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Rethinking animal attrition in preclinical
research: Expressing causal mechanisms
of selection bias using directed
acyclic graphs
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Abstract

Animal attrition in preclinical experiments can introduce bias in the estimation of causal treatment effects, as the

treatment-outcome association in surviving animals may not represent the causal effect of interest. This can compromise

the internal validity of the study despite randomization at the outset. Directed Acyclic Graphs (DAGs) are useful tools

to transparently visualize assumptions about the causal structure underlying observed data. By illustrating relationships

between relevant variables, DAGs enable the detection of even less intuitive biases, and can thereby inform strategies for

their mitigation. In this study, we present an illustrative causal model for preclinical stroke research, in which animal

attrition induces a specific type of selection bias (i.e., collider stratification bias) due to the interplay of animal welfare,

initial disease severity and negative side effects of treatment. Even when the treatment had no causal effect, our

simulations revealed substantial bias across different scenarios. We show how researchers can detect and potentially

mitigate this bias in the analysis phase, even when only data from surviving animals are available, if knowledge of the

underlying causal process that gave rise to the data is available. Collider stratification bias should be a concern in

preclinical animal studies with severe side effects and high post-randomization attrition.
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Introduction

The central goal of preclinical research is to determine
whether a given treatment has a causal effect on a spe-
cific physiological outcome in animals and to quantify
its impact. Ideally, researchers would like to observe
the outcome in the same animal at the same moment
under identical laboratory and environmental conditions,
only altering the individual animal’s treatment status. The
unobserved outcome that the animal “would have expe-
rienced” is known as the “counterfactual outcome”.1

However, without the ability to travel through time,
making such comparisons remains a thought experiment.
Since it is not possible to observe the two counterfactual
outcomes of a single animal in the real world, researchers
instead target an average causal effect for a group of
animals and rely on the comparison between treatment
and control groups of animals, which is directly
observable.

Yet, to derive internally valid estimates, it is impor-
tant to ensure that, aside from treatment, everything
else at the group level is as similar as possible between
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the two groups of animals. If the groups systematically
differ in terms of the (counterfactual) risk for the out-
come due to different baseline characteristics, the com-
parison becomes invalid. In other words, the groups
are not “exchangeable,” and the results may be
biased.1,2

Preclinical researchers make use of randomized
experiments to ensure, on average, this fair comparison
between treatment groups.3,4 When researchers ran-
domize animals into treatment groups and carry out
randomization correctly, they expect the counterfactual
risk for the outcome to be on average the same between
the two groups of animals. This fulfills the condition of
exchangeability between interventional groups.
Without proper randomization of the treatment alloca-
tion, any observed difference between the two groups
of animals may not necessarily represent the causal
effect of interest. Instead, this may represent a mixing
of the causal effect, if one is present, and other (non-
causal) associations due to common causes that may
predispose certain animals to both receiving the treat-
ment and experiencing the outcome.1 This mixing,
known as confounding, is well described in observational
epidemiology5 and is also recognized in preclinical litera-
ture,6–8 although the terminology is not consistently
used.

Another less-acknowledged threat to internal valid-
ity is selection bias. This term refers to a systematic
error in the effect estimation that arises from the exclu-
sion or inclusion of units into the sample.1 In the con-
text of preclinical research, selection bias can arise, for
example, when some animals initially randomized into
an interventional group are ultimately excluded from
the analysis because of sudden death or euthanasia to
limit suffering due to deteriorating health during the
course of the study. We refer to such losses as animal
attrition.

Especially in animal models involving invasive pro-
cedures that produce substantial pain, distress, and/or
impairment, animal attrition during the course of the
experiment is expected, although not always transpar-
ently reported.9–11 A review of attrition frequencies in
preclinical focal cerebral ischemia and cancer drug
studies observed uneven sample sizes in 42% of all
included experiments and that animal loss often
exceeded 25% of all animals used when fully dis-
closed.12 Reported sample sizes in the treatment
group tended to be smaller than in the control group,
indicating higher attrition frequencies in the interven-
tion groups.12

Implicitly, researchers often analyze preclinical data
under the assumption that animal attrition occurs at
random, as if the death of an animal was only related
to a random event, such as a laboratory accident.
However, if the attrition is not at random, and the

experimental analysis is restricted to the subsample of

surviving animals only, selection bias may arise.
In this work, we focus on a specific type of selection

bias called collider stratification bias. This type of

selection bias, unlike other types, is unique in that it

can induce bias in the analysis even when the interven-

tion has no effect on any individual (or other unit).13,14

Put simply, in the presence of collider stratification

bias, an association can be observed even when there

is actually no true effect. While collider stratification

bias has been described in detail in other research

fields, it remains absent from the discussion of preclin-

ical research results, even though it likely poses a real

threat to validity.
In this paper, we show how directed acyclic graphs

(DAGs), a causal inference tool, can be used to trans-

parently illustrate causal assumptions relevant to a

given experimental set up and to detect potential sce-

narios in which collider stratification bias can arise. We

detail a hypothetical example from the preclinical

stroke research setting and present results from a sim-

ulation study, in which we quantify the magnitude of

this bias and its impact on the obtained effect estimates

under a variety of plausible parameter constellations.

Methods

DAGs are visual representations of a priori hypothe-

sized causal structures. They are widely used in obser-

vational epidemiological research to transparently

depict the assumed causal relationships between rele-

vant variables under study.1,5,15–17 Briefly, DAGs con-

sist of nodes representing measured and unmeasured

variables connected by arrows. An arrow extending

from a “parent” to a “child” variable expresses a

direct cause-effect relationship from the former to the

latter in at least some units. Equally important is that

the absence of an arrow between two nodes reflects the

strong assumption of no cause-effect relationship

between them for any unit.1,5 No information about

the strength nor form of a relationship can be directly

inferred from the arrows in a DAG. Since DAGs are

acyclic, it is assumed that no variable can cause itself

directly or via another variable; this would violate the

temporality principle of cause preceding effect.
In a complete DAG, all direct effects among the

variables as well as all common causes of any pair of

variables included should be depicted.1 Increasingly

implemented across research domains outside of epide-

miology, DAGs have proven useful in diagnosing the

presence of potential biases and guiding study design

and analysis strategies in applied clinical research;18–22

however, only a few examples of the use of DAGs are

found in preclinical research.23,24
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In practice, researchers use DAGs to determine the

sufficient adjustment set of variables needed to mitigate

confounding or other biases to ultimately identify a

causal contrast of interest. This is often achieved by

identifying variables on the open non-causal path(s)

between the exposure and the outcome in a DAG.1,16

If non-causal paths can be closed by design (e.g.

through restriction) or analysis strategies (e.g.

regression-based adjustment), then the causal effect of

interest is identifiable.1,16

The usefulness of DAGs stems from inherent sim-

plicity; these intuitive graphs can help researchers

reason about design and analysis choices. Beneath the

surface, these simple-looking diagrams encode condi-

tional independencies between variables and connect

simple graphical rules to complex identification theo-

rems.1,16 DAGs have provided much-needed clarity to

other fields looking to explain long-standing

“paradoxes” that were difficult to reason about with-

out an explicit causal framework.16,25 For further tech-

nical details, we refer readers to the extensive body of

causal inference literature;1,2,5,13,16,17 our focus remains

on bringing this tool to the preclinical context to help

applied researchers better understand, detect, and mit-

igate a pervasive type of bias.

Hypothetical preclinical example

We use a DAG to depict how collider stratification bias

can arise in the context of preclinical in vivo ischemic

stroke research through differential animal attrition

(Figure 1).

In interventional stroke experiments using an animal
model, researchers often aim to derive the causal effect
of a specific treatment on absolute (final) infarct size at
the time point of outcome assessment. We use A to
denote the assigned experimental group, with A¼ 1
denoting the intervention group, A¼ 0 denoting the
control group, and Y to denote the final infarct
volume in mm3. The causal effect of interest is therefore
the average effect of A on Y, if all animals survive until
the end of the study.

As shown in Figure 1, Y is also affected by the initial
infarct volume, L,26,27 expressed as L!Y. We define
initial infarct size as an early measure of the infarct
severity determined by in vivo imaging after reperfusion
and prior to any therapeutic intervention. The initial
infarct size can vary substantially between animals
depending on biological characteristics, the surgical
methods used or the experimenter’s skill.28–30 By caus-
ing neurological deficits as well as inflammatory and
immunological responses that alter physiological func-
tion, the initial infarct size, L, is also a contributing
cause of the multidimensional composite variable
animal welfare W,31,32 which is denoted in Figure 1
as the arrow L!W. As any treatment, A, can also
have positive or negative side effects on animal welfare,
we make this relationship explicit in the causal diagram
with the arrow A!W (Figure 1). W is termed a col-
lider variable on the path A!W L!Y, since the
heads of the arrows connecting A!W and L!W
“collide” into W.1,13,14 S represents the survival status
with two possible states: S¼ 1 indicates that the animal
remained in the study until the outcome was assessed,
S¼ 0 indicates an unexpected loss or planned

Figure 1. Exemplary directed acyclic graphs illustrating collider stratification bias in preclinical stroke research. Variables: A: expo-
sure to treatment or control; W: animal welfare; S: survival status; L: initial infarct volume; Y: final infarct volume. In this hypothetical
example, researchers are interested in estimating the causal effect of treatment A on final infarct volume Y. In DAG 1, hypothetically,
we imagine that outcome information is available irrespective of the value of survival status (oracle approach). The collider path A!
W L! Y is closed (black) and the average causal effect can be estimated correctly by comparing the outcome in the two groups. In
DAG 2, measuring the outcome in surviving animals only (conditioning on S¼ 1, indicated by the box around S) induces a spurious
association between A and L, opening a non-causal path between the exposure and the outcome (orange), and will result in biased
effect estimation (naive approach). In DAG 3, adjusting for initial infarct volume (indicated by the box around L) closes the previously
open non-causal path (now in black) and allows for the identification of the causal effect of interest (adjusted approach).
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euthanasia of the animal during the course of the

experiment, preventing the outcome assessment. The

arrow W!S indicates that the animals’ survival

status, S, depends on their welfare status; that is, S is

a child of W. Indeed, animals maintaining an accept-

able welfare level throughout the experiment remain in

the final analytic sample, whereas animals that drop

below a certain level of welfare do not survive because

their conditions substantially deteriorate and lead to

death or euthanasia for ethical reasons.

Statistical analysis

For the in silico analyses, we translated the DAG in

Figure 1 into a set of linear structural equations16,17

under the assumption of no effect of the treatment on

the outcome for any animal. We considered different

possible scenarios, generating the groups to have equal

sizes of 5, 10 or 25 (corresponding to sample sizes,

ntotal, of 10, 20 or 50).
We assumed treatment A to be assigned arbitrarily,

and the initial infarct size, L, to be a normally distrib-

uted continuous variable representing an absolute volu-

metric measure of an ischemic infarct. We set the mean

and standard deviation of L to 25mm3� 5mm3, reflect-

ing an exemplary early infarct size in a middle cerebral

artery occlusion (MCAO) model in rats that would be

prominent enough to be detected through non-invasive

imaging shortly after reperfusion.27,33

Values for welfare score, W, and the final infarct

volume, Y, were simulated relying on the following

linear structural equations:17

Y ¼ b0 þ b1 �Aþ b2 �Lþ eY (1)

W ¼ c0 þ c1 �Aþ c2 �Lþ eW (2)

The parameter values for coefficients b1 (corre-

sponding to A!Y), b2 (L!Y), c1 (A!W), and c2
(L!W) express the causal effects of the respective

parents on the child variables in the DAG. In our sim-

ulation, we set b1 to zero in order to investigate the

magnitude of collider stratification bias under the

null (i.e., no effect of the intervention for any

animal).1 We chose values for the other parameters in

(1) in order to obtain realistic final infarct volumes. In

a systematic review, O’Collins et al. reported an aver-

age absolute infarct volume of approximately 200mm3

for an animal stroke model using Sprague-Dawley

rats.26 Accordingly, we set b0 to 0, since a final infarct

volume without an initial infarct volume is not conceiv-

able. We set b2 to 8, which leads to an average final

infarct volume of 200mm3 according to (1). The exog-

enous error terms eY and eW were assumed to be

independent and normally distributed with a mean of
zero and standard deviations of 10 and 2, respectively.

Since there is no standardized way of quantifying
welfare,32 we generated a variable W with an arbitrary
scale to reflect a quantified measure of welfare, with
lower values indicating worse animal welfare. We set
c0 to 0 and the parameter c2 to �1, reflecting the neg-
ative effect of initial infarct volume on animal welfare.
We considered different scenarios in which the effect of
the treatment on the welfare varied, indicating different
possible treatment side effect profiles. Though often
insufficiently reported, preclinical stroke studies tend
to report higher animal attrition frequency for treat-
ment groups compared to control groups, which
might reflect drug toxicity.12 Therefore, we set c1 to
{�1, �3, �6}, reflecting potential minor, moderate,
and major negative side effects of treatment.

We captured the survival of an animal throughout
the experiment in our simulations using the binary var-
iable S (“Survival Status”), which was deterministically
obtained from W. To capture the range of reported
attrition frequencies for in vivo stroke research,12 we
simulated the exclusion of animals having a welfare
score below the 10th- (low attrition scenario), 25th-
(moderate attrition scenario) or 50th- (high attrition
scenario) percentiles of all animals in the simulated
dataset. In practice, attrition frequencies may depend
on the severity of the animal models or conditions par-
ticularly conducive (or detrimental) to survival.

Since we considered a continuous outcome, the
treatment effect was estimated as the absolute differ-
ence between the mean final infarct volumes of animals
in the treatment versus control groups. An effect esti-
mate with a negative sign thus indicates a beneficial
treatment effect.

For each scenario, we estimated the treatment effect
using three approaches (in accordance with the identi-
fication strategies shown in Figure 1):

1. The “oracle” approach: the effect estimate was cal-
culated as the difference in the mean final infarct
volume between treated and untreated animals
using all data points, including animals with S¼ 0.
Obviously, this “all-knowing” approach is not feasi-
ble in the real world, since the variable Y is not
observed for animals with S¼ 0; these animals did
not survive to the time point of outcome assessment.

2. The “naive” approach: The treatment effect was esti-
mated as the difference in the mean final infarct
volume between treated and untreated groups only
among those animals that survived until the time
point of outcome measurement (restricting to
S¼ 1), mirroring real-world conditions.

3. The “adjusted” approach: The treatment effect esti-
mate was obtained from a linear regression with
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final infarct volume as the dependent variable and
treatment status and initial infarct volume as indepen-
dent variables. The regression was fit only among ani-
mals that survived until the time point of outcome
assessment (restricting to S¼ 1), mirroring real-world
conditions. The regression coefficient for treatment
thus represents the estimated effect of the treatment
among surviving animals, adjusted for L.

In total, we created 27 distinct scenarios with all
possible constellations of the parameters (small,
medium, or large sample size; minor, moderate, or
major side effects; low, moderate, or high attrition).
For each scenario, the simulation was repeated 10,000
times. We calculated the mean, the 2.5th, and 97.5th
percentiles of the effect estimates obtained using the
three aforementioned approaches (oracle, naive,
adjusted) across the 10,000 runs.

We used R version 4.2.1 and RStudio version
2022.12.0 for all analyses and visualizations. The cor-
responding R code, figures, and tables can be retrieved
from our Git repository (https://github.com/jrohmann/
rethinking_animal_attrition).

Results

Given the DAG 1 in Figure 1, both treatment and ini-
tial infarct volume affect welfare, and they are indepen-
dent of each other. However, the complete-case
analysis (naive approach, Figure 1, DAG 2) involves
estimating the exposure-outcome association only
among the stratum of surviving animals (S¼ 1). This
selection conditions on a child, S, of the collider, W
(indicated by the box around S in Figure 1, DAG 2).
The restriction to analyzing those data from surviving
animals only thus induces a spurious association via a
collider path, as shown by the orange dashed line in
Figure 1, DAG 2.5,13 Thus, the measured association
between A and Y in the data does not reflect the causal
effect of interest, but instead a mixing between the
effect of interest (if one exists) and an additional non-
causal association introduced by the open path
A!W L!Y.

From the assumed data generation mechanism
(structural equations, distributional assumptions, and
chosen parameters), it follows that animals have a
higher probability of dying or being euthanized
during the course of the study if they were in the treat-
ment group (A¼ 1) due to negative side effects or if
they had large initial infarct volumes (L). Since
having received treatment and having large initial
infarct volumes are both causes of low welfare,
among the surviving animals (S¼ 1), treated animals
are less likely to have large initial infarct volumes.
Given that final infarct volume (Y) increases with the

initial one (L), smaller initial infarct volumes in the
surviving treated animals result in smaller final infarct
volumes compared with surviving control animals.

Consequently, in such scenarios, the naive approach
to effect estimation (i.e., complete case analysis of sur-
viving animals) is biased in favor of the treatment
because of the treatment’s negative side effects even
in the absence of any causal treatment effect. This phe-
nomenon is visualized in Figure 2. By comparing the
initial infarct volume only among the surviving treated
and untreated animals (as shown in Figure 2(a)), col-
lider stratification bias can be detected. If this bias,
which arises from the non-causal path opened by the
selection on surviving animals only, is detected, mea-
suring baseline variables on such a non-causal path and
adjusting for them could represent a useful bias miti-
gation strategy.

The results from our simulation of 10,000 experi-
ments for each parameter constellation in the assumed
data generation mechanism are shown in Figure 3.

In 0.5% of the simulated experiments, the effect
estimates for the naive and adjusted approach could
not be calculated. For instance, in the scenario with
very few animals (ntotal¼ 10), high attrition (50%),
and major side effects, these effect estimates could
not be computed 10% of the time. This occurred
because too few animals in one of the two experimental
arms happened to survive in the experiment. We
excluded these missing values from calculation of
mean and quantiles of the effect estimates.

The mean causal effect estimate obtained using the
oracle approach was approximately zero across all 27
scenarios (Figure 3 and Table 1). Indeed, as expected,
this approach was unbiased for the targeted effect. In
contrast, the mean effect estimates obtained using the
naive approach differed from the true causal effect
(equal to zero), indicating bias (Figure 3 and Table
1). This result shows that including only the surviving
animals (S¼ 1, complete-case analysis) can induce an
association between the treatment and the outcome
merely due to the collider stratification bias. The mag-
nitude of this bias varied widely across the different
scenarios and increased with increasing attrition fre-
quencies and side effect severity (lower c1). When the
attrition rate was low (10%) and side effects were minor,
the bias arising in the naive approach when ntotal¼ 10
was�1.6mm3 (2.5th and 97.5th percentiles:�49.6, 48.2)
and �1.9 (�23.1, 19.9) when ntotal¼ 50 (Table 1). With
high attrition (50%) and major side effects, the quanti-
fied bias observed using this approach was as large as
�24.5mm3 (�83.2, 32.9) for ntotal¼ 10 and �25.7mm3

(�51.0, �1.2) for ntotal¼ 50 (Table 1). While improving
the precision of the effect estimates (less variability),
increasing the sample size did not reduce the naive
approach’s bias induced by collider stratification.
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We note that while attrition frequencies were similar
for both groups in the presence of minor side effects,
this was not the case when moderate or large side
effects were present. As expected, according to our
data generation mechanism, severe side effects associ-
ated with the treatment led to higher attrition rates in
the treatment group (Table 2).

When using the adjusted approach, we condition on
L, blocking the non-causal path opened by the selec-
tion on S (A!W L!Y). In this way, the adjusted
approach provides unbiased estimates for the causal
effect conditional on L and S¼ 1. The conditional
effect corresponds to the effect of the treatment among
those surviving animals having the same initial infarct
size (because this variable was conditioned upon).

In scenarios in which all relationships are linear, as
described in (1) and (2), this conditional effect is equiv-
alent to the marginal one (i.e., the average effect of the
treatment among all animals), which was targeted in
the oracle approach.

For this reason, the adjusted approach yielded
mean effect estimates close to zero across all

27 scenarios (Table 1). Since the adjusted approach
relies on the conditional distribution of the outcome,
it not only provides an unbiased estimation of the true
effect but is also more precise. For example, in the
scenario with large sample size, high attrition, and
major side effects, using the oracle approach, we
obtained a mean effect estimate of 0.2 (�22.6, 22.6),
while using the adjusted approach, a mean estimate of
0.1 (�9.8, 9.7).

Discussion

In this work, we used DAGs to illustrate how differen-
tial animal attrition can induce collider stratification
bias, a type of selection bias, in the estimation of
causal effects in preclinical animal studies. We present
a hypothetical example from preclinical stroke research
in which the animal’s welfare is affected both by the
treatment (i.e., negative side effects) and the initial
infarct volume. Since the outcome, final infarct
volume, is affected by the initial infarct size, we show
how collider stratification bias can lead experimenters

Figure 2. Hypothetical example illustrating the impact of collider stratification bias on mean initial and final infarct sizes using
simulated data. Values for initial infarct volume, L, and final infarct volume, Y, are shown. The solid dots represent data from surviving
animals (S¼ 1), and the solid lines represent the mean values for the underlying infarct size, L, and observed outcome, Y, in surviving
animals of each by experimental group (naive approach). The semi-transparent dots represent values of censored animals (S¼ 0). The
semi-transparent lines depict the means of L and Y in the hypothetical dataset without censoring (oracle approach). Panel (a): At study
outset, both experimental groups show similar means for the initial infarct size L (semi-transparent line). Due to the underlying data
generation mechanism, when considering only surviving animals, animals in the treatment group show, on average, smaller initial
infarct sizes (solid points). Panel (b): Since Y decreases with decreasing L, the surviving animals of the treatment group show smaller
final infarct sizes compared to surviving animals of the control group, despite absence of an actual causal effect.

6 Journal of Cerebral Blood Flow & Metabolism 0(0)



to erroneously conclude that a treatment has a benefi-

cial effect even when no real effect exists. For simplic-

ity, we assumed that the final infarct volume is a

well-defined quantity even for animals lost to follow-

up and considered the “oracle” approach to be the one

of interest for the researcher. That is, the investigator’s

interest lies in estimating the effect of the treatment on

the final infarct volume in a world in which no animal

dies during the study. This is a plausible causal effect of

interest when all deaths are potentially preventable.

For example, if all animals could survive until the

moment of outcome assessment, but some are eutha-

nized to prevent suffering. If this scenario is deemed

unrealistic, other causal effects (e.g. conditional sepa-

rable effects) should be targeted.34

The bias observed in our simulations arises from the

fact that analyzing data only from the subset of ani-

mals that survived (“naive approach”) corresponds

to implicitly conditioning on a (child of a) collider

variable, thereby inducing a non-causal association

between the treatment and the initial infarct size. We

quantified the magnitude of the collider stratification

bias in a simple model and showed that, being a sys-

tematic error, this bias cannot be reduced by increasing

the number of animals in the experiment.
We illustrate that researchers can potentially miti-

gate this bias in the analysis phase, even when only

data from surviving animals are available, by measur-

ing and statistically adjusting for variable(s) on the

open non-causal path (“adjusted approach”). This

requires knowledge about the underlying causal

structure that gave rise to the data, for which a DAG

can be a useful visualization tool. In our simple hypo-

thetical example, by measuring the initial infarct

size (using e.g. magnetic resonance imaging) and

including it as a covariate in the regression model

fit using the data of the surviving animals, we showed

how it is possible to mitigate the collider stratification

bias even under high animal attrition and severe side

effects.

Figure 3. Simulation results: Three approaches for effect estimation under different attrition frequencies, strengths of side effects
and sample sizes. Distribution of effect estimates for 10,000 simulated experiments for each of 27 scenarios created from the
combination of different total sample sizes, n (10, 20 or 50), strength of side effects, c1 (major, moderate, minor) and attrition
frequency (10%, 25%, 50%). Results are shown separately for the oracle approach (green): complete dataset E(Y | A¼ 1) - E(Y |
A¼ 0); the naive approach (pink): with censoring of animals according to welfare, E(Y | A¼ 1, S¼ 1) - E(Y | A¼ 0, S¼ 1); and the
adjusted approach (gray): with censoring of animals according to welfare and adjustment for initial infarct volume, E(Y | A¼ 1, S¼ 1,
L¼ ‘) - E(Y | A¼ 0, S¼ 1, L¼ ‘). While the distributions of the estimates from the oracle approach (green) and the adjusted approach
(gray) are centered approximately around the true causal effect of zero, the average effect estimate obtained by the naive approach
(pink) appears to deviate substantially from zero in multiple scenarios.
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Selection bias, though less intuitive than measure-

ment error or confounding, has been described in the

context of preclinical (stroke) research.12,35–37 We show

how the use of a causal framework, specifically,

through use of DAGs, can alert us to the presence of

these biases and other threats to internal validity and

inform the analysis in a transparent way. Collider strat-

ification bias, unlike other selection biases, can lead to

misleading effect estimates even when no effect is actu-

ally present.1 Therefore, it is plausible that erroneous

decisions regarding the progression of treatments to

confirmatory preclinical trials or first-in-human studies

could be based on this bias, raising ethical concerns

with regards to animal use and futile testing in

patients.38,39 While we focus on the specific case in

which the treatment has no effect in any animal, we

emphasize that collider stratification can also induce

bias by the same mechanism when the treatment has

an effect on the outcome.1

Limitations

While DAGs represent non-parametric models and the

nature of collider stratification bias is agnostic to the

specific type of functional relationship, we made sever-

al simplifying assumptions in our application.
First, we included a limited number of variables in

our DAG to avoid overcomplication and focus on the

simplest structure of collider stratification bias. In

other applications and depending on the conditions

Table 1. Effect estimates obtained using three different approaches under different scenarios of sample size, attrition frequencies,
and side effects.

Attrition

frequencies

(%)

Side

effects,

severity

Oracle

approach:

mean (mm3)

Oracle approach:

2.5% and 97.5%

percentiles (mm3)

Naive

approach:

mean (mm3)

Naive approach:

2.5% and 97.5%

quantiles (mm3)

Adjusted

approach:

mean (mm3)

Adjusted approach:

2.5% and 97.5%

quantiles (mm3)

n¼ 10

10 Minor 0.2 �50.7, 52.3 �1.6 �49.6, 48.2 �0.1 �14.3, 14.4
Moderate �0.5 �51.7, 51.0 �5.2 �53.8, 44.9 �0.1 �14.8, 14.5
Major 0.2 �49.7, 51.1 �7.8 �56.6, 43.0 0.0 �14.4, 14.7

25 Minor 0.0 �51.3, 51.4 �2.9 �52.7, 46.2 0.0 �17.6, 17.7
Moderate 0.2 �51.4, 50.5 �9.1 �59.9, 40.6 0.0 �17.9, 17.7
Major 0.6 �51.0, 51.9 �17.4 �68.4, 34.3 0.1 �18.3, 19.0

50 Minor 0.2 �51.0, 51.7 �4.3 �59.7, 50.8 �0.1 �25.4, 25.0
Moderate 0.3 �51.2, 52.0 �12.3 �70.3, 44.0 �0.3 �27.8, 25.2
Major 0.0 �49.2, 51.4 �24.5 �83.2, 32.9 0.0 �29.4, 29.9

n¼ 20

10 Minor �0.1 �36.1, 36.7 �1.8 �35.7, 33.1 0.1 �9.5, 9.7
Moderate 0.1 �36.5, 36.8 �5.0 �39.2, 29.8 �0.1 �9.8, 9.5
Major �0.2 �36.1, 36.5 �9.1 �43.7, 26.7 0.0 �9.7, 9.9

25 Minor 0.2 �35.6, 36.1 �2.9 �36.6, 30.5 0.0 �10.6, 10.8
Moderate �0.3 �36.1, 35.2 �9.2 �43.1, 25.6 �0.1 �10.9, 10.8
Major �0.1 �35.9, 35.9 �16.9 �52.5, 19.2 0.1 �11.2, 11.7

50 Minor 0.2 �36.0, 36.6 �4.3 �42.3, 32.9 0.0 �13.9, 13.8
Moderate 0.1 �35.7, 36.1 �12.9 �51.4, 25.4 �0.1 �15.0, 14.5
Major 0.0 �36.8, 35.7 �25.4 �67.4, 14.9 �0.1 �16.8, 16.8

n¼ 50

10 Minor 0.1 �22.8, 23.5 �1.9 �23.1, 19.9 0.0 �5.9, 5.8
Moderate 0.1 �22.9, 23.1 �5.3 �27.4, 16.2 0.0 �5.9, 5.9
Major 0.0 �23.4, 23.5 �9.4 �32.0, 12.8 0.0 �5.9, 6.0

25 Minor 0.0 �22.9, 22.8 �3.3 �24.4, 18.2 0.0 �6.8, 6.6
Moderate 0.0 �22.5, 22.8 �9.3 �30.5, 11.9 �0.1 �6.6, 6.6
Major 0.0 �23.1, 23.1 �17.8 �40.4, 4.5 0.0 �7.0, 7.1

50 Minor 0.1 �22.8, 22.6 �4.4 �27.7, 18.4 0.0 �8.3, 7.9
Moderate 0.0 �23.3, 22.8 �12.8 �36.4, 10.7 0.1 �8.5, 8.5
Major 0.2 �22.6, 22.6 �25.7 �51.0, �1.2 0.1 �9.8, 9.7

Mean effect estimates, 2.5th, and 97.5th percentiles for 10,000 simulated experiments for 27 scenarios created from the combination of different total

sample sizes, n (10, 20 or 50), strength of side effects, c1(major, moderate, minor) and attrition frequencies (10%, 25%, 50%). Results are shown

separately for the oracle approach: complete dataset, E(Y | A¼ 1) - E(Y | A¼ 0); the naive approach: with censoring of animals according to welfare,

E(Y | A¼ 1, S¼ 1) - E(Y | A¼ 0, S¼ 1); and the adjusted approach: with censoring of animals according to welfare and adjustment for initial infarct

volume, E(Y | A¼ 1, S¼ 1, L¼ l) - E(Y | A¼ 0, S¼ 1, L¼ l).
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of a given experiment, other variables may play a role
in the data generation process and should be included

in the DAG.
Second, while we show how collider stratification

bias can arise in the presence of animal attrition, the
magnitude and direction of this bias depend on the

parameters included in the structural causal model
and the assumed functional relationships between the
variables. It was challenging to find realistic parameters
for our causal model since animal studies do not typi-
cally report all required parameters (e.g. relationship
between initial and final infarct volume by treatment
group, relationship between initial infarct volume and

welfare, or conditional variances needed to define real-
istic distributions of the error terms).

We assumed the structural causal equation for the
final infarct volume was linear with normally distributed

errors. Due to this assumption, the conditional causal
effect estimated using the adjusted approach also repre-
sents an unbiased estimate of the marginal causal effect
if no animal had died, which may not generally be the
case. Results from randomized experiments without
adjustment typically target marginal effects, but argu-
ments have also been raised for the statistical efficiency

and relevance of conditional effects.1 This is also the
reason why the adjusted approach in our application
yielded more precise estimates compared with the
oracle approach. In the real world, it is plausible that
the treatment has an effect on the outcome that varies
across animals. In the presence of such effect measure
modification (or if the interest lies in a non-collapsible

effect measure), more complex statistical methods, such
as g-methods,1 should be employed to adjust for the
selection bias.

We also assumed the relationship between initial
and final infarct volumes was linear in the treatment
groups. We did not consider more complex scenarios,
for example, in which the infarct volume changes over
time at different rates based on its initial value. Taken
together, parameter choices as well as the assumed lin-
earity of cause-effect relationships in the DAG limit the
generalizability of the bias estimates we have reported.
The actual magnitude and direction of the collider
stratification bias varies for each unique animal disease
model, experimental setup and setting.

Third, it is possible that measurement error exists in
the real-world. For example, some detection methods
(e.g. T2-weighted/diffusion-weighted magnetic reso-
nance imaging) may not be sensitive enough to reliably
detect the full initial infarct volume in the early stages
after occlusion. When equipment or methods to per-
form more accurate measurements are not available
and the initial infarct volume is measured with error,
adjusting for it, for example in a statistical model, will
still be preferable (analogous to adjusting for surrogate
confounders1), although not sufficient to completely
mitigate the collider stratification bias introduced by
animal attrition.

Fourth, we assumed independent errors in our struc-
tural causal model. This assumption implies untestable
“cross-world independencies”.1 However, we empha-
size that the illustrated results and the mechanism of
the collider stratification bias hold also without making
any cross-world assumption.1

Fifth, we acknowledge that to adjust for the selec-
tion bias during the analysis phase, it is necessary to
correctly model the relationship between the variables.
In our didactic example, we knew that the model was
correctly specified. However, whether a model is cor-
rectly specified is not generally known. Using a model
that misspecifies the functional relationships between
variables can introduce bias. This problem presents a
substantial challenge in preclinical research considering
the typically low sample sizes.

Lastly, we opted to exclude the small number of
effect estimates in the naive and adjusted approaches
that could not be computed due to too few animals in
one particular stratum. We acknowledge that excluding
these missing estimates may have introduced some bias
in the calculated means and quantile ranges.

Implications

DAGs provide an overview of the complex interplay
between variables and serve as a valuable tool to for-
mulate a priori hypotheses about the underlying data
generating processes. By visually representing these
hypotheses, DAGs aid researchers in the detection of
potential biases and justify design and analysis

Table 2. Attrition frequencies stratified by experimental group.

Side effects,

severity

Total attrition

frequencies (%)

Attrition

frequency in

treatment

group (%)

Attrition

frequency in

control

group (%)

Minor 10 12 8

25 28 22

50 54 46

Moderate 10 15 5

25 34 16

50 61 39

Major 10 18 2

25 41 9

50 71 29

Presentation of the attrition frequencies by experimental group under

different parameter values for negative side effects c1 (A!W; minor,

moderate, or major) and total attrition frequencies, (10%, 25% or 50%).

Values of attrition frequency by group were obtained analytically.
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choices.1,22 As we have shown, DAGs can be employed
to 1) detect the potential presence of collider stratifica-
tion bias before the experiment is run, and 2) identify
variables worth measuring since they would be needed
to detect and/or mitigate this bias in the analysis phase.
Bias mitigation may require the use of statistical
models and, therefore, rely on additional assumptions
(e.g. linearity and distributional assumptions).1 We
believe DAGs are particularly well-suited for inclusion
into pre-registration of preclinical experiments, espe-
cially to justify the measurement of and adjustment
for specific variables in cases when biases are suspected.

Our results illustrate how striving for low animal
attrition during the course of an experiment can help
preserve internal validity in preclinical research. Since
higher animal survival probabilities can improve inter-
nal validity by reducing selection bias, laboratory and
operation-related procedures should be carefully con-
sidered when determining whether a particular animal
model is suitable.40,41 Reputational concerns for the
experimenter and the misconception that lost animals
do not contribute relevant evidence (and do not need to
be reported) both hinder transparency and may explain
the slow uptake and insufficient reporting of animal
attrition in the preclinical literature.9,11,42 Higher attri-
tion rates do not necessarily reflect skill or procedural
deficiencies, especially for high-severity disease models,
in which euthanasia to minimize animal suffering may
be prioritized over maintaining low attrition. However,
when experimental conditions make selection bias
likely, which can be anticipated prior to performing
the study, it raises the question whether the (biased)
experimental results, which may lead to further waste
down the translation pipeline, have scientific value,39

especially if the bias is not addressed.
We advocate for a perceptual shift towards describ-

ing the observable differences in relevant characteristics
of lost and retained animals. This can reveal valuable
insights into potential inferential limitations, particu-
larly, when there is higher attrition in the treatment
relative to the control group.35,43 The characteristics
of lost animals within each experimental group
should be systematically documented and published
alongside the study results, which aligns with the
ARRIVE guideline recommendations.43

Multidimensional assessments of animal welfare
should include measurements of relevant causes of
the animal welfare status (e.g. initial infarct volumes).
Explicitly reporting details about these variables and
their association with animal welfare and the outcome
could strengthen the knowledge about their role in the
causal processes in the animal model and be informa-
tive to other researchers working with the same model.

Finally, we focus on the potential impact of collider
stratification bias for the ischemic stroke in vivo model.

In a methodological review of articles published
between 2006–2016, experimental stroke research was
found to be unique in showing improvements in quality
and methodological rigor compared with other cardio-
vascular research areas.44 We want to emphasize that
our findings likely also extend to other in vivo disease
models as well as in vitro research.

Conclusions

Even when conducting randomized, controlled, stan-
dardized laboratory animal experiments, researchers
should be aware of the potential for selection biases
that may pose a threat to internal validity. In our
study, we have explored the mechanisms behind collid-
er stratification bias, a specific type of selection bias.
Though well-described in the field of epidemiology, we
have demonstrated why collider stratification bias
should be a concern in preclinical studies involving
animal models, particularly those with severe side
effects and high post-randomization attrition. We
focused on scenarios in which the treatment had no
actual effect on the outcome, but the researcher
would have (falsely) observed one due to this type of
selection bias. Collider stratification bias can affect the
conclusions drawn from such experiments, in turn
influencing the direction of subsequent translational
research. Our findings emphasize the importance of
considering and addressing selection biases in preclini-
cal research to improve the validity of study results,
contributing to more accurate and reliable scientific
discoveries.
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