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1 Supplementary notes

Note A: Weight matrix W

As described in the main text, the values in the observation matrix M used as input for the wNMF
represent the discretised VAF, while the values in the weight matrix W should re�ect the con�dence
that we have in each value of M .

As most variants observed in the data are not somatic, and we only observe positions with two
alleles present, our null model is that the variants are heterozygous and unchanged across cells. Only
strong evidence of the contrary should be used by the model. To get an estimation of the con�dence
in the observed VAF, we extract the observed VAF of known germline heterozygous variants (with
expected VAF of 0.5, and unchanged across cells) in each dataset.

In the Smart-Seq2 data, the mean VAF of these variants across cells is close to the expected value
of 0.5, but the VAF of individual cells is nearly always 0 or 1 (see Fig S3). This pattern is observed
irrespective of the depth of coverage of the position. In other words, we almost always only sample one
allele at a time in each cell. Consequently, observing exclusively reference (or exclusively alternative)
reads only tells us that this allele is present in that cell. We likely still have one unobserved allele, and
set the weight in W to 0.5 to re�ect this. Observing both reference and alternative read in the same
cell indicates that we observed both alleles, and that observation is thus given a weight of 1. We call
this weight model �non-UMI weight model� in Fig S4.

In the 10X data, the observed VAF is close to the expected VAF under a Bernoulli sampling model
in which we randomly sample reads for each allele (Fig S3). This is likely due to the presence of
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UMIs in the data, allowing us to account for PCR replicates. Given Xij , the coverage in cell i at the
variant position j, the probability of missing an allele at the observed coverage is equivalent to failing
the Bernoulli process Xij times, with p = 0.5:

(Xij

0

)
0.500.5Xij = 0.5Xij . Here as well, observing both

alleles would be given a weight of 1. We call this weight model �UMI weight model� in Fig S4. However,
for a practical range of coverage values, the weights between these two models are closely correlated
to each other (Fig S4). In fact they are also closely correlated to the weights of a binary model, in
which we assign a weight of 0 to positions that are not covered and weights of 1 otherwise (Fig S4). In
the Smart-Seq2 model, observing a VAF of Mi,j = 0.5 is very rare, and consequently most values in
the weight matrix will be 0.5. For the 10X model, as the coverage increases, the values in W will also
approach one. Based on this the main contributing factor of the weights to the wNMF is to ensure
that missing values do not contribute to the cost. Given the small di�erence between the non-UMI
and the UMI weight designs, we went for a simple uni�ed weighting model for both platforms, that
considers non-observation of variant or reference as uncertain by assigning a weight of 0.5.

Note B: Select variant subset and number of factors

For every variant subset V◦, the wNMF takes as input the observation matrix M , the weight matrix
W and the number of latent factors K.

As explained in the main text, if the variant set used as input for the wNMF contains too many non-
somatic variants, the signal can get lost. The cancer population size, and type of somatic events found
(deletion of germline SNV, acquisition of somatic SNV) can greatly vary between samples. Because of
this, the ideal variant �ltering thresholds can also vary between patients. To account for this, we try
di�erent thresholds and run the wNMF on each subset. Per default we try both to include and exclude
known germline SNVs (based on common dbSNP variants [1]), and to vary the minimal MAF across
cells between 3, 5, 10 and 15.

In the next step, the wNMF identi�es patterns of variants with correlated VAF patterns across
cell groups (for example a set of variants that is seen only in the cancer population). These variants
and cells can be summarised in a factor, resulting in a reduction of E proportional to the number
of variants and cells expressing these variants in each group. The higher the number of co-ocurring
variants, the higher the drop in E, which results in the �rst factors capturing the main axes of variant
variation in the data. Once all groups of co-occurring variants are found, the remaining factors will
capture smaller patterns, until the factors describe only individual variants. Ideally, the inputed
number of latent factors K would re�ect the number of clones clearly identifyable in the data. While
in theory, the number of clones present in the sample should be well-de�ned, in practice, the number
of clones that can be identi�ed will depend on the captured variants. To ensure that the factors are
not capturing background noise, we would like K to re�ect the number of co-occurring variant groups
clearly identi�able from the data. If this information is known, the corresponding K can be used as
input to the wNMF. In the absence of prior knowledge, we run the wNMF for a range of K (default
of 1 to 5), and try to select the �best� K.

For a range of number of latent factors κ = {K0 = 2, . . . ,K3 = 5}, and a set of variant subsets
ν = {V0, . . . , Vn} with corresponding �tted wNMF cell factor matrices {C(K0,V0), . . . , C(K3,Vn)} of shape
(nobs, κ), we select the best result C⋆ as the one that maximises the orthogonality score s between the
clones as de�ned in main text Equation 4.

s as a function of K and the variant subset are shown in �gure S1 for all patients analysed in this
work.

Note C: Label latent factors

As output of CCLONE, we get the cell factor weights C (nobs, K) and the variant factor weights V
(K, nvars). If the method succeeds we expect the factors to re�ect genetic clones, i.e. one or multiple
factors for healthy clone(s) and one or multiple factors for cancer clone(s). However, the wNMF does
not directly label these factors as healthy or cancer.

In this work, we label the factors based on prior knowledge of cancer cell populations. For the
AML samples, we know that the cancer does not give rise to either T and NK cells, and use those for
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labelling the clones. Clones depleted in these populations (< 10% of T / NK cells in that clone) are
labelled as cancer clones, and clones containing these cell types are labelled as healthy. For patients
with too few T/ NK cells (AML Smart-Seq2 patients P2 and P4), we use cancer cell types to label the
clones. Clones depleted in Blasts (< 10%) are labelled as healthy, and the others as cancer. For the
lung adenocarcinoma and CRC dataset, clones depleted in the �Tumor� (or �Tumour� for CRC) cell
type are labelled as healthy clones, and the others as cancer.

We also use these labels to validate the clones. The wNMF tries to �nd groups of co-occurring
variants across cells in an unsupervised manner. However, it is not guaranteed that such groups of
variants are present in the data. Another problem could arise if the data contains co-occurring variants
of non-somatic origin (for example missed RNA edits, or correlated artefacts). The sum of squared
errors E (main text Equation 1), re�ects how well the present variation is captured by the wNMF.
The orthogonality score s (main text Equation 4), re�ects how clear the separation between the cell
factors is in the data, and thus the expected signal-to-noise ratio. Neither s, nor E inform us whether
the captured variation re�ects genetic clones. To ensure that the variation captured by the wNMF
corresponds to separation between healthy and cancer, we use instead the known cell types to validate
the factors. If no factors can be labelled as either healthy or cancer (i.e. all factors contain healthy or
cancer cell types), we assume that the model has failed.

Note D: Alternatives approaches to label latent factors

In the absence of reference cell states (i.e. all cell states are mixture of healthy and cancer), prior
knowledge on the variants used as input to the wNMF could be used for labelling and validation
instead. If some variants correspond to known somatic events we could then verify that these have
di�erent weights between the factors, and use these for labelling of the factors. Another alternative
would be to carefully curate the variant set used as input to the wNMF and ensure that only likely
somatic events are used. By excluding all other potential sources of co-occurring variants, we would
then ensure that the identi�ed variation corresponds to somatic variation. However this exclusion of
uncertain variants is potentially time consuming and error prone. It could also come at the cost of
missing resolution for several lineages if they contain no well-covered curated variants.

In the absence of prior knowledge on the variants, a more careful analysis of the variants enriched
in each factor could help in understanding, labelling and validating the factors. If we �nd multiple
neighbouring variants found at VAF≈ 0.5 in one population and either lost of �xated in the other
population, they could point towards a deletion or LOH in that region (as shown for patient A1 in
Figure 3, or P3 in Figure S3). Another option would be to look for potential driver variants in the
enriched variants. This could be done by testing whether these variants are predicted to have an e�ect
and are found within disease-associated genes. As shown in this work, the patterns of enriched variants
can be very di�erent between patients. Consequently, this approach would have to allow for �exibility
and evaluating the enriched variants might be time consuming. It would also come at the cost of
excluding patients with no identi�able somatic events in the enriched set.

Note E: Preprocessing of the CRC and lung adenocarcinoma datasets

The reference cancer cell labels in the CRC and lung adenocarcinoma datasets are equivalent to the
ones used in the original studies and based on CNVs. The wNMF needs the presence of at least 2
genetic populations at su�cient frequencies to �nd patterns of variant co-occurrence. Because of this,
we exclude patients that have almost only (>97%) tumour cell types, leaving us with 7 patients for
the lung adenocarcinoma data (Figure S12A) and 6 for the CRC data (Figure S12B).
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2 Supplementary �gures

Figure S1: Cell variant as a function of the coverage. We �lter the germline variants and
RNA edits based on database annotation. We further �lter low frequency (<2%) variants, and then
show the number of observed variants as a function of the number of covered patients for all patients
analysed in this work. Because of the lenient �ltering, we still have many nonsomatic variants in the
data. Because of this, the overall number of observed variants to identify the cancer cells is directly
correlated to the cell size, and cannot be used to identify the cancer cells.
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Figure S2: Cell variant as a function of the coverage. We �lter the germline variants and
RNA edits based on database annotation. We further �lter low frequency (<2%) variants, and then
show the number of observed variants divided by the number of covered patients as a function of the
reference clonal probability for all patients with reference annotation analysed in this work. Because
of the lenient �ltering, we still have many nonsomatic variants in the data and the scaled number of
variants does not correlate to cancer cell status.
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Figure S3: Variant allele frequency of germline heterozygous variants in single cell. We
select known heterozygous germline variants and report the observed VAF in single cells in a histogram
for a Smart-Seq2 patient (in A) and a 10X patient in (B). Bellow we show the simulated VAF under
a Bernoulli model at the same coverage as the observed coverage of the Smart-Seq2 patient P1 in (C)
and of the 10 patient A1 in (D). For the Smart-Seq2 data, the observed VAF of individual cells is
nearly always 0 or 1, and this pattern is independent of the depth of coverage of the position. For the
10X data, the observed VAF is much closer to the expected VAF under a Bernoulli sampling model.
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Figure S4: Correlation of weight models. We compare the weights from the UMI model, the
non-UMI model and a binary weight model in which we assign a weight of 0 to positions that are
not covered and weights of 1 otherwise. Overall, we �nd a very high degree of agreement between
the di�erent weight models. This is shown by comparing the weights of the di�erent models for a
Smart-Seq2 patient in (A), and a 10X patient in (B). In (C), we show the correlation of the weights
for all patients analysed in this work. Running CCLONE with our weight models and a binary weight
model gives us very similar performance as shown in (D), although there is a slight increase in favour
of the full weight model for some patients.
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Figure S5: Orthogonality score for real datasets. We show the orthogonality score (main text
equation 5) used to determine the number of clones for all patients analysed in this work.
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Figure S6: UMAP plots showing the patient labels and detailed cell type labels and for the AML
Smart-Seq2 dataset [2] respectively in (A) and (B) and the AML 10X patients [3] in (C) and (D). The
UMAP were calculated in the original publications. The cell types shown in (D) are extracted from
the original publication. For consistency, the cell types labels in (B) were computed in the same way
as in (D) [3]. The cells were projected onto a reference atlas of human hematopoiesis [4] as described
in [4].
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Figure S7: (A) UMAP plot showing our cell labels for patient P3 of the AML Smart-Seq2 dataset [2].
(B) UMAP plot showing the VAF of the cancer driving IDH2 somatic variant used to label the cancer
cells in the original publication. Cells in grey have insu�cient coverage of that variant (≤2 reads).
(C) VAF of selected variants for the cells of patient P3. The cells are sorted by cell factors and the
subset of variants are selected based on di�erence between the factors (≥0.3). Grey values have too
low coverage (≤ 2 reads for scRNA and ≤ 5 for whole exome data). The right-most heatmap shows
the VAF of the IDH2 variant, which is found in a subset of the cells of factor 1.
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Figure S8: (A) UMAP plot showing our cell labels for patient P4 of the AML Smart-Seq2 dataset
[2]. (B) UMAP plot showing the VAF of the cancer driving NUP188 somatic variant used to label
the cancer cells in the original publication. Cells in grey have no coverage of that variant. (C) VAF
of selected variants for the cells of patient P3. The cells are sorted by cell factors and the subset of
variants are selected based on di�erence between the factors (≥0.3). Grey values have too low coverage
(≤ 2 reads for scRNA and ≤ 5 for whole exome data).
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Figure S9: We compare our cancer cell labels to a reference cell labels provided by the cell types.
In (A) all Blasts for [2], Early myeloid, Erythroid, Immature or Monocytes for [3] and all Tumor cells
for [5] are called cancer and compared to our cancer cell assignments. Patients with lower recall are
missing some cancer cells and our labels are potentially catching only a subclone of the full cancer
population. In (B), all T/NK cells for [2], B cells, NK cells or T cells for [3] and all Ciliated or Club
cells for [5] are called healthy and compared to our healthy cell assignments. We expect more cells
than only these cell types to be healthy cells, which explains the lower precision for some patients.

Figure S10: We compare the di�erence in variant allele frequency between the cancer and healthy
whole-exome sample on the x-axis (V AFWE:cancer−V AFWE:healthy), to the di�erence in weight between
the cancer and healthy factors on the y-axis (Vcancer − Vhealthy). One point represents one variant.
We show only variants that have su�cient coverage in all wNMF cell factors (>20% of cells covered)
and in the whole-exome data (≥5 reads found both in healthy and cancer). Points enriched in the
whole-exome cancer versus healthy will have higher values on the x-axis and points enriched in the
cancer factors will have higher values on the y-axis. For patient P4 we found two cancer factors, each
shown in one color. We note that for patient P2, as the sample is a mixture of genotypes (patient and
donor), and the WE cannot be used for validation of the factors. For P3, we �nd a cancer subclone
that does not contain the only nuclear variant found in the WE cancer (as described in the text).
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Figure S11: VAF of selected variants for all AML 10X patients where CCLONE succeeds in �nding
clones [3] (excluding A1 which is shown in main Figure 3B). The cells are sorted by cell factors and
the subset of variants are selected based on di�erence between the factors (≥0.3). Grey values have
coverage ≤ 2 reads.

Figure S12: VAF of selected variants for P2 excluding donor cells. The cells are sorted by cell factors
and the subset of variants are selected based on di�erence between the factors (≥0.3). Grey values
have coverage ≤ 2 reads.
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Figure S13: Proportion of cells assigned to each cell type for the tumor sample of each patient of the
lung adenocarcinoma data in (A) and of the CRC data in (B). The dotted line shows the threshold
used for patient �ltering. In (A) p024 and p027 were excluded because they have too few non-tumor
cells in the tumor sample. p034 was �ltered out due to the very low total number of cells (132 cells).
In (B) p008 and p021 were excluded as they had too few non-tumor cells in the sample

Figure S14: UMAP plots showing the detailed cell type label and patient labels for the lung adeno-
carcinoma dataset [5] respectively in (A) and (B). The UMAP and cell type labels were calculated in
the original publications.

15



Figure S15: UMAP plots showing the detailed cell type label and patient labels for the CRC dataset
[6] respectively in (A) and (B). The UMAP and cell type labels were calculated in the original publi-
cations.

Figure S16: UMAP plots showing the CCLONE cancer cell weights for the lung adenocarcinoma
dataset [5] for patients p019, p023 and p033 in (A) and for the CRC data [6] for patients p007, p013,
p014 and p026 in (B).
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Figure S17: VAF of selected variants for for the lung adenocarcinoma dataset [5] for patients p019,
p023 and p033 in (A) and for the CRC data [6] for patients p007, p013, p014 and p026 in (B). The
cells are sorted by cell factors and the subset of variants are selected based on di�erence between the
factors (≥0.3). Grey values have coverage ≤ 2 reads.

Figure S18: (A) Overview of the runtime for variant calling for chromosome 1 with Cellsnp-lite on
a Dual Xeon E5-2650v2 (8cores/2.6GHz) and 15 GB of memory for all patients analysed in this work.
The variant calling was performed for all chromosomes in parallel. (B) Runtime of the wNMF with
default parameters as a function of the size of the input variant call matrices (number of cells times
number of variants) (C) Runtime of the wNMF as a function of the number of EM iterations (default
set to 100).
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Figure S19: We compare the performance of CCLONE using the wNMF on the x-axis, to the
performance of vireo on the same input data on the y-axis. We observe a high agreement between the
methods, but better performance for the wNMF in some samples.

Figure S20: We test the robustness of the solution of the wNMF as a function of the number of EM
iterations. We show the F1 score in (A) and the variance of the solutions over multiple runs in (B).
We also test the robustness of the solution as a function of the number of bootstraps. We show the F1
score in (C) and the mean distance of the solution to the �nal one in (D).
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Figure S21: We test the e�ectiveness of selecting the variant subset based on the orthogonality score
of the solution (main text Equation 4). We compare the F1 score of our selected solution to the F1
score of all subsets. Overall we can see that this relatively simple approach is able to select the best
subset in nearly all the cases, and this without using any prior knowledge on the data.
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