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Abstract
Summary: With the development of high-throughput technologies, genomics datasets rapidly grow in size, including functional genomics data. 
This has allowed the training of large Deep Learning (DL) models to predict epigenetic readouts, such as protein binding or histone modifica-
tions, from genome sequences. However, large dataset sizes come at a price of data consistency, often aggregating results from a large num-
ber of studies, conducted under varying experimental conditions. While data from large-scale consortia are useful as they allow studying the 
effects of different biological conditions, they can also contain unwanted biases from confounding experimental factors. Here, we introduce 
Metadata-guided Feature Disentanglement (MFD)—an approach that allows disentangling biologically relevant features from potential technical 
biases. MFD incorporates target metadata into model training, by conditioning weights of the model output layer on different experimental fac-
tors. It then separates the factors into disjoint groups and enforces independence of the corresponding feature subspaces with an adversarially 
learned penalty. We show that the metadata-driven disentanglement approach allows for better model introspection, by connecting latent fea-
tures to experimental factors, without compromising, or even improving performance in downstream tasks, such as enhancer prediction, or ge-
netic variant discovery. The code will be made available at https://github.com/HealthML/MFD.

1 Introduction
Consortia such as Encyclopedia of DNA Elements 
(ENCODE) (Luo et al. 2019) have accumulated a wealth of 
high-throughput functional genomics data across a broad 
range of cell lines, developmental time points, and tissues, for 
instance measuring chromatin modifications and DNA acces-
sibility. These data have spurred the development of deep 
neural networks (DNNs) that predict the readouts of these 
experiments from DNA sequence inputs to better understand 
the sequence features that govern gene regulation (Zhou and 
Troyanskaya 2015, Kelley et al. 2016, Avsec et al. 2021b).

The development of Explainable Artificial Intelligence 
(XAI) methods has allowed for assessing the importance of 
input features for deep learning (DL) models’ predictions. A 
commonly used approach to interpret genomic DL models 
comprises post hoc interpretation methods, producing se-
quence attribution maps (for an overview, see Novakovsky 
et al. 2023). However, these maps have been shown to pro-
duce spurious results (Hooker et al. 2019). Although proper-
ties of the learned function and the particularities of the 
methods themselves have been identified as contributing to 
noisy attributions, and solutions have been proposed 
(Majdandzic et al. 2023), these do not tackle the issue of 
noise in the training data.

Genomics data are heavily affected by experiment-specific 
(e.g. selectivity of DNA restriction enzymes) and technology- 
specific (e.g. adapter choice, amplification method) biases as 
well as strong batch effects (e.g. laboratories, vendors; Leek 
and Storey 2007). These biases mask intended signals and af-
fect downstream analyses. Proposed correction methods usu-
ally address only specific sets of biases and have not become 
widely used in practice (Wang et al. 2017). Recent work has 
demonstrated the utility of XAI to uncover biases in genomics 
training data (Ghanbari and Ohler 2020), which indicates 
that genomics models may heavily rely on biases in addition 
to genuine biological features to make predictions. It is 
unclear how strongly this affects downstream applications, 
such as enhancer sequence or genetic variant effect prediction 
(VEP). Therefore, directly modeling sources of bias and 
employing inherently interpretable model designs should con-
tribute to overcoming these issues and improving down-
stream task performance.

Disentangled Representation Learning (DRL) focuses on 
separating the generative factors underlying the observable 
data (Bengio et al. 2013) by imposing properties on a learned 
latent data representation space, e.g. conditionally factoriz-
able priors (Khemakhem et al. 2020, Locatello et al. 2020), 
or imposing invariance to a set of variables (Ganin et al. 
2016, Zhao et al. 2020, Adeli et al. 2021, He and Xie 2021). 
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The recently introduced method, Disentangled Relevant 
Subspace Analysis (DRSA) (Chormai et al. 2022), enhances 
the interpretability of machine learning models by working in 
conjunction with XAI techniques. DRSA focuses on analyz-
ing relevant subspaces within a model’s activation layers 
rather than solely examining the final predictions. This ap-
proach separates and clarifies the contributions of various 
features to model decisions, enhancing transparency and un-
derstanding of complex datasets.

In the context of biomedical applications, DRL models 
demonstrate increased explainability, robustness, and better 
generalization (Schreiber et al. 2020, Yang et al. 2022, 
Lotfollahi et al. 2023). Such approaches typically require in-
formation on a per-observation level, typically in the form of 
additional observed variables. Instead, we consider a setting 
where the auxiliary information is not available per- 
observation, but we have access to metadata defining rela-
tions between different classes of outcomes.

To this end, we propose Metadata-guided Feature 
Disentanglement (MFD)—a DNN DNA sequence model that lev-
erages metadata of the predictions of interest, in our case meta-
data from ENCODE experiments, to separate biological features 
from technical ones by learning two independent latent subspaces. 
We train MFD on human genome data to predict peak calls from 
2106 ENCODE experimental tracks, and we demonstrate its im-
pact on model interpretability (Section 3.1) and downstream task 
performance on independent data (Sections 3.2 and 3.3).

2 Metadata-guided feature disentanglement
MFD is a DL model predicting peak calls of multiple tissue- 
based experiments from DNA sequence data while learning 
two disentangled feature sub-spaces, corresponding to bio-
logical and technical experiment metadata. It consists of three 
modules: (i) a Convolutional Neural Network (CNN) se-
quence feature extractor, based on the Basenji2 architecture 
(Avsec et al. 2021a) (ii) a metadata embedding module based 
on two static hypernetworks (Ha et al. 2016) mapping the 
metadata of each experiment to a set of weights, which are in 
turn used to compute the corresponding peak prediction 
from the extracted DNA features (Section 2.1) (iii) a regulari-
zation penalty, enforcing independence between the two la-
tent sub-spaces of the model (Section 2.2). Model training 
and data collection are described in Supplementary Appendix 
Sections A and C.

2.1 Metadata embeddings
We integrate the experiment metadata as follows: the meta-
data matrix M 2 RO × M is non-linearly transformed via meta-
data embeddings—trainable Multilayer Perceptrons 
(MLPs)—to derive weights of the output layer of the network 
W 2 RC × O, where C is the number of latent features from the 
sequence model, M is the number of metadata variables, and 
O is the number of experiments. To produce a single predic-
tion pi;j for class i and sequence j, the corresponding row in 
the weights matrix wi is multiplied with the sequence repre-
sentation sj 2 R1 × C, a class-specific bias (bi) is added, and a 
sigmoid activation is applied (Fig. 1): 

pi;j ¼ σðsjwiþbiÞ: (1) 

We divide the metadata variables into two groups, loosely in-
terpretable as biological (e.g. tissue type, life stage, target) or 

technical (e.g. year, facility) experimental factors. The set of 
biological features is motivated by the fact that different tis-
sues have distinct genetic programs that change during an 
organism’s development and, therefore, will differ in epige-
netic targets (e.g. whether DNA is accessible or if a repressive 
mark is present). In turn, technical features contain informa-
tion about biases that arise from experimental procedures 
and batch effects. We train a separate embedding module 
ψðiÞ : RMðiÞ 7!RC=2; i 2 f1;2g for each feature group. The two 
resulting sets of weights wð1Þ and wð2Þ are separately applied 
to the first and second halves of the extracted 
sequence features sð1Þj and sð2Þj : 

pi;j ¼ σ
�

sð1Þj ψð1ÞðMÞiþ sð2Þj ψð2ÞðMÞiþbi

�

¼ σ
�

sð1Þj wð1Þi þ sð2Þj wð2Þi þbi

�
:

(2) 

This means that the biological metadata variables can only 
influence the final predictions via features from the first sub-
set sð1Þ, while technical metadata can only utilize features 
from sð2Þ. We further note that the metadata embeddings 
have an additional regularizing effect, as two classes with 
identical metadata are considered replicates, and share the 
same weights wi in the output layer—their predictions differ 
only by their class biases.

2.2 Learning independent subspaces
In order to learn disjoint features for the two latent subspaces, 
we additionally train the model to minimize the Mutual 
Information (MI) between the biological and technical feature 
subspaces, using an adversarial training approach. We train two 
MLPs models, denoted as ϱ1− 2 and ϱ2− 1 : RC=2 7!RC=2, to 
predict biological features from the technical ones, and 
vice-versa. Specifically, during the adversarial training step 
we minimize: 

Lindep ¼ −
XC=2

i

ρðiÞ
�

sð2Þ; ϱ1 − 2ðs
ð1ÞÞ
�� �2

−

−
XC=2

i

ρðiÞ
�

sð1Þ; ϱ2 − 1ðs
ð2ÞÞ
�� �2

;

(3) 

where with ρðiÞðx;yÞ we denote the Pearson’s correlation be-
tween the ith dimensions of x and y computed empirically 
over a mini-batch of samples. Consequently, the objective for 
the training step of the sequence model becomes: 

LMFD ¼ − λindepLindepþ

1
NO

XO

j¼1

XN

i¼1

yi;j logðpi;jÞþ ð1 − yi;jÞ logð1 − pi;jÞ;
(4) 

where yi;j is the binary label of the jth class for the ith mini- 
batch sample, and λindep controls the strength of the 
subspace-independence penalty. Employing the independence 
penalty in the form of adversarially trained predictors, as op-
posed to, e.g. a cross-covariance penalty, ensures the indepen-
dence of the subspaces in a general sense, constrained only by 
the capacity of ϱ, and not limited to simple linear dependen-
cies (see Supplementary Appendix Section B).
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3 Results
Here we demonstrate how MFD allows for increased inter-
pretability, by linking latent DL features to different experi-
mental factors (Section 3.1), while retaining or even 
improving performance on downstream tasks such as en-
hancer prediction (Section 3.2) and VEP (Section 3.3), as 
compared to a baseline model without metadata and inde-
pendence constraints. All the results are obtained with mod-
els pretrained on the ENCODE data (Supplementary 
Appendix Section A).

3.1 MFD enables interpretation of experimental  
factors
To determine what the latent subspaces learned, we interpret 
the models by using Integrated Gradients (Sundararajan et al. 
2017). To this end, we apply the neuron attribution implemen-
tation from the Captum package (Kokhlikyan et al. 2020) to 
each node in the latent subspace layer to determine contribution 
scores for each position in the input sequence. Since the sequen-
ces are dinucleotide-encoded, we assign the contribution score 
to the first nucleotide of the two nucleotides, which corresponds 
to the nucleotide at the given position.

As an example case, we evaluate contribution scores for 
sequences with the HEY2 Transcription Factor (TF)-binding 
motif. HEY2 is known to be a regulator of early heart devel-
opment. We select regions from test chromosomes that have 
HEY2 binding motifs and focus on the biological target fea-
ture, “Accessible DNA,” and the technical feature, “DNase- 
seq” (Fig. 2). DNase-seq is an experimental procedure to 
measure DNA accessibility or “openness” that is often inter-
preted as sequence activity. The motif is present in the attri-
bution maps for the biological feature, while it cannot be 

observed in those for the technical feature for the same input 
sequence. The average contribution for sequences with the 
HEY2 motif within the central 128 bp window varies be-
tween the features. This indicates that the subspaces capture 
different signals and confirms that the “Accessible DNA” fea-
ture attends to biologically meaningful motifs.

Furthermore, we examine attribution scores for sequences 
from test chromosomes with identified TF footprints. 
Footprints were previously identified using DNase-seq 
experiments from ENCODE (Bentsen et al. 2020). They indi-
cate short 16 nucleotide-long regions of estimated TF binding 
sites. We compute contribution scores for the directly for-
warded features for targets (Accessible DNA, CTCF, 
H3K27ac, H3K27me3) and assays (DNase-seq, ATAC-seq, 
ChIP-seq) for two groups of sequences. The first group con-
sists of 100 sequences, each centered on a unique high-score 
footprint with no other high-score footprints within 400 
nucleotides upstream or downstream of the center (Fig. 3a 
and b). The second group consists of 4457 sequences centered 
on footprints containing a CTCF binding motif (Fig. 3c and 
d). CTCF is a ubiquitous TF present in all cell types. We also 
calculate attribution scores for “baseline” sequences, defined 
as those exhibiting fewer than two signal peaks across all 
ENCODE experiments used as classes in training, and thus 
having no TF footprints, and subtract them from the motif 
contributions, in order to separate motif-specific contribu-
tions from the baseline signal of the model (see Fig. A7 of the 
Supplementary Appendix for examples of the baseline signal 
and uncorrected plots). Resulting plots show that the center 
of the sequence (the footprint) has high attribution scores for 
biological features such as Accessible DNA and CTCF and 
lower for technical features. This suggests that latent 
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Figure 1. Model architecture and example of the metadata embedding module. (a) Variables in metadata row mi for class i are fed through two metadata 
embedding modules 1 and 2 to produce weights wð1Þi and wð2Þi , with wi ¼ ½w

ð1Þ
i ;wð2Þi �. The sequence CNN extracts sequence features sj from the 1152bp 

sequence. Weights wi are multiplied with sj, a bias bi is added, and the sigmoid activation function is applied to produce the prediction pi;j . A penalty is 
placed on the Mutual Information between features in sð1Þj and sð2Þj (?) in order to enforce independence between the two latent subspaces. (b) A 
metadata embedding module with three variables mi;1–mi;3 (vectors or scalars), which are transformed by functions f1–f3 to produce intermediate 
variables hi;1–hi ;3. The module can learn interactions between variables by feeding them through an MLP (Supplementary Fig. S5), followed by a linear 
mapping to C−x dimensions. The metadata variable 3 with intermediate dimension 1 × x is directly forwarded and concatenated to yield C weights in total.
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biological features correspond to meaningful biological sig-
nals within the input sequences. However, the observed peri-
odical pattern, especially visible in the absolute contribution 
plots, might be an artifact of convolutional layers of 
the model.

3.2 Biological features suffice for enhancer  
prediction
With trained DRL models at hand, we reason that the learned 
separation of latent subspaces into biological and technical 
can provide more robust features for downstream tasks. To 
evaluate this, we set up binary classification tasks to predict 
enhancer activity in the FANTOM5 dataset (Dalby et al. 
2017) and enhancer presence in the Vista dataset (Visel et al. 
2007a). We encode the sequences using pretrained MFD 
models, obtaining three sets of features: biological 
sbio 2 RN × C, technical stech 2 RN × C, and combined 

sfull ¼ ½sbio; stech� 2 RN × 2C. Each sequence is encoded in both 
the forward as well as the reverse directions, and the corre-
sponding features are concatenated, resulting in C features 
per subspace (instead of C=2). Features obtained this way 
serve as inputs for regularized logistic regression models to 
predict the probability of a DNA sequence being an enhancer. 
For each tissue type, we train and evaluate 12 Ridge logistic 
regression models using MFD features: three feature types 
(sbio; stech; sfull) × four MFD models trained with different val-
ues of λindep (see Supplementary Appendix E for more 
details). Additionally, we evaluate features from a baseline 
model without metadata embeddings and independence 
constraints.

Within MFD features, the biological features achieve the 
highest mean Area under the Receiver Operating 
Characteristic (AUROC) values in all but one setting (Table 1 
and Supplementary Appendix Table A4). We observe that 

Figure 2. Exemplary case of interpretability: contribution scores for direct features corresponding to “Accessible DNA” (biological) and “DNase-seq” 
(technical). (a) The highlighted region represents the HEY2 motif for two sample sequences. (b) The average contribution scores for the context region 
±50 bp around the motif for sequences with the HEY2 motif within the central 128 bp (n¼ 40). We show how MFD allows for the interpretation and 
comparison of how input sequences interact with different experimental factors, using features directly corresponding to metadata factors. The 
“DNase-seq” feature is sensitive to different characteristics around the HEY2 motif than the “Accessible DNA” feature (a), and is overall less influenced 
by the motif (b).

Figure 3. Contribution scores w.r.t. position in input sequence for direct metadata features for targets and assays (a) absolute and (b) average scores per 
base pair positions for 100 sequences with footprints for heart tissue (c) absolute and (d) average scores per base pair positions for 4457 sequences with 
CTCF motifs. We subtracted a “baseline” signal from all examples, computed from 4569 sequences which had no corresponding experiment peaks. 
Using features directly corresponding to metadata factors allows us to interpret model predictions on a finer scale. For example, features corresponding 
to assay type seem to ignore the heart TFs motifs (a, b), while they seem sensitive to the CTCF ones (c, d), as indicated by the peaks around the start of 
the CTCF motifs. Furthermore, the features of histone modifications (H3K27ac, H3K27me3) react in the opposite direction than features of CTCF and 
Acc. DNA (b, d).
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both technical and biological features achieve comparable 
results, pointing to the worrisome scenario where predictions 
of classifiers that do not explicitly account for sources of 
noise may be based on artifacts rather than biology. 
However, our disentangled biological features do surpass the 
technical ones, and combining both feature subspaces does 
not yield better performance than the biological features 
alone. This underlines the success of our DRL strategy and 
indicates that the biological features generalize better. 
Furthermore, compared to a “raw,” unregularized baseline 
model, MFD retains the predictive performance, while offer-
ing increased interpretability.

3.3 Biological features improve VEP
We further evaluate the utility of MFD in a zero-shot VEP 
task. Selecting the model pretrained with λindep of 0.001, 
based on its performance in the enhancer prediction task on 
the FANTOM5 dataset (Section 3.2), we encode for each var-
iant its corresponding reference and alternative sequences, 
obtaining features sref

full ¼ ½s
ref
bio; s

ref
tech� and salt

full ¼ ½s
alt
bio; s

alt
tech�. VEPs 

are then calculated as the difference in model predictions: 
Φðsref

fullÞ−Φðsalt
fullÞ, where ΦiðxÞ ¼ σðxwiþbiÞ is the prediction 

for the ith output class (see Equation (1) and Fig. 1). We fur-
ther obtain VEPs for the biological signal by calculating pre-
dictions for the alternative allele as Φð½salt

bio; s
ref
tech�Þ, i.e. using 

biological features for the alternative allele sequence and 
technical features for the reference one (and vice versa for the 
technical VEPs). We average model predictions across small 
shifts around the center and average the predictions for the 
forward and reverse strands.

By choosing a cutoff value based on the quantiles of the 
resulting distribution of VEPs, we perform zero-shot variant 
discoveries for Expression Quantitative Trait Loci (eQTL) 
variants in the Genotype-Tissue Expression (GTEx) 
(Lonsdale et al. 2013), and rare PLS-CRE variants in the 
gnomAD (Benegas et al. 2023) datasets, which we describe in 
more detail in Supplementary Appendix Sections F.1 and F.2. 
We compute the overall enrichment per VEP annotation type 
by aggregating the tagged variants across all 2106 outputs 
(Table 2). For the first two quantile cutoffs, all feature types 
yield comparable Odds Ratios (ORs); for the most extreme 
cutoffs, the technical annotations achieve a 7% lower enrich-
ment for both datasets. Features from the baseline model 
yield no improvement over the combined or biological ones 
in all the settings. Overall, the biological annotations yield an 
improvement over the baseline in all quantile settings in both 
datasets. To gain insights into potential class biases, we plot 
the mean ORs using VEPs corresponding to predictions 
within each target assay in Fig. 4. The combined and 

biological VEPs consistently yield comparable enrichment 
values, while the technical ones vary more strongly 
across targets.

4 Discussion
MFD is a deep learning model designed to learn a disentangled 
representation of the human epigenome, trained to isolate low- 
dimensional biological features from those of a technical nature. 
On several independent downstream tasks, we demonstrated 
that predictive models utilizing the biological features outper-
form those that incorporate technical features or a combination 
thereof. This finding substantiates the model’s capability to ef-
fectively separate technical biases inherent in the training data 
from genuine biological signals, thereby enhancing the accuracy 
of DNA sequence-based predictions through effective 
“de-noising.” The task of enhancer prediction presented a con-
siderable challenge, primarily due to the complex and nuanced 
nature of gene regulation syntax. This complexity is reflected in 
the sub-optimal average AUROCs observed for enhancer classi-
fication tasks. Nevertheless, we demonstrated that MFD- 
derived biological features are sufficient to achieve the predictive 
performance of an unconstrained baseline model while offering 
greater interpretability. In the VEP task, features derived from 
diverse experiments demonstrated variable success in identifying 
true variants, underscoring the profound impact of technical 
biases on prediction outcomes. However, when quantifying the 
overall enrichment, the MFD biological features consistently 
yielded better performance than the baseline model. Despite the 
considerable predictive power of technical features in several 

Table 2. Enrichments of: (a) an eQTL variant in the GTEx dataset and (b) a 
rare variant in the gnomAD dataset, over all experiment outputs per- 
feature (combined, biological, and technical predictions).

Quantile Annotation Enrichment

(a)
0.9 Baseline 1.04

Biological 1.05
Combined 1.05
Technical 1.05

0.95 Baseline 1.12
Biological 1.13
Combined 1.12
Technical 1.14

0.99 Baseline 1.42
Biological 1.43
Combined 1.42
Technical 1.32

(b)
(0.1, 0.9) Baseline 1.15

Biological 1.16
Combined 1.16
Technical 1.16

(0.01, 0.99) Baseline 1.27
Biological 1.28
Combined 1.29
Technical 1.26

(0.001, 0.999) Baseline 1.71
Biological 1.77
Combined 1.78
Technical 1.66

The values are computed over the total numbers of unique true positive and 
false positive variants identified. MFD-derived features improve 
performance over the baseline, while allowing for greater interpretability— 
separating the biological and technical factors shows that albeit the 
technical features are predictive, the biological ones alone suffice for good 
performance.

Table 1. Results of the enhancer classification task on the 
FANTOM5 dataset.

λindep Combined Biological Technical

Baseline 0.68
0 0.66 0.67 0.66
0.001 0.67 0.68 0.62
0.01 0.63 0.64 0.61
0.1 0.58 0.58 0.56

For each available tissue type we train a range of logistic regression models 
using different features obtained from pretrained MFD models and report 
mean AUROC values computed across all tissue types. Bolded values 
indicate the best scores. We found that biological MFD features alone are as 
predictive as features from an unconstrained baseline model. 
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cases, we argue in favor of utilizing disentangled biological rep-
resentations. By investigating model attribution maps, we 
showed how biological features attend to meaningful informa-
tion (e.g. TF motifs) in a DNA sequence, in contrast to the 
unspecific attributions for technical features.
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