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CHRONIC LYMPHOCYTIC LEUKEMIA

Third-generation anti-CD19 CAR T cells for relapsed/refractory
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Third-generation chimeric antigen receptor T cells (CARTs) for relapsed or refractory (r/r) chronic lymphocytic leukemia (CLL) may
improve efficacy compared to second-generation CARTs due to their enhanced CAR design. We performed the first phase 1/2
investigator-initiated trial evaluating escalating doses of third-generation CARTs (HD-CAR-1) targeting CD19 in patients with r/r CLL and
B-cell lymphoma. CLL eligibility criteria were failure to two therapy lines including at least one pathway inhibitor and/or allogeneic
hematopoietic cell transplantation. Nine heavily pretreated patients received HD-CAR-1 at dose levels ranging from 1 × 106 to 200 × 106

CART/m2. In-house HD-CAR-1 manufacturing was successful for all patients. While neurotoxicity was absent, one case of grade 3 cytokine
release syndrome was observed. By day 90, six patients (67%) attained a CR, five of these (83%) with undetectable MRD. With a median
follow-up of 27 months, 2-year PFS and OS were 30% and 69%, respectively. HD-CAR-1 products of responders contained significantly
more CD4+ T cells compared to non-responders. In non-responders, a strong enrichment of effector memory-like CD8+ T cells with
high expression of CD39 and/or CD197 was observed. HD-CAR-1 demonstrated encouraging efficacy and exceptionally low treatment-
specific toxicity, presenting new treatment options for patients with r/r CLL. Trial registration: #NCT03676504.

Leukemia; https://doi.org/10.1038/s41375-024-02392-7

INTRODUCTION
The use of second-generation CD19-directed chimeric antigen
receptor T-cell (CART) therapy has revolutionized the treatment of
several B-cell malignancies [1–9]. However, although chronic
lymphocytic leukemia (CLL) has been the disease used for proof of
principle of CART efficacy in humans [10], the clinical development of
CLL CARTs has been hampered by inferior response rates and shorter
response duration compared to other indolent B-cell lymphomas
(ZUMA5, ELARA) [7, 11–13]. It has been hypothesized that this is at
least in part due to the inherent dysfunction and alterations of T cells
in this disease [10, 14–19]. However, liso-cel has recently been
approved by the U.S. Food and Drug Administration as the first
second-generation CART product for adults with relapsed or
refractory (r/r) CLL or small lymphocytic lymphoma.
CARTs derived from patients with CLL typically display signs of

exhaustion that lead to restricted expansion and decreased cytokine

production resulting in insufficient leukemia suppression [20]. One
way of improving CART efficacy in CLL involves modifications of the
CAR vector. Third-generation CARs harbor two costimulatory
domains mediating enhanced and faster expansion as well as longer
persistence of CARTs [21–25]. However, clinical data on third-
generation CARTs for CLL are scarce [26].
Here, we report initial findings of third-generation CARTs

manufactured academically, as part of the investigator-initiated
trial (IIT) Heidelberg CAR T-cell trial 1 (HD-CAR-1) [27], for the
treatment of r/r CLL.

METHODS
Trial design and manufacturing of CARTs
This was a 2-strata basket trial in patients with r/r acute lymphoblastic
leukemia (ALL, stratum 1), and B-cell lymphoma and CLL (stratum 2) aiming
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to assess feasibility and to identify dose-limiting toxicities of HD-CAR-1
CARTs. To be eligible, patients with CLL needed to have failed ≥2 lines of
therapy, including at least one pathway inhibitor and/or allogeneic
hematopoietic cell transplantation (alloHCT), and an Eastern Cooperative
Oncology Group performance score of 0 or 1. In a 3+ 3 design (across all
eligible entities), patients received increasing doses of autologous T cells
retrovirally transduced with a third-generation CD19-directed CAR (RV-
SFG.CD19.CD28.4-1BBzeta) [27]. HD‐CAR‐1 CARTs were manufactured as
previously described [27–29] at the institutional Good Manufacturing
Practice Core Facility. For transduction, RV-SFG.CD19.CD28.4-1BBzeta
retroviral vector supernatant was provided by Prof. Malcolm Brenner from
Baylor College of Medicine in Houston, Texas, USA. This CAR harbors the
costimulatory domains CD28 and 4-1BB. The trial was approved by the
institutional review board as well as by the German federal regulatory
authority for immunotherapy (Paul-Ehrlich-Institut, Langen, Germany), and
written informed consent was obtained from all participants. The trial was
conducted in compliance with the principles of the Declaration of Helsinki.

CART therapy and endpoint evaluation
Patients received HD-CAR-1 CARTs 2 days following administration of
lymphodepletion with fludarabine 30mg/m2/d and cyclophosphamide
500mg/m2/d for 3 days. Cytokine release syndrome (CRS), immune
effector cell-associated neurotoxicity syndrome (ICANS), and immune
effector cell-associated hematotoxicity (ICAHT) were graded according to
consensus guidelines [30, 31]. CRS and ICANS were managed according to
institutional guidelines as published [32]. Adverse events were graded
according to the National Cancer Institute Common Terminology Criteria
for Adverse Events, version 5.0. For lymphodepletion, CART infusion and
monitoring patients were hospitalized from day −6 through day +14. The
clinical efficacy of HD-CAR-1 treatment was assessed using the 2018
International Workshop on Chronic Lymphocytic Leukemia (iwCLL2018)
criteria [33]. Minimal or measurable residual disease (MRD) was assessed by
MRD-flow using one CLL cell in 10.000 events as detection threshold [34].
HD-CAR-1 CART frequencies were assessed as described [35].

Analysis of cellular composition of CART products with flow
cytometry
HD-CAR-1 CART products from seven CLL patients (#1–7) were analyzed with
spectral flow cytometry using a 36-marker panel on two different days (day
1: samples of #1-5 and #7, day 2: sample of #6). In brief, samples were
thawed, washed and stained with the antibody mix. Staining was conducted
over three consecutive rounds, with each round consisting of a 20-min
incubation at 4 °C (antibodies used summarized in Supplementary Table S1).
Samples were measured on Cytek Aurora flow cytometer (Cytek Biosciences,
Fremont, CA, USA).

Computational analysis
Spectral unmixing was performed using SpectroFlo (Cytek Biosciences). To
detect and remove anomalies based on common flow cytometry
parameters, .fcs files were further processed using the R package flowAI
(version 1.24.0). The function flow_auto_qc was run, and anomalies
identified based on the flow rate were removed. These .fcs files were then
imported into FlowJo (version 10.8.1; BD Biosciences, Franklin Lakes, NJ,
USA) to assess unmixing quality and for gating on single viable cells. The
data was then transformed using the logicle transform function of FlowJo
(export channel values) and exported as .csv files for downstream analysis in
R (version 4.3.0). Since batch effects between the samples of #1-5 and #7
and the sample of #6 were observed, downstream analyses involving
clustering and Uniform Manifold Approximation and Projection (UMAP) [36]
visualization were performed for samples of #1-5 and #7 only. Cell type
labels of the sample of #6 were determined by linear discriminant analysis
(LDA) from the MASS package (version 7.3–60) [37] using cell type
annotations of the samples of #1-5 and #7 as reference.
All downstream analyses were performed using the R package Seurat

(version 5.0.3) [38]. In brief, this involved atomic sketching (a non-uniform
downsampling approach), a dimensional reduction using principal
component analysis (PCA) followed by Louvain clustering and visualization
of the data in a UMAP embedding. Cluster labels of cells not included in
the initial sketching were determined by LDA using the R package MASS.
Clusters were manually annotated based on surface marker expression and
expert knowledge. Cell type frequencies were calculated per sample and
compared between non-responders (#1, #2 and #7) and responders (#3-6).
In accordance with the iwCLL2018 criteria [33], responders were defined as

patients who achieved a CR after CART infusion that was sustained at least
for 2 months. All non-responders had undergone prior alloHCT, while none
of the responders had. Significance levels were determined by a two-sided
Welch’s t-test. After overall cluster annotation, CD4+ and CD8+ T cells
were separated and clustered independently using the same approach as
described above. Differential abundance of cells within the respective
UMAP space was highlighted by density plots. For quantification of
differentially abundant CD4+ or CD8+ T-cell subtypes between respon-
ders and non-responders, the frequency of each T-cell subtype was
calculated per sample. For each subtype, the frequency of responders was
divided by the corresponding mean frequency of non-responders. These
responder-specific fold-changes were log2 transformed and visualized in
boxplots.

Statistical analysis
Statistics were calculated using Prism Software (version 10.2.0; Graphpad
Software Inc., Boston, MA, USA). Progression-free survival (PFS) was
determined measuring the duration from the date of CART administration
until clinical progression, relapse, or death. Survival curves were compared
using log-rank testing. A p-value less than 0.05 was considered statistically
significant.

RESULTS
Patients
Eight patients with r/r CLL were enrolled between October 2018
and May 2023. As the trial cohort was already fully recruited,
another patient with r/r CLL was treated compliant with the trial but
formally off-study in July 2023 after having given fully informed
consent (#9). Baseline characteristics of all nine patients are listed in
Table 1. Patients had a median age of 60 years (range 45 to 68) and
had received a median of 5 (range 2 to 10) prior treatment lines.
Four patients (44%) had received prior alloHCT. Seven patients
(78%) harbored TP53 abnormalities. All patients had failed Bruton’s
tyrosine kinase inhibitors (BTKi), and all had received at least one
venetoclax-based regimen. Eight of the nine patients were
refractory to venetoclax-based treatment as well. Nevertheless,
bridging therapy was administered to all patients, mostly with
venetoclax-antibody combinations, resulting in CR and partial
remission (PR) in three and two patients, respectively. However,
all patients had flow-detectable MRD at lymphodepletion. One
patient (#8) had a history of Richter transformation which however
was not present at the time of enrollment.

Manufacturing and dosing of HD-CAR-1 CARTs
HD-CAR-1 manufacturing was successful in all patients with a
median transduction efficiency of 52.3% (range 41.7% to 67.7%)
and a median CART viability of 95.2% (range 86.2% to 95.8%).
Median duration of manufacturing was 13 days (range 10 to 13). A
second leukapheresis had to be performed in two patients (#3 and
#5) due to an unfavorable T-cell:B-cell ratio in the first leukapher-
esis products. Characteristics and cellular composition of HD-CAR-
1 CART products are listed in Supplementary Table S2.
All patients received at least one dose of HD-CAR-1 CARTs

(Table 2). Dose levels (DL) were DL1 (1 × 106 CARTs/m2) in one
patient, DL2 (5 × 106 CARTs/m2) in one patient, DL5 (10 × 107

CARTs/m2) in two patients and DL6 (20 × 107 CARTs/m2) in five
patients.

Safety
HD-CAR-1 CARTs were well tolerated (Table 2). Although seven of
nine patients experienced CRS, higher grade CRS was observed only
in a single patient (11%), and ICANS was completely absent. Early
ICAHT occurred in eight patients (89%), but was grade 4 only in a
single patient. Late ICAHT was observed as grade 1 in one patient
(#9) and as grade 2 in two patients (#2 and #7) without the need for
granulocyte colony-stimulating factor support.
All six patients with CR as best response presented B-cell aplasia

at end-of-study (EOS) on day 90 after CART administration (#3-8;
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Fig. 1A). Two patients showed absolute T-cell counts above the
lower limit of normal (LLN) according to [39] at EOS, but presented
counts below LLN at day 200 after CART administration (#5 and #6;
Fig. 1B). In one patient, B-cell and T-cell recovery took place on day
450 besides ongoing CR with undetectable MRD (uMRD; #6). B-cell
aplasia and lymphopenia were still present in patients #3, #4, #5,
and #9 at their latest assessment on day 771, 548, 198 and 301 after
CART administration, respectively (Fig. 1).
Hypogammaglobulinemia was observed in eight of nine

patients at lymphodepletion. One of these patients showed
recovery of gamma globulin levels after HD-CAR-1 treatment (#5).
One patient (#2) did not exhibit hypogammaglobulinemia at
lymphodepletion or after day 90 post CART infusion. Intravenous
immunoglobulins were administered to three patients following
HD-CAR-1 treatment (#1, #3 and #5).
The only early infections post-CART infusion occurred in patient

#5 who presented herpes simplex virus type 1 infection of the
lower lip and respiratory infection without pathogen identifica-
tion. Late infections (beyond day 30) occurred in four patients
(#1-3 and #7; Table 2).

Expansion and persistence of HD-CAR-1
Rapid CART expansion in the peripheral blood (PB) was observed
in eight patients (89%) with a median CART peak level of 82,358
CART/µg peripheral blood mononuclear cell (PBMC) DNA (range

37,792 to 369,756; Table 2). In all seven patients evaluated, CARTs
were persistent at EOS. Five patients were evaluated beyond
100 days after HD-CAR-1 infusion, with detectable CARTs in the PB
of all patients (#3-6 and #8; Fig. 2). Patient #3 still showed 202
CART/µg PBMC DNA even at day 994 after HD-CAR-1 infusion, and
in patient #8 a particularly high CART concentration was observed
with 18,199 and 13,521 CART/µg PBMC DNA at day 171 and 295,
respectively.

Outcomes
All patients reached EOS on day 90 after CART administration
(Table 2). Whereas clinically meaningful responses were not
observed at dose levels 1 and 2, CR as best response was achieved
with higher CART dose levels in six of seven patients (86%), with
uMRD in five of them (72%). In #7, CR could not be confirmed.
Although it has to be noted that five patients already had
responded to bridging therapies at lymphodepletion, all of these
deepened response after HD-CAR-1 treatment, either from CR
MRD+ to CR uMRD, or from PR to CR MRD+ /uMRD (Table 2).
Median duration of response (DOR) was 6.4 months.
PFS was significantly longer in patients who achieved a CR

versus those who did not (median PFS, 12.1 months vs. 3.8 months,
p 0.024; Fig. 3A). With a median follow-up of 27 months, 2-year
PFS and OS for all patients were 30% and 69%, respectively
(Fig. 3B). Course of the disease after CART administration of all
patients treated at dose level 5 or higher is presented in Fig. 3C. All
cases of CLL relapse or progression after HD-CAR-1 treatment
were found to be CD19-positive. Three patients died due to PD,
four patients are alive after disease progression, and two patients
are in ongoing MRD-negative CR (#6 and #8).

Cellular composition of CART products of responders vs. non-
responders
To deeply characterize HD-CAR-1 CART products, we performed
36-plex spectral flow cytometry of CART products from four
responders (#3-6) and three non-responders (#1, #2 and #7; Fig.
4A). Notably, all non-responders had previously received alloHCT,
unlike the responders. As expected, CART products comprised
mostly CD4+ and CD8+ T cells, albeit minor fractions of natural
killer cells (NK), natural killer T cells (NKT) and γδ T cells were also
found (Fig. 4B). Quantification of cell types revealed a significant
enrichment of CD4+ T cells in responders compared to non-
responders. Correspondingly, CD8+ T cells were more abundant
in non-responding patients (Fig. 4C). Unsupervised clustering and
dimensionality reduction of the CD8+ and CD4+ T-cell compart-
ments (Fig. 4D, G) revealed additional differences in the
composition of CART products between responders and non-
responders as indicated by the shifts in cellular density within the
respective T-cell compartment (Fig. 4E, H). Quantification of cell
type abundances indicated a strong enrichment of effector
memory (EM)-like CD8+ T cells with high expression of CD39

Fig. 1 Absolute B-cell and T-cell counts in the peripheral
blood (PB). A Absolute B-cell count in cells/μl. B Absolute T-cell
count in cells/μl. PB of patients was assessed with flow cytometry
directly before and up to 890 days after CART administration.
Normal ranges of absolute values are displayed according to [39].

Fig. 2 Expansion of HD-CAR-1 CARTs in the peripheral blood (PB).
Rapid expansion of CARTs was observed in eight of nine patients.
CART expansion in PB was measured by single‐copy gene duplex
quantitative PCR (SCG‐DP‐PCR) as described [35].
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and/or CD197 in non-responders compared to responders (Fig. 4F).
Similarly, non-responders displayed a higher fraction of EM-like
cells in the CD4+ T-cell compartment with expression of
exhaustion markers including CD39 and programmed cell death
protein 1 (PD1) (Fig. 4I).

DISCUSSION
Over the past two decades, the landscape of CLL therapy has
undergone a significant transformation, moving away from
chemoimmunotherapy approaches towards the adoption of
targeted therapies, notably BTK and B-cell lymphoma 2 inhibitors
[10, 40]. However, challenges persist as in particular patients with
genetically high-risk CLL tend to develop resistance to these
targeted therapies with a consecutive dismal outlook [41–43]. It
has been advised to consider these patients for alloHCT or
exploratory cellular therapies [10, 40, 44].
Although CD19-directed CARTs have been studied in r/r CLL by

various groups using various second-generation CART constructs
[45–50], only few entered advanced phases of clinical develop-
ment. This was largely due to comparably low rates of complete
responses and durable disease control. Of the CD19 CARTs
currently labeled for clinical use in other B-malignancies, only
brexu-cel and liso-cel have been explored in CLL. Brexu-cel was
administered to 15 heavily pretreated patients in the phase 1
ZUMA-8 clinical trial and resulted in an ORR of 47% (CR 13%) [51].
Liso-cel, a CART product that features a consistent 1:1 CD4+ :
CD8+ CART ratio, was evaluated in the larger phase 1/2
TRANSCEND CLL 004 trial, which was the basis for the recent
U.S. Food and Drug Administration approval of liso-cel for the

treatment of adults with r/r CLL or small lymphocytic lymphoma.
Similar to brexu-cel, non-T-cell elements are removed from the
leukapheresis product prior to liso-cel manufacturing [9]. In
TRANSCEND CLL 004, 117 patients, most of them resistant to
both BTKi and venetoclax, were treated with liso-cel at two
different DL. In the primary efficacy set at the optimum DL 2
(100 × 106 CARTs; n= 49), ORR was 48% with a CR rate of 18%,
resulting in a median PFS of 12 months. However, most of the
complete responses were durable. In contrast, achieving a status
of uMRD, which occurred in 76% of all patients evaluable for MRD,
did not translate into superior PFS [52].
The low CR rate observed in these trials prompted us to

attempt debulking of leukemia cell load prior to HD-CAR-1
treatment to facilitate CART efficacy and at the same time to
reduce toxicity risks. In most heavily pretreated patients this was
successfully achieved by using venetoclax-CD20 antibody
combinations despite prior failure of fixed-duration venetoclax.
Our data suggests that this can indeed result in high rates of CR
or CR deepening with MRD clearance in the majority of patients
treated at higher HD-CAR-1 dose levels. The CRs obtained or
deepened with HD-CAR-1, however, mostly appeared to be less
durable than those observed in the TRANSCEND CLL 004 trial.
Application of HD-CAR-1 earlier during the treatment course and
accompanying CLL-directed treatments, such as antibody or
venetoclax maintenance and/or concomitant use of bispecific
antibodies may be options for consolidating responses to HD-
CAR-1 [53, 54].
Of note, no case of ICANS and only a single case of higher-grade

CRS was observed with HD-CAR-1. This is in contrast to other CART
trials in r/r CLL, where higher grade CRS and ICANS were observed

Fig. 3 Outcome of patients after treatment with HD-CAR-1. A Progression-free survival (PFS) of all patients achieving a complete remission
(CR) after CART administration vs. non-CR patients. B Overall survival (OS) and PFS of all patients after CART treatment. C Swimmer plots of all
patients after CART administration treated at dose level 5 or higher. : CART therapy; : progressive disease; : stable disease; : partial

remission; : MRD-positive CR; : MRD-negative CR; : death; : 2nd allogeneic hematopoietic cell transplantation; : radiation therapy; A

acalabrutinib, P pirtobrutinib, V venetoclax, Z zanubrutinib.
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much more frequently [51, 52, 55]. Although this might be partly
related to the comparably low tumor burden of our patients at the
time of CART infusion, it is in keeping with the favorable safety
profile of HD-CAR-1 in ALL and lymphoma [29, 56] and points to

the potential contribution of the third-generation design of HD-
CAR-1 to its low toxicity. Despite extensive pretreatment with
stem cell-toxic regimens such as fludarabine and cyclopho-
sphamide (FC) and bendamustine and a HCT history in many

Fig. 4 Cellular composition of HD‐CAR‐1 CART products of responders (n= 4) vs. non-responders (n= 3). A HD-CAR-1 CART products of
seven CLL patients (#1-7) were analyzed with spectral flow cytometry using a 36-marker panel and computational analysis (see methods). B The
downsampled subset of cells from all seven CART products is presented with uniform manifold approximation and projection (UMAP) visualization.
Clusters are labeled depending on surface marker expression and displayed in different colors. C Frequencies of CD4+ (left) and CD8+ (right) T cells
within the CART products of responders (R) vs. non-responders (NR) are displayed as bloxplots. Significance levels were determined by a two-sided
Welch’s t-test. CD8+ D and CD4+ G T-cell subsets extracted from all seven CART products are presented with UMAP visualization and clusters are
annotated based on surface marker expression and displayed in different colors. Differential compositions between R and NR of CD8+ E and CD4+
H T-cell subsets are displayed as density plots. Differential frequencies between R and NR of specific CD8+ F and CD4+ I T-cell subtypes are
presented as boxplots of log2 fold-changes. Higher abundance in R is indicated as positive log2 fold change and negative log2 fold changes
visualize higher frequencies in NR. CM central memory, EM effector memory, NK natural killer, NKT natural killer T cells, ns not significant.
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patients, also ICAHT was extremely modest, again in line with
previously published experience with HD-CAR-1 [29, 57].
CART products of HD-CAR-1 responders contained significantly

more CD4+ T cells compared to non-responders. This observa-
tion is in keeping with Melenhorst et al. [58], who demonstrated
that a CD4+ population dominated long-lasting CD19-directed
CARTs in two CLL patients who showed a sustained CR for more
than ten years. Furthermore, immunophenotyping of HD-CAR-1
CART products disclosed a strong enrichment of EM-like
CD8+ T cells with high expression of CD39 and/or CD197 in
non-responders compared to responders. This confirms the
results of HD-CAR-1 in ALL patients, where a low CD39-
expression on effector T cells within the CART product was
associated with a higher response rate [29]. This clinical
confirmation strengthens the role of CD39 within CART products
as a marker for T-cell exhaustion [59, 60] and possible predictor of
response in CART patients.
While the small sample size is an obvious limitation of this

study, a major strength is its prospective design, demonstrating an
extremely favorable safety profile and high response rate of the
HD-CAR-1 approach tested here in heavily pretreated/double-
refractory patients with CLL and, thus, potentially broadening
patient eligibility for CART therapy in CLL.
In conclusion, treatment of heavily pretreated patients with

high-risk CLL having failed multiple pathway inhibitors with the
third-generation CART HD-CAR-1 is feasible and associated with
only very modest CART-specific toxicity. The preliminary efficacy
signals obtained suggest that HD-CAR-1 can induce prolonged
complete responses in otherwise refractory patients and warrant
further exploration of this approach.

DATA AVAILABILITY
Original data are available with Patrick.Derigs@med.uni-heidelberg.de upon request.
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