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Table 3. Metadata features from ENCODE experiments used for training of Metadata-guided Feature Disentanglement (MFD) models.

Feature Direct Interact. Example Values

Biosample Term No Yes chorionic villus, right lung

Biosample Organ No Yes intestine, spleen

Biosample Life Stage No Yes adult, embryonic

Age No Yes 10, 55

Age Unit No Yes week, year

Target Yes Yes Acc. DNA, H3K27ac

Assay No Yes Dnase-seq, ATAQ-seq

GC-mean Yes Yes 0.43, 0.57

Lab No Yes Bing-Ren, Bernstein

Year Released No Yes 2013, 2016

A. Model Training

We train MFD models on dinucleotide sequences of length 1152

from the GRCh38 human reference genome data, to predict

peak-calls in 2, 106 tissue-specific DNA-accessibility (ATAC-seq,

DNase-seq) and chromatin modification (ChIP-seq) experiments

on human samples from the ENCODE database. We left out data

from the 9th and 10th chromosomes as test data, and take 5%

of the remaining samples as validation data. We augment the

training data by randomly sampling either the forward or reverse

complement of sequences, and applying random shifts of up to 8bp

in either direction [Kelley et al., 2018, Avsec et al., 2021a]. The

models are optimized for 100 epochs using the AMSGrad variant

of the Adam optimizer [Reddi et al., 2019, Kingma and Ba, 2014]

with a mini-batch size of 4096 and a learning rate of 10−3. We

monitor the AUROC values of validation set predictions after each

training epoch, and use the model weights with highest AUROC

values for downstream tasks. We set C = 128 as the dimensionality

of the latent subspaces of the biological and technical features,

and train 3 model variants, with the regularization coefficients for

the subspace independence penalty λindep ∈ {10−3, 10−2, 10−1}.
The metadata variables used for training the models are listed in

Table 3. The backbone model for sequence feature extraction was

based on the Basenji2 architecture [Avsec et al., 2021a] (Figure 5).

Model definition and training were implemented using the PyTorch

and Pytorch-Lightning frameworks [Paszke et al., 2019, Falcon and

The PyTorch Lightning team, 2019].

B. Evaluating Subspace Independence

We compare the effect of enforcing independence between the

subspaces with an adversarial predictor (Section 2.2), which can

capture non-linear dependencies, to a linear constraint, which

penalizes the Frobenius norm of the cross-covariance matrix

between the two features sets:

Llin.indep. = ∥cov(s(1), s(2))∥F (5)

To quantify independence, we employ a batch-shuffling

approach Belghazi et al. [2018] by training a Random Forest

classifier to distinguish between pairs of (s
(1)
i , s

(2)
i ) and

(s
(1)
i , s

(2)

shuff(i)
), where s

(2)

shuff(i)
contains elements of s(2)

with a randomly shuffled order of rows (observations). By

shuffling the order, we simulate drawing samples from s(2)

independently of s(1). If s(1) ⊥ s(2), then we would have

P (s
(1)
i , s(2)) = P (s(1))P (s(2)). We compare the achieved Random

Forest accuracies and the AUROC scores of the corresponding

model predictions for a set of models trained with different

λindep values and independence constraints (Figure 6). All models

trained with the adversarial constraint achieved a RandomForest

accuracy of 50%, meaning the classifier was not able to distinguish

between the original and shuffled subspaces. Enforcing just a

linear independence resulted in an increase of the score to 75%,

whereas a model without any constraint (λindep = 0) had a

score of almost 90%. For λindep < 0.1 the adversarial penalty

achieved comparable AUROC performance to both the linear and

unconstrained model. Instead, we found a larger drop in AUROC,

as compared to the baseline model, stemming from employing the

metadata embeddings themselves.

C. Querying and processing ENCODE data

We queried the ENCODE database on the 27th of May 2021

and identified peak-calls from tissue-based experiments in human

(assmembly GRCh38) samples. We considered only DNase-

seq, ATAC-seq, CTCF ChIP-seq, and ChIP-seq for histone

modifications (H3K27ac, H3K27me3, H3K9me3, H3K36me3,

H3K4me1, H3K4me2, H3K4me3). We selected (pseudo-)replicated

peaks for ATAC seq, IDR-thresholded peaks for CTCF and

(pseudo-)replicated peaks for histone modifications. For DNase-

seq, we considered all available peak files for a given experiment

accession (with reported FDR = 0.05) because ENCODE did not

provide (pseudo-)replicated or IDR-thresholded peaks for these

experiments. Peak files were downloaded in narrowPeak format.

We queried metadata (e.g., sample quality metrics or

ontologies) for all experiments using the ENCODE REST API.

For experiment we queried attributes of the linked Biosample,

Library and Experiment objects. A Biosample relates to a unique

sample of biological material. A Library is a unique sequencing

library (a sample of processed DNA for sequencing), and an

Experiment encompasses a group of one or more experimental

replicates. From the Biosamples, we queried the life stage, age, and

age units attributes. We further retrieved standardized ontological

terms describing the tissue for each experiment, specifically the

term name (e.g., ”heart right ventricle”) and the organ slims

(e.g., ”heart”). These attributes are hierarchical, i.e., multiple

term names may map to the same organ slim, and a term

name may have more than one organ slim (e.g., ”intestine,large

intestine”). Additionally, we queried metadata related to sample

quality (e.g., the reported fraction of reads in peaks (FRIP)), the

lab that produced the data, and the date the experiment was

released.
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Fig. 5: DNA-sequence convolutional neural network architecture and building blocks. This figure has been adapted

from ref Avsec et al. [2021a], where it was published under CC-BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

Changes were made to reflect the parameters used and the new MLP building block. a) The DNA-sequence CNN is divided into four

modules. The stem acts as a short motif-finder (C/2 channels). The tower grows the number of channels to C and reduces the spatial

dimension/resolution. The dilated convolutions aggregate context across the sequence. The pointwise convolution transforms the sequence

to its final intermediate representation with 2C channels. The numbers in brackets next to boxes denote the dimensions (the first is the

spatial dimension, the second the number of channels). The number of parameters of each module is shown above the brackets. Panel

b) shows the implementation of the building blocks of panel a). BatchNorm: Batch normalization, GELU: Gaussian Error Linear Unit,

RELU: Rectified Linear Unit, MLP: Multilayer Perceptron, MaxPool(w): MaxPooling with stride and width w, Conv(c,w,d): convolution

with c channels, kernel width w, and dilation d. Linear(n): Fully connected layer with n outputs. All experiments used C = 128.

We defined genomic regions of interest based on a set of peak

files. This strategy was designed to be robust to within-sample

outliers (extremely broad peaks) and between-sample outliers

(extreme number of peaks). Processing is performed within groups

(DNase, ATAC, separate histone modifications, CTCF). First,

only peaks on autosomes and chromosome X are retained and

peaks overlapping blacklisted regions are excluded (these include

the ENCODE blacklist [Amemiya et al., 2019] and a small set of

Vista enhancers [Visel et al., 2007b] used in downstream tasks).

For each peak file, we calculated wmax as the 75th percentile plus

1.5 times the IQR of the peak width. If that value was shorter

than 1000, it was set to 1000. Peaks that were longer than wmax

were clipped so that their start and end coordinates did not extend

any further than wmax away from the reported peak center (this

caps the maximum peak length at 2wmax). For each peak file,

we calculated wmax as the 75th percentile plus 1.5 times the IQR

of peak width, with a minimum value of 1000. Peaks exceeding

wmax were trimmed to a maximum length of 2wmax from the peak

center. Similarly, for each sample group, pmax was determined as

the 75th percentile plus 1.5 times the IQR of peak counts. Files

exceeding pmax peaks were reduced to only the strongest pmax

peaks based on signal value.

For every sliding window within a set of regions of interest,

I calculated overlaps to the original (i.e., non-filtered) peaks.

Each peak file is considered its own class. If a region of interest

is covered at least 50% by a peak from a specific file (i.e.,

experiment/replicate), it is considered a positive for that class (1),

https://creativecommons.org/licenses/by/4.0/
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Fig. 6: Comparison of independence between latent subspaces

(x-axis), measured by the accuracy of predicting between

pairs of original and shuffled batches, and model predictive

performance (y-axis) as AUROC of validation samples, for

different regularization strengths λindep and independence

constraints. The horizontal red line indicates the performance of a

baseline model, without metadata embeddings and independence

constraints.

otherwise it is considered a negative (0) [Zhou and Troyanskaya,

2015].

D. Interpretability

Figure 7 shows absolute (left column) and average (right column)

contributions wrt. the center of the input sequence per target

and assay type, for random negative sequences from the training

data (first row), sequences centered around heart TF footprints

(second row), and CTCF motifs (third row). While the features

react differently to the different input sequences, they all exhibit

asymmetrical behavior wrt. the sequence center, as well as

periodicity in peaks. We hypothesize that these are artifacts

caused by the architecture of the CNN model, since they are

present both in contributions for meaningful sequences (heart TFs,

CTCF), as well as in the negative sequences (with fewer than two

corresponding experimental peaks in ENCODE). We thus treat

them as a “baseline” signal which we subtract when interpreting

the motif contributions in Figure 3. Further investigation of these

artifacts - e.g., whether they persist regardless of the employed

CNN backbone - is an interesting direction for future work.

E. Enhancer Prediction

We used the scikit-learn Python package [Pedregosa et al., 2011]

to fit the logistic regression models. The models were optimized

for a maximum of 1, 000 iterations per model, using balanced

class weights. For each tissue type, we selected 80% of samples

as training data and the remaining 20% for evaluation. We tuned

the weights for the l2 penalty of the logistic regression models

with cross-validation on the training subset and evaluated the

best-performing model on the test subset.

Table 4. Results of the enhancer classification task on the VISTA dataset.

For each available tissue type, we train a range of logistic regression models

using different features obtained from pretrained MFD models. We report

mean AUROC values computed over all tissue types.

λindep Combined Biological Technical

Baseline 0.65 - -

0 0.65 0.65 0.64

0.001 0.64 0.65 0.62

0.01 0.64 0.64 0.62

0.1 0.55 0.55 0.57

E.1. FANTOM5

We used sequences from the 9th and 10th chromosomes of the

FANTOM5 dataset [Dalby et al., 2017]. Enhancer sequences in

this dataset were identified by an independent experimental assay

of ENCODE, therefore it does not contain the exact same biases

as the experiments in ENCODE. We further filtered the samples

to match the experiments from ENCODE, containing at least 30

positive (enhancer) samples, and obtained the final set of 1459

enhancer sequences from 13 different tissues.

E.2. VISTA

We downloaded 1, 940 human sequences from the Vista Enhancer

Browser [Visel et al., 2007a]1, which contains 998 enhancer

sequences, and converted them to hg38 coordinates using the

liftOver tool [Hinrichs et al., 2006]. These sequences were

experimentally tested to have enhancer activity using a reporter

assay and therefore, similar to the FANTOM dataset, VISTA

enhancers are independent of biases present in ENCODE data. We

selected tissue types with at least 50 positive (enhancer) samples.

Since most sequences are longer than the input length of the MFD

model, which has a median length of 1, 530 dinucleotides, we

encoded sub-sequences from each sample using a sliding window

approach and took the mean of the resulting features as inputs for

the logistic regression models. We report the mean AUROC score

computed over all tissue types in Table 4.

F. Variant Effect Prediction

F.1. GTEx

We retrieved fine-mapped GTEx Lonsdale et al. [2013] eQTL

variants from the eQTL catalog Kerimov et al. [2023]. We

constructed a positive set of likely causal fine-mapped variants,

and a matched negative set, as follows: we excluded all

variants that overlap protein-coding genes to limit variants acting

through mechanisms other than transcription. For other types of

transcripts (e.g., lncRNAs), we exclude variants that physically

overlap the transcripts they are associated with. For the positive

set, for every tissue, we keep only variants with a posterior

inclusion probability (PIP) of > 0.95. If variants are also detected

in other tissues, we keep them only if they have an average PIP

of > 0.5 across all tissues. To sample the negative set, for each

positive variant, we identify other variants within a ±5kb window

that do not overlap the gene the positive variant is associated

with and had PIP < 0.05 in all tissues. We then select the variant

with the most similar allele frequency to the positive variant. If

1 We downloaded the data on 9th August 2021
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(a) (b)
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Fig. 7: Contribution scores for direct features for targets and assays (a) absolute and (b) average scores per base pair positions

for 4,569 sequences of negative samples (c) absolute and (d) average scores per base pair positions for 100 sequences with TF footprints

for heart tissue (e) absolute and (f) average scores per base pair positions for 4,457 sequences with CTCF motifs. In all cases we observe

periodicity of peaks and asymmetry wrt. the center of the sequence, which we attribute to the workings of the underlying CNN model

due to their prevalence across all input types.

there are ties based on the allele frequency, we choose the variant

that is physically closest to the positive variant within the allele-

frequency-matched variants. This selection results in a position-

and allele-frequency-matched set of 2, 304 negative and 2, 339

positive single nucleotide variants (it can happen that the same

negative variant is selected for multiple positive variants across

tissues).

We perform variant effect prediction for all variants in this set

and the 2, 106 model outputs. We also select the top 10%, 5%

and 1% largest absolute variant effect predictions for each output,

and calculate the enrichment (OR) of positive vs negative variants

against all other variants. We use Fisher’s exact test to determine

significance.

F.2. gnomAD

We retrieved functionally annotated autosomal genetic variants

from Hugging Face https://huggingface.co/datasets/songlab/

human_variants as presented in Benegas et al. [2023]. These

variants contain common variants (Minor Allele Frequency (MAF)

> 5%) as well as a matched number of rare singleton variants

from gnomAD Chen et al. [2023]. We intersect these variants

with ENCODE promoter-like cis-regulatory elements Moore et al.

[2020]. 44, 062 variants remain after intersection, of which 26, 112

are rare and 17, 950 are common.

We predict variant effects for all variants and 2, 106 model

outputs. For every model output, we calculate variant effect

prediction cutoffs at varying thresholds (e.g., the top 0.1% and

0.01% most negative/positive values), and calculate odds ratios

to quantify the enrichment for rare variants in those extremes vs

all other remaining variants. We perform Fisher’s exact tests to

identify significant differences.

https://huggingface.co/datasets/songlab/human_variants
https://huggingface.co/datasets/songlab/human_variants
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