data of

cancer and normal samples. Clinical and pathology assessment of the

cohort shows a broad distribution along the longitudinal axis of

the colon, and driver mutations in APC, BRAF, P53, beta-Catenin, and

KRAS in subsets of the cancers (Figure 1A). Using updated bioinfor-

matic pipelines, 73,294 cells passed quality controls after ambient

RNA and doublet removal. Of these, 43,110 transcriptomes were

from cancer tissue and 30,184 were from normal tissue samples adja-

cent to tumor. Across all samples, 39,168 cells were annotated as epi-

thelial, 31,663 as immune and 2463 as stromal cells(Figure 1B).

We first sought to distinguish cancer from normal epithelial cells

in the cancer samples using transcriptome information. In a UMAP

representation of all epithelial cell transcriptomes, a fraction of the

17,623 transcriptomes derived from cancer samples clustered as a

separate “community” while another fraction interspersed with the

normal tissue-derived epithelial cells (Figure 1C). We used probabilis-

tic label transfer from published gene expression data10 to assign can-

cer sample epithelial cells to the cancerous iCMS2 or iCMS3 epithelial

cell states, or a normal cell state (Figure 1D,E). In total, 10,589 cells

were classified as iCMS2 or iCMS3 and therefore were assigned as

cancer cells by this method. Cancer cells from P09, P13, P16, and P21

were predominantly called as iCMS2, whereas P07, P08, P14, P20,

P26, and P35 were mostly iCMS3. In line with previous observations,

we find that cells from each sample were mostly from a single domi-

nant iCMS type, with only a small minority of cells assigned to the
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other type10 (Figure 1E), and the results also confirm that MSI cancers

are usually iCMS3. Almost all the cells receiving iCMS2 or iCMS3 calls

were located on the cancer cell community of the UMAP, in contrast

to the 7034 cancer tissue-derived epithelial cells receiving the

“normal” label that were mostly scattered among cells derived from

normal tissue samples.

We next inferred cancer cell identity by expression-derived copy

number calls, using inferCNV28 (Figure 1F,G). Using hierarchical clus-

tering based on copy number-driven genome-averaged expression

patterns (Figure S1), we assigned cell clusters as cancer when their

averaged expression pattern deviated more than three standard devi-

ations from epithelial cells in the normal tissue samples. This method

did not yield results for the MSS cancer P14, which did not exhibit

detectable alterations in the averaged expression patterns. For the

remaining cancer samples, inferCNV identified a total of 10,509

abnormal transcriptomes, whereas 7114 transcriptomes were

assigned as derived from normal epithelium.

Taken together, the transcriptome-based analyses showed a large

overlap for calling cancer versus genomically normal cells (Figure 1H).

However, 1441 cells received conflicting calls, and cells from P14

F IGURE 1 Cancer cell calling based on transcriptome information. (A) Anatomical locations and mutational patterns of the samples. C,
cecum; A, ascending colon; D, descending colon; S, sigmoid; R, rectum. Mutations (in brackets) A: APC, B: BRAF, C: CTNNB1, K: KRAS, P: TP53.
(B) UMAP of all 73,294 cells, colored by three major cell type compartments: Epithelial (blue), immune (orange), and stromal cells (green). (C, D, F)
UMAPs of epithelial cells only. (C) Color code by the sample origin and the microsatellite status. Cancer sample (MSI), red; cancer sample (MSS),
yellow; normal sample, gray. (D) Color code for cancer sample cells by iCMS assignment; iCMS2 (yellow), iCMS3 (pink), or normal (blue), normal
samples (not scored, gray). (F) Color code of cancer sample cells by inferCNV. Copy number status aberrant (CNA; orange), normal (CNN; blue), or
not applicable (NA; purple) when the clones in the sample are not differentiable, normal samples (not scored, gray). (E,G) Stacked bar plots
summarizing iCMS and inferCNV information, respectively, by cancer sample. (H) Quantification of the agreement between iCMS and inferCNV
calls as an upset plot, color-coded by patient, as indicated.
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could not be properly assigned. Thus, these methods are not suitable

to generally define genomically-normal versus cancer epithelial cells in

CRC samples with high accuracy.

3.2 | Exploiting cancer-specific SNV information
for cancer cell calling with CCISM

Given that transcriptome analyses can potentially be confounded by

expression similarities between cancer and normal epithelial cell

states, we hypothesized that independently derived somatic variants

that are observed in single-cell sequencing reads constitute the most

unambiguous evidence that a cell originated from a cancer lineage.

We therefore utilized cancer-specific somatic variants derived from

bulk whole-genome sequencing data of matched samples to interro-

gate the associated single-cell transcriptomes.

Comparison of normal and cancer genomes yielded 2–12 cancer-

specific somatic single nucleotide variants (SNVs) per million bases of

genome sequence (MB) in most CRCs, except for the MSI CRCs P26

and P35 which had up to 50 SNVs/MB (Figure 2A). The mean number

of expressed SNVs per cell in the single-cell transcriptomes correlated

with the SNV frequency in the whole-genome sequencing data and

F IGURE 2 CCISM identifies cancer cells with somatic single nucleotide variants. (A) Scatterplot of the number of SNVs in whole genome

sequencing data and the average number of expressed SNVs per cell in single-cell RNA sequencing data colored by patient. (B) CCISM's workflow
diagram from input data (scRNAseq and bulk DNAseq data), allele count calculation by cellSNP-lite to CCISM modelling. Benchmark simulations
can be generated from input counts (blue). (C) Boxplots of tool performances in simulation data regarding runtime in seconds (right), false positive
rate (FPR, left), and true positive rate (TPR, mi) between CCISM (green), cardelinoEM (orange), and vireo (pear). (D) Line plots comparing model
performances (CCISM, green circle; cardelinoEM, orange cross; vireo, pear star) as function of tumor fraction (upper) and mean number of
expressed SNVs per cell (lower). (E) Line plot of CCISM's performance (TPR) in single-cell transcriptomes subsampled to five different mean
numbers of reads per cell, color-coded by patient.
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was for many CRCs less than 10 SNVs per cell, but up to 60 SNVs/cell

for the MSI CRC P35.

To make use of SNV patterns for the classification of single-cell

data, we developed CCISM (for Cancer Cell Identification by Somatic

Mutations). Input data are the UMI-collapsed read counts for refer-

ence and alternative allele observed per cell and variant, which are

obtained from the single-cell sequencing reads as well as a list of

high-quality somatic variants derived from bulk whole-genome

or whole-exome data. Based on this input, CCISM computes for each

cell a posterior cancer cell assignment by expectation maximization.

Importantly, these are cell-specific values and not derived from clus-

tering. At the same time, benchmark simulations can be used to esti-

mate expected sensitivity and specificity values for the dataset at

hand (Figure 2B).

We first used simulations based on the total allele count matrices

from our single-cell RNAseq datasets to benchmark CCISM against

cardelinoEM26 and vireo.33 Compared to these existing tools with

related functionality, CCISM has similar specificity but superior com-

putational efficiency (Figure 2C). We also obtained better sensitivity

especially at high tumor content, mainly because we employed a fixed

parameter for the probability of observing variant alleles in normal

cells instead of estimates. It is of note that sensitivity depends on

the number of expressed SNVs per cell and reaches optimal values

at three or more expressed SNVs per cell (Figure 2D). Across the

datasets used to initiate the simulations, we found sensitivity

strongly associated with mutational burden and therefore highly

correlated to the average number of expressed SNVs per cell

(Figure S2). A subsampling analysis revealed that most datasets

were not saturated for SNV coverage despite being sequenced to

depths of more than 90,000 autosomal reads per cell on average

(Figure 2E).

3.3 | CCISM and Numbat can be used
cooperatively to define consensus normal and cancer
cell lineage populations

We applied CCISM to our CRC single-cell RNA dataset resulting in

9738 cancer cell calls (Figure 3A). The predicted cancer cells show a

widely overlapping localization with cells previously classified using

expression-based copy-number variation inference with inferCNV or

iCMS2/iCMS3 gene expression (Figure 1D,F). However, CCISM gen-

erated more cancer cell calls in UMAP neighborhoods identified

mainly as normal by iCMS or inferCNV (Figure 3A, see rectangular

insets), suggesting that the use of cancer-specific variant information

retrieves cells of cancer lineages that are transcriptomically less diver-

gent from genomically normal epithelial cells.

For comparison, we employed Numbat,29 a recently developed

tool using allele frequency shifts of common germline variants to facil-

itate cancer cell calling via the detection of copy number changes. In

our single-cell dataset, Numbat identified 11,008 cells as of cancerous

origin, again showing an incomplete overlap with cancer cells identi-

fied by the other methods (Figure 3B,C).

Initially, 2562 cells received conflicting assignments by CCISM

and Numbat (Figure 3D). Therefore, we studied strengths and weak-

nesses of both tools, considering individual tumor characteristics

(Figures 3D,E and S3). On the one hand, we found that in MSS CRCs,

most cells with a conflicting assignment were earmarked as cancer

cells by Numbat; however, these cells did not receive a high-

confidence cancer cell score by CCISM, as they contained only a

median of one SNV, with 707 cells expressing no SNV at all

(Figure S3A). On the other hand, cells with conflicting assignments in

MSI CRC samples mostly (272/314) received a high-confidence can-

cer cell score by CCISM, and these contained a median of 16 SNVs,

while cancer cell scores computed by Numbat were generally low

(Figure S3A). Therefore, we developed a set of rules to arrive at a can-

cer cell consensus based on genomic information (Figure 3F): epithe-

lial cells of cancer samples receiving high scores (>0.5) by Numbat

were assigned as cancer cells, except for cells of MSI cancers that

were assigned as normal by CCISM (<0.5), which then received a

normal call. Epithelial cells of cancer samples receiving high scores by

CCISM (>0.5) were also assigned cancer cells, except when this call of

MSS CRC cells conflicted with a low score by Numbat (<0.5), in which

case the cell was called “unclear.” Using these consensus call rules,

we were able to assign 11,238 cells as cancer cells (Figure 3G,H).

Exactly 570 of these were not recognized as cancer cells by iCMS

transcriptional signatures or by inferCNV. A total of 5969 cells were

assigned as derived from normal epithelial lineages, using SNV or

haplotype information. A remaining set of only 416 cells was assigned

as “unclear” and removed from further analysis, as they contained no

reliable SNV or haplotype information.

3.4 | Consensus cell identity leads to higher
homogeneity of transcriptome clustering and enables
phenotypic comparison

The final cell assignment to cancer or normal lineages resulted in a

substantial separation of the populations when visualized on the

UMAP (Figure 3H). We additionally performed a transcriptome-based

Louvain clustering of cells (Figure 4A; see Table S4 for associated

marker genes) and quantified how cancer and normal calls are distrib-

uted across these clusters (Figure 4B). We found that normal and can-

cer cell communities were best separated when using the consensus

call, compared to relying on the different methods that use transcrip-

tome or genomic information individually (Figures 4C and S4A–D).

Using the consensus annotation, cancer cells were distributed in a

highly patient-specific manner, but genomically normal epithelial cells

intermingled as well as epithelial cells derived from normal tissue sam-

ples (Figure S4E). While the consensus call requires additional geno-

mic data, the correspondence to the Louvain cluster structure also

implies that transcriptomes alone may contain sufficient information

for the disambiguation of cancer and normal lineage epithelial cells, at

least in our CRC single-cell data set.

We found that the genomically normal epithelial cells from cancer

samples showed distinct cluster distributions when compared to the
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normal tissue epithelial cells (Figure 4B; see Table S5 for marker genes

associated with these groups). In particular, Louvain cluster 9 was

almost exclusively composed of genomically-normal epithelial cells of

cancer samples, and these were derived predominantly from tissue

samples of patients P09, P16, P20, and P21 with a left-sided (sigmoid

colon or rectum) origin (Figures 1A and 4D). We further explored the

identities of epithelial cells using label transfer.16 Cluster 9 contained

mainly stem cells, transiently amplifying cells, or enterocyte precursors

(Figure 4E), and their assignment to a distinct Louvain cluster sug-

gested that these cells adopted a cell state that was induced by the

cancer microenvironment and therefore not found in normal colon.

When we analyzed cluster 9-specific expression patterns, the most

strongly defining gene for cluster 9 epithelial cells was PLA2G2A,

encoding a secreted phospho-lipase (Figure 4F,G). Similarly, when we

F IGURE 3 Cancer cell calling based on genomic information. (A,B) UMAPs of epithelial cells. (A) Color-code by CCISM calls (cancer cell,
orange; normal cell, blue). Insets given for inferCNV and iCMS calls. Cells from normal samples are given in gray. (B) Color-code by Numbat call
(cancer cell, orange; normal cell, blue). Cells from normal samples are given in gray. (C) Venn diagram of the intersections of cancer cell calls from
iCMS (pink), inferCNV (yellow), CCISM (green), and Numbat (blue). 5,637 cells are called as normal by all four tools. (D) Intersections of cancer cell
calls from CCISM and Numbat colored by microsatellite status of the sample (MSI, red; MSS, yellow), given as an upset plot. (E) Heatmaps of the
cancer cell scores (0.0, blue; 0.5, dark gray; 1.0, orange) from Numbat (upper) and CCISM (lower) across cancer samples. (F) Decision matrix for
consensus cancer cell calls, based on CCISM, Numbat and microsatellite status. (G) Stacked barplot of the consensus derived from CCISM and
Numbat (cancer cell, orange; normal cell, blue; undefined, purple). (H) UMAP of the consensus calls, color code as in G, excluding cells with an
“unclear” call.
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F IGURE 4 Consensus calls identify a cluster of genomically normal cells unique to left-sided cancer samples. (A) UMAP of epithelial cells,
colored by louvain clustering. (B) Stacked bar plot of consensus calls across 20 louvain clusters (cancer sample and genomically cancer, orange;
cancer sample and genomically normal, blue, normal sample, grey). (C) Bar plot of cluster homogeneity scores for cancer cell calls by
different methods as indicated. (D) Relative fractions of genomically normal cells in cluster 9, by cancer location (see Figure 1A). P-value
from mixed-effects binomial model, *** P < .001. (E) Pie chart of the epithelial cell types in louvain cluster 9, as indicated. Color code:
Enterocyte (dark green), Enterocyte progenitor (light green), Immature Goblet (light purple), Stem/TA (dark blue), and Stem (light blue).
(F) Dot plot of top 10 marker genes for louvain cluster 9. Color of dot represents the mean normalized expression of the gene, and the size
of the dot shows the fraction cells expressing the gene. (G) UMAP colored by PLA2G2A expression, which is the top gene marker specific
to louvain cluster 9.

WEI ET AL. 9



compared genomically normal stem cells from cancer samples to stem

cells in normal tissue, PLA2G2A and other markers for cluster 9 were

among the top differential genes (Figure S5A).

Mapping of well-established colon and CRC cell-type signatures

(Table S2) onto the epithelial single-cell transcriptomes derived from

cancer and normal samples unveiled further differences in differentia-

tion programs in the cancer's vicinity, as Goblet cell transcriptomes

derived from cancer samples were enriched for a Paneth cell signa-

ture, indicating that the cancer microenvironment perturbs secretory

lineage fate decisions (Figure S5B). Indeed, the occurrence of

metaplastic Paneth cells has been widely documented in inflammation

and also in cancer of the colon.34,35

3.5 | The CRC microenvironment modulates
epithelial cell states and developmental trajectories

We next assessed cell type frequencies among the genomically normal

epithelial cells from cancer samples and compared them to normal tis-

sue sample epithelium, excluding patients P08, P21, P26, and P35

which either had no matched normal sample or very few genomically

normal cells (Figure 5A). We found that the cancer-adjacent epithelial

cells were significantly enriched for stem cells, immature goblet cells,

and enterocyte progenitors, while they contained lower proportions

of terminally differentiated cell types, such as differentiated entero-

cytes, goblet cells and tuft cells (Figure S5C).

We then wanted to infer cell developmental trajectories. For this,

we first embedded epithelial cells from normal and cancer samples

into a common diffusion map, thereby emphasizing continuous cell

distributions (Figure 5B). In this embedding, diffusion component

(DC) 1 was largely correlated to tuft cell identity, whereas DC2 dis-

tributed all other cell types along an apparent differentiation axis, with

genomically cancer cells occupying one end. Binning the non-cancer

cell types along the DC2 axis (Figure 5C), we observed that genomi-

cally normal stem cells from cancer samples occupied a larger range

on the DC2 axis compared to stem cells from normal tissue samples.

In contrast, while immature goblet cells and enterocyte progenitors

were also more frequent among the cancer-adjacent normal epithe-

lium, they were confined to a similar range on the DC2 diffusion axis

compared to normal tissue samples. These results were corroborated

by ordering the cell lineages along a pseudo-time axis using

CytoTrace36 (Figure 5D,E). Here, stem cells had a wider distribution in

the cancer microenvironment samples, whereas all other cell types were

distributed in a fashion comparable to normal tissue. The cancer

sample-specific stem cell zone extending into the developmental trajec-

tory is composed mainly of cluster 9 stem cells (Figure 5F), derived from

CRCs in the left colon. Together, these analyses suggest that the cancer

microenvironment affects differentiation trajectories of normal colonic

epithelial cells in their vicinity. The primary difference appears to be the

stabilization of the stem cell transcriptional state, which in a left-sided

CRC microenvironment extends further along the developmental trajec-

tory. In addition, proportions of immature to terminally differentiated

cell states are shifted toward the immature cell states in vicinity of CRC.

3.6 | The CRC tumor microenvironment is
enriched for morphogenetic signal interactions

We next analyzed potential paracrine interactions that could underlie

the observed differences in cell type frequencies and developmental

trajectories between the CRC microenvironment and the normal

colon. Our dataset contains a high proportion of immune cells and a

lower proportion of stromal cells (Figures 1B and S6A). Specifically,

among the 31,663 immune cells, 23,433 were derived from cancer, as

were 2054 of the 2463 stromal cells. We annotated stromal and

immune cell types at a medium granularity using established signa-

tures (Figures 6A and S6B), to strike a balance between accuracy and

cluster size. We found that among immune cells, monocytes, macro-

phages, and regulatory T cells were most enriched in the cancer sam-

ples, while among stromal cells, fibroblasts were overrepresented in

the cancer microenvironment.

We then used CellChat37 to infer interactions in the normal and

the cancer samples on a comprehensive basis (Figure S6C for all inter-

actions). Quantitative analysis revealed that fibroblasts had the most

extensive network of outgoing signaling interactions (Figure 6B) and

this network was even larger in cancer samples (Figure 6C). Endothe-

lial cells and pericytes were rich sources of outgoing signaling interac-

tions in cancer compared to normal. In contrast, endothelial cells,

macrophages and pericytes were prominent signal receivers particu-

larly in the cancer microenvironment, whereas CD8+ T cells received

the most signals in both, normal and cancer samples (Figure 6B). Nor-

mal epithelial cells emitted and received relatively few signals. There-

fore, we analyzed key morphogenetic signaling pathway interactions,

WNT, BMP and FGF, known to pattern the epithelium in more detail

(Figure 6D). We found that fibroblasts were rich sources of FGF sig-

nals potentially received by goblet cells, and of Wnt signals received,

for example, by stem cells, and these interactions were seen in both

tumor and normal tissue. In addition, BMP interactions known to

abrogate the stem cell state38 were diminished in the cancer microen-

vironment, in particular due to lower BMP expression from fibro-

blasts. Thus, our data predicts that differences in fibroblast signaling

could underlie the changes in normal epithelial cell developmental tra-

jectories that were mainly detected in stem and immature cell popula-

tion. Indeed, cross-referencing the interactions predicted by CellChat

with a curated list of signaling pathway ligands and receptors

(Figures 6E and S6D,E; Table S3), we found that WNT2 and the

TGF-beta ligand INHBA were most strongly overexpressed by cancer-

associated fibroblasts compared to normal fibroblasts, while BMP4

and the WNT co-ligand RSPO3 were expressed at lower levels

compared to normal tissue samples.

4 | DISCUSSION

Single-cell data of cancer tissue often contain transcriptomes of both

cancerous and normal epithelial cells. In this study, we compared dif-

ferent strategies that exploit transcriptome and genome sequence

information to trace back the origins of epithelial cell transcriptomes.
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F IGURE 5 Legend on next page.
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Across a cohort of CRCs of stages T1–T4 and with different molecular

characteristics, a combination of haplotype-aware copy number infer-

ence and our new method based on somatic SNVs allowed us to dif-

ferentiate with high accuracy between cancerous cells and those that

are found within cancer tissue but are genomically normal. Using con-

sensus sets of normal and cancer cells, we identified one cluster of

genomically normal epithelial cells that were derived from cancer tis-

sue samples exclusively, implying that the cancer microenvironment

can result in the adoption of non-standard epithelial cell states in the

colon.

Our new tool CCISM makes use of somatic SNVs observed in

single-cell sequencing reads for cancer cell identification. Making use

of the most unambiguous evidence that a cell originated from a cancer

lineage, this approach currently requires somatic SNVs independently

obtained from matched tumor-normal whole-genome or whole-

exome sequencing of the same cancers. To benchmark CCISM, we

used Numbat, which estimates copy-number variation from shifts in

haplotype frequencies over common genetic variants to identify

cancer cells, as well as two additional methods that use transcriptome

information exclusively. Although cancer cell calls from the different

approaches show substantial overlap, our analysis of CRC reveals dis-

tinct strengths and limitations contingent on the underlying biology of

each individual cancer. Consequently, workflows for cancer cell identi-

fication should be specifically tailored for the data under analysis.

Notably, the mutational load of cancer types differs by several orders

of magnitude39; our benchmarking of CCISM suggests a lower thresh-

old of 2–3 high-quality SNVs per transcriptome to achieve �75% sen-

sitivity in the disambiguation of single-cell transcriptomes, which

translates roughly to a mutational load above 10 SNVs/MB.

In the final cell annotation of our CRC dataset, cancer and geno-

mically normal cells were largely separated in the underlying Louvain

cluster structure, implying that cancer and normal epithelial cells do

not share common cell states during their developmental trajectories.

Nevertheless, we observed altered cancer sample-specific cell states

in genomically normal epithelial cells, which could easily be mistaken

for genuine cancer cells. It is important to note that our result of

largely non-overlapping cell states between normal and cancer may

not transfer to cohorts of other stages or types of cancer.

To demonstrate that CCISM and our consensus call strategy can

be applied to other cancer types, we analyzed a scRNAseq dataset of

six lung adenocarcinomas32 with matched tumor-normal whole

genome sequencing data and used CCISM to call cancer cells. More

pronounced than in the CRC cohort, normal epithelial cells clustered

by cell type, while cancer epithelial cells clustered by patient

(Figure S7A–C). In contrast to the CRC data, the lung cancer samples

contained very few non-cancer epithelial cells. Cancer cell calls by

CCISM overlapped with calls from inferCNV, with patient-dependent

accuracy in-line with the mutational burden and the estimated sensi-

tivity from benchmark simulations (Figure S7D–G). Generally, we

expect that CCISM works best for cancer entities with high muta-

tional load such as melanoma or lung cancers,39 while tools based on

copy-number variation will work better for cancer entities with fre-

quent structural aberrations such as neuroblastoma40 or high-grade

breast cancer.41 Our consensus strategy will strike a balance between

both types of genomic aberrations that exist side-by-side in many

cancer entities.

Using the consensus sets of genomically normal and cancer cells

defined here for colorectal cancers, we identified genomically normal

PLA2G2A-positive stem-like cells arising specifically in the cancer con-

text in the left colon (sigmoid and rectum). PLA2G2A is the human

homologue of the gene underlying the mouse Mom-1 locus,42 a

genetic modifier of familial cancer susceptibility shown to confer can-

cer resistance in mouse models.43 The functional relevance of these

stem-like cells remains elusive. On the one hand, the extension of

stem-like and immature cell states along the differentiation trajectory

could represent a misguided regenerative process hijacked by para-

crine signals of the cancer microenvironment.44,45 Indeed, we identify

novel paracrine interactions in the CRC microenvironment that were

dominated by fibroblasts, as recently also found for breast cancer.46

These signals could guide tissue remodeling in the proximity of cancer,

which is commonly accompanied by inflammation.47 On the other

hand, the induction of PLA2G2A, which we identified as the most spe-

cific marker gene of the novel stem-like cells arising near the cancer,

could be part of a feedback mechanism to protect the organ from can-

cer under inflammatory conditions. In agreement with such a function,

PLA2G2A is a secreted phospho-lipase that controls tissue homeosta-

sis via modulation of inflammatory responses and is a key player in

reducing cancer susceptibility.48 The exclusive occurrence of the

cancer-induced PLA2G2A-positive cells in the left colon suggests

regional specificity of the underlying mechanisms along the longitudi-

nal axis of the colon. Supporting region-specific models of cell differ-

entiation, different cell compositions and interactions have been

identified in the left-sided/sigmoid colon, such as increased plasma

cell interactions.49

Cancer tissue has been shown to extend its influence far beyond

its perimeter. Several potential mechanisms with different ranges

exist: tumors expressing hormones will affect the complete patient's

body regardless of localization,50 while inflammatory responses and

F IGURE 5 Cell states and developmental trajectories are altered in genomically normal cells of cancer samples compared to normal colon

epithelium. (A) Stacked bar plots of epithelial cell types in normal samples (upper) and genomically normal cell populations (lower), including
Enterocyte (dark green), Enterocyte progenitor (light green), Goblet (dark purple), Immature Goblet (light purple), Tuft (yellow), Stem/TA (dark
blue), and Stem (light blue). (B) Diffusion map with additional histograms of first and second dimensions/axes colored by epithelial cell types.
Color code as in A, with the addition of genomically cancer cells (red). (C) Stacked bar plots of the epithelial cell type compositions across binned
diffusion map dimension 2 in normal sample and genomically normal cells, as indicated. (D) UMAP colored by Cytotrace developmental
pseudotime, from early (0, yellow) to late (1, dark purple) in pseudotime space. (E,F) Violin plots of Cytotrace pseudotime across epithelial cell
types and consensus call groups, as indicated.
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other differences in cell composition can have long-range, yet local,

effects.51 A recent study found a prognostic value of gene expression

signatures derived from normal-adjacent to CRC issue harvested at a

distance of �10 cm from the cancer,52 suggesting the existence of

long-range interactions between the CRC and surrounding tissues.

Thus, gene expression patterns of our normal controls harvested

F IGURE 6 Signaling networks of normal epithelial and genomically normal cells with their respective microenvironments. (A) UMAP of all the cells
under analysis, colored by detailed immune and stromal cell types. Epithelial cells given in gray. (B–D) Analyses by CellChat (B) Scatterplots of incoming
and outgoing signals in normal and cancer samples, as indicated. (C) Heatmap of differential cell–cell communications of cancer samples in contrast to
normal samples. (D) Aggregated network graphs of WNT, BMP, and FGF pathways in normal samples versus cancer samples, as indicated. (E) Volcano
plot of differentially expressed ligand genes in immune and stromal cell types, as indicated. For a complete list of scored ligands, see Table S3.
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�10–30 cm from the cancer, may not represent a true normal state,

and in extension, our study may underestimate the influence of cancer

cells and the cancer microenvironment on adjacent genomically

normal colon cells.

New technological developments constantly change single-cell

methodology. Employing advances in sequencing depth and transcrip-

tome coverage, for example, by long-read sequencing or specific

protocols,53 a more comprehensive readout of somatic SNVs could be

achieved. This would help improve cell lineage determination, for

example, for cancers with few genomic aberrations, such as childhood

cancers. With increased coverage, robust de novo calling of somatic SNVs

could even be feasible directly from single-cell data.54–56 In summary, our

study provides general rules for distinguishing between cancer and non-

cancer single-cell transcriptomes and provides recommendations on how

to account for the biology and genetic characteristics of CRC. The rules

can easily be adapted for cancers of different origins.
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