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A catalog of small proteins from the global
microbiome

Yiqian Duan1, Célio Dias Santos-Júnior 1,2, Thomas Sebastian Schmidt 3,12,
Anthony Fullam3, Breno L. S. de Almeida 1, Chengkai Zhu1, Michael Kuhn 3,
Xing-Ming Zhao 1,4,5,6,7 , Peer Bork 3,8,9 & Luis Pedro Coelho 1,10,11

Small open reading frames (smORFs) shorter than 100 codons are widespread
and perform essential roles in microorganisms, where they encode proteins
active in several cell functions, including signal pathways, stress response, and
antibacterial activities. However, the ecology, distribution and role of small
proteins in the global microbiome remain unknown. Here, we construct a
global microbial smORFs catalog (GMSC) derived from 63,410 publicly avail-
able metagenomes across 75 distinct habitats and 87,920 high-quality isolate
genomes. GMSC contains 965 million non-redundant smORFs with compre-
hensive annotations. We find that archaea harbor more smORFs proportion-
ally thanbacteria.Wemoreover provide a tool calledGMSC-mapper to identify
and annotate small proteins from microbial (meta)genomes. Overall, this
publicly-available resource demonstrates the immense and underexplored
diversity of small proteins.

Small open reading frames (smORFs) are found in all three domains of
life, estimated as 5–10% of annotated genes1–3. Small proteins encoded
by smORFs have been reported to perform key functions in microbial
cells4–8 and have been found involved in transcription to regulate gene
expression9, to stabilize large protein complexes10, in signaling trans-
duction pathways11, regulation of transporters12, sporulation13,14,
photosynthesis15, and response to environmental cues16. In addition,
small proteins can also perform antibacterial activities17 or compose
toxin/antitoxin (TA) systems18,19.

However, small proteins have been neglected in (meta)genomics-
based global studies of the microbiome20,21 due to the difficulty in
reliably identifying smORFs using genomic information alone22,23.
Advances in Ribo-Seq24 and proteogenomics methods25,26 combined
with comparative genomicsmethods27,28 have enabled the discoveryof

an increasing number of small proteins in variousmicroorganisms29–32.
For example, a recent systematic study revealed 4539 novel conserved
small protein families of the human microbiome33, 30% of which are
predicted to encode transmembrane or secreted proteins. However,
most of the studies focusing on smORFs approach isolated micro-
organisms and specific environments. The functional and ecological
understanding of microbial smORFs at a global scale across different
habitats is still very limited.

Here, we use the principle that repeated independent observa-
tions of the same small protein (or minor variations thereof) minimize
the likelihood of false positive smORF predictions and construct a
global microbial smORFs catalog (GMSC) derived from 63,410
assembledmetagenomes from the SPIRE database21 and 87,920 isolate
genomes from the ProGenomes2database34. In the catalog,weprovide
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comprehensive annotation containing taxonomyclassification, habitat
assignment, quality assessment, conserved domain (CD) annotation,
and predicted cellular localization. In addition, the catalog can be used
as a reference to annotate (meta)genomes as the presence of homo-
logs reduces the probability that false positives are reported. To
facilitate this, we developed a tool named GMSC-mapper, which
additionally provides users with information about the distribution of
any matching smORFs across taxonomy, habitats, and geography.
Thus, our catalog and associated tools can be used to study the pre-
sence, prevalence, distribution, and potential ecological roles of
smORFs on a global scale, and provide new insights into how these
molecules work within microorganisms.

Results
The global microbial smORFs catalog comprises 965
million smORFs
The globalmicrobial smORFs catalog (GMSC)was derived from63,410
publicly available assembledmetagenomes spanningmultiple habitats
worldwide from the SPIRE database21 and 87,920 high-quality isolate
microbial genomes from the ProGenomes2 database34 (Fig. 1a, Sup-
plementary Data 1). From the assembled contigs, we used themodified
version of Prodigal35 inMacrel36 to predict open reading frames (ORFs)
with a minimum length of 30 nucleotides (see Methods). The ORFs
encoding small proteins (here defined as those up to 100 amino acids)
were considered small ORFs (smORFs).

Fig. 1 | Global Microbial smORFs Catalog (GMSC). a ORFs (open reading frames)
were predicted from contigs from 63,410 assembledmetagenomes from the SPIRE
database and 87,920 microbial genomes from the ProGenomes2 database. The
ORFs with at most 300bps were considered smORFs. In total, 4,599,187,424
smORFs were predicted, of which 99.25% originated in metagenomes and 0.75%
originated in microbial genomes. The number of smORFs was reduced to
2,724,621,233 by removing redundancy at 100% amino-acid identity (AAI) and 100%
coverage. We further clustered the non-redundant smORFs into 287,926,875 clus-
ters at a 90% amino-acid identity (AAI) cutoff (Methods). b Small proteins encoded
by smORFs range in length from 9 to 99 amino acids. Sequences that pass all in
silico quality tests and contain at least one piece of experimental evidence are
considered high-quality predictions (Methods). c Shown are gene accumulation
curves perhabitat, showinghow sampling affects thediscoveryof smORFs (see also

Supplementary Fig. 2a). d The largest 90%-AAI smORF family contains
4577 sequences. The size of 90%-AAI smORF families exhibits a long tail distribu-
tion, and 47.5% of families consist of only one sequence, accounting for fewer than
15% of the total GMSC smORFs. A small fraction of large families account for the
majority of GMSC smORFs (12.2% of families contain 50% of smORFs). eOnly 5.35%
of smORFs in the GMSC have a homologous sequence in another sequence catalog
(Methods). On the other hand, more than 80% of bacterial and archaeal small
proteins from the RefSeq database have a homolog in our catalog. Although only
67.3% of the 444,054 small protein clusters from the Sberro human microbiome
dataset are homologous to a protein in our catalog, most of their clusters without
homologous sequences only contain one sequence. Among the 4539 conserved
small protein families from the Sberro human microbiome dataset, 97.4% of them
are homologous to our catalog.
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In total, after collapsing smORFs coding for identical amino acid
sequences, we obtained 2,724,621,233 smORFs. A large majority
(84.7%) were singleton sequences. To reduce the incidence of false
positives36, we focused first on the 417 million non-singleton sequen-
ces. We hierarchically clustered these non-singleton smORFs at 90%
amino-acid identity and 90% coverage, which resulted in 287,926,875
clusters, which we will henceforth refer to as families. Then, we con-
structed the smORFs catalog, which contains both non-singletons as
well as any singleton that matches a family representative at 90%
amino-acid identity and 90% coverage (rescued singletons, see Meth-
ods). The final smORF catalog contains 964,970,496 smORFs.

The samples in our dataset had been previously manually curated
into 75 habitats21, which we further grouped into 8 broad categories:
mammal gut, anthropogenic, other-human, other-animal, aquatic,
human gut, soil/plant, and other (Methods, Supplementary Data 2).
Despite the large number of samples we have collected, rarefaction
analysis indicates that smORF diversity is far from covered (Fig. 1c;
Supplementary Fig. 2a).

Approximately half of GMSC families consist of only one
sequence, but the size distribution of families is long-tailed, so the
largest 12.2% of families already cover half of the 100AA
smORFs (Fig. 1d).

43 million smORFs are high-quality
Predicting smORFs can result in a high rate of false positives. Thus, in
addition to discarding non-homolog singleton predictions, we per-
formed several in silico quality tests including estimating coding
potential of families using RNAcode37 and additionally matching
genomic predictions to publicly available metatranscriptomic and
metaproteomics data (see Methods). In total, 43,642,695 (4.5%) of the
smORFs pass all in silico quality tests and have at least one match in
transcriptional or translational data. We henceforth refer to these as
high-quality predictions (Supplementary Figs. 3 and 4).

To assess the comprehensiveness of our catalog, we matched
small proteins encoded by GMSC smORFs to the RefSeq database38

and previously published human microbiome small protein family
datasets33. Only 5.3% of smORFs in our catalog are homologous to
these previously reported small proteins (Fig. 1e). On the other hand,
our catalog contains more than 80% of these reference datasets. For
smORFs of high-quality predictions, a higher proportion (8.7%) show
homology with these reference datasets, but they only cover circa 20%
of the reference datasets (Supplementary Fig. 5a). Hence the high-
quality predictions produce a large number of novel small proteins
with high confidence that are not present in other reference datasets,
but as the available transcriptome and metaproteome datasets are
limited, discarding non-high-quality predictions would result in a large
loss of coverage.

To explore the functions undertaken by the small proteins enco-
ded by the smORFs in our catalog, we searched the small protein
families against the Conserved Domain Database (CDD)39 using RPS-
BLAST40,41. Only 6.1% of small protein families containing
86,694,259 smORFs (8.98%) were assigned CDD domains, compared
to 35.2% of canonical-length proteins (greater than 100 amino acids)20.
As expected, smORFs in high-quality predictions are twice as likely to
be assigned a CDD domain (18.8%, P value < 10�308, hypergeo-
metric test).

Even conserved small proteins lack functional annotations
Using MMSeqs2 taxonomy42 we predicted the taxonomic origin of
contigs and transferred that prediction to the smORFs (Methods). This
process returned a prediction for 81.6% of the 100AA smORFs, with
more than half (56.9%) being assigned to a genus or species (Fig. 2a).
Note that we used the GTDB database43, which does not include phage
or microeukaryotes.

We next investigated the taxonomic breadth and conservation of
smORFs28,44. Of the 96,721,815 small protein families with at least three
members, more than half of them (52,550,829) are genus-specific
(Fig. 2b). Among these genus-specific families, most are species-spe-
cific, accounting for 39.7% of the families included in the analysis.

Although in some cases, smORFs may be present in plasmids and
other mobile elements, we reasoned that multi-genus families would
be especially likely to be present in multiple habitats and involved in
critical cellular functions33. As expected, multi-genus families aremore
common inmultiple habitats than the entire set of familieswith at least
three members even when differences in family size distributions are
taken into account, but the difference is not large (61.8% vs. 57.5%; P
value < 10�308, due to the large number of datapoints, hypergeometric
test). Furthermore, we traced the conserved Pfam domains of small
protein families45 (Supplementary Data 4). Multi-genus families are
annotated with Pfam domains at a higher rate than the background of
all families with at least three members (9.91% vs 8.15%; P value <
10�308, hypergeometric test). Nonetheless, it is noteworthy that the
vast majority have no detected Pfam domain and that a further 9.5% of
those annotated, were annotated with Pfam domains of unknown
functions (Fig. 2c).

We then focused on conserved families present in multiple phyla.
We found a total of 2437 multi-phylum families present across all 8
broad habitat categories (Supplementary Data 5). Of these, only 752
families were annotated with Pfam CDs, of which 268 (35.6%) were
associated with ribosomal proteins and 99 (13.2%) belonged to the
Helix-turn-helix clan (Fig. 2d).

Archaea harbor more smORFs proportionally than bacteria
To investigate the presence of smORFs in different microorganisms
without sampling bias, we calculated the number of redundant
smORFs per megabase pairs (Mbp) of assembled contigs, also named
the density of smORFs32,46.

Most of the genera with the highest density come from Pseudo-
monadota, Bacillota A, Actinomycetota, Bacillota, and Bacteroidota
(Fig. 3a). However, when considering the density of phyla as a whole,
interestingly, we found the density of archaeal phyla is higher than
bacterial ones (PMann = 2:2510�3; Fig. 3b). Of the ten phyla with the
highest smORF density, half are archaeal, despite the fact that only 18
archaeal phyla contained enough data to be analyzed compared to 131
bacterial ones (Fig. 3c, Supplementary Data 6). The phyla that produce
themost smORFs perMbp areDesulfobacterota D (362.87 smORFs per
Mbp), Undinarchaeota (331.35 smORFs per Mbp), Nanoarchaeota
(281.34 smORFs per Mbp), Methylomirabilota (241.37 smORFs per
Mbp), and Huberarchaeota (241.05 smORFs per Mbp).

Differences in functions for archaeal and bacterial small
proteins
Given the higher densities of smORFs in Archaea, we investigated the
functions and properties in archaeal and bacterial small proteins
encoded by smORFs47. We compared the archaeal and bacterial small
protein families with COG48 annotation. Only 1.72% of the families are
annotated with COGs, of which 4,747,223 families are from bacteria
and 202,825 families are from archaea. The COG classes that belong to
Information storage andprocessing account for the largest proportion
of small proteins in both bacteria and archaea (Fig. 4a), which is con-
sistent with that found by Wang et al.44. However, circa 17% of small
proteins in bacteria and archaea are still annotated as COG classes
which are poorly characterized.

Small proteins with transmembrane or secreted characteristics
may be involved in cell communication7. We explored the transmem-
brane and secreted small proteins in archaea and bacteria (Methods).
15.3% of the families are predicted to be transmembrane (using
TMHMM-2.049) or secreted (using SignalP-5.050), with archaeal families
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being predicted at a higher rate than bacterial ones to be transmem-
brane or secreted (PMann ≤0.0103, Fig. 4b)51.

Furthermore, compared with bacterial transmembrane or secre-
ted small proteins, we found that archaeal transmembrane or secreted
small proteins are enriched inCOG classes related to the transport and
metabolism of coenzymes, carbohydrates, and inorganic ions, besides
the intracellular trafficking, secretion, and vesicular transport. In
contrast, they are depleted in COG classes related to cellular processes
and signaling (P value < 0.05, Fisher’s exact test, multiple tests cor-
rected by Bonferroni, Fig. 4c).

Some COGs were primarily (or even exclusively) present in
archaea (as defined by a P value < 0.05, Fisher’s exact test, multiple
tests corrected by Bonferroni, Fig. 4d). For example, the COG with the
highest proportion in archaea, COG4023 is a preprotein translocase
subunit Sec61beta, which is a component of the Sec61/SecYEG protein
secretion system. It is found in eukaryotes and archaea and is possibly
homologous to the bacterial SecG52.

Identification of smORFs by GMSC-mapper
As mentioned above, smORF predictions are prone to false positives
andone strategy for increasing confidence is to find sequences present
in multiple genomes (or metagenomes). In this context, our catalog

can be a resource whereby users with a single sample (or a small
number of samples) use it as a reference to obtain high-quality pre-
dicted smORFs. For this usage, we provide a tool called GMSC-
mapper (Fig. 5a).

GMSC-mapper performs de novo prediction and annotation of
small proteins encoded by smORFs in user-provided genomes or
assembledmetagenomes (Methods). For this, it first uses Pyrodigal35,53

to predict small proteins from assembled contigs and then it uses
DIAMOND54 orMMseqs255 to align these predictions against theGMSC.
To minimize computational resource usage, the GMSC-mapper only
searches family representatives, but it returns the set of matching
smORFs and the annotation of the matches (e.g., habitat and tax-
onomy) as well as links to GMSC identifiers.

We compared DIAMOND to MMseqs2 for this task and observed
that DIAMOND is faster than MMseqs2 when the number of query
sequences is below 10,000, while MMseqs2 is slightly faster than
DIAMOND when the number of queries is above 10,000 (Fig. 5b). In
addition, we compared the number of recovered sequences (Fig. 5c)
with either of these tools or BLAST56, by randomly modifying
sequences in the catalog and aligning these modified versions back to
the catalog of family representatives. All three tools can find a high-
identitymatch if it is present in the database.With increasing sequence

Fig. 2 | Taxonomic and functional annotation of small proteins. a Predicting
taxonomy for the contigs and genomes from which smORFs originate (Methods)
resulted in a taxonomic assignment for81.6%of smORFs (56.9%of smORFsat genus
or species level). b When only families with >2 members were considered
(96,721,815 families), there are three cases at each taxonomic rank. For example,
considering the rank of class, a small protein family is annotated to a particular
taxonomic class if all its members are annotated as belonging to that class (unan-
notated smORFs being ignored). We further distinguish three cases, namely whe-
ther its members are (i, marked specific in the next taxonomic rank) all be
annotated to the same order (as order is the next taxonomic rank), (ii, marked
multiple in the next taxonomic rank) annotated todifferent orderswithin that class,

or (iii, marked only annotated at the current taxonomic rank) not annotated to any
order. Other ranks are treated analogously (until we reach the level of species).
c The enrichment of Pfam domains in small protein families present in multiple
genera compared to the entire families with over two members (P value < 0.05,
Hypergeometric Test, corrected by Bonferroni). Pfam domains were grouped by
Pfamdomain clans. Fold change is the ratio of the Pfamproportionof small protein
families which present in multiple genera to the Pfam proportion of the entire
families with over two members. d The Pfam annotation of small protein families
that exist in multiple phyla, spanning >100 species and distributed across all the
eight broad habitat categories (mammal gut, anthropogenic, other-human, other-
animal, aquatic, human gut, soil/plant, and other).

Article https://doi.org/10.1038/s41467-024-51894-6

Nature Communications |         (2024) 15:7563 4

www.nature.com/naturecommunications


size, these tools can match more distant homologous sequences. In
this case, DIAMOND achieves almost the same sensitivity as BLAST and
is superior to MMseqs257.

However, independentlyof themethod used,when the sequences
are too short (20 amino acids), the rate of recovery decreases drasti-
cally. Fundamentally, for short sequences in a large database, even an
identical match has a high likelihood of arising by chance58,59. This will
manifest itself in a high E value60 for true positives, making it impos-
sible to distinguish false and true positive matches based on sequence
comparisons alone. Therefore, while the use of a higher E value
threshold will recover a larger fraction of true matches (>80% recov-
eredwith DIAMONDusing 10�3 compared to circa 40% using 10�5, see
Fig. 5c, d), the false discovery rate (FDR) will also increase58.

Discussion
Here, we constructed the global microbial smORFs catalog (GMSCv1,
in its first version), which contains ~1 billion smORF sequences, of
which 43 million are high-quality predictions, representing a large
increase in the number of smORF sequences previously reported and
serving as a resource for the microbiome research community. For

each smORF and small protein family, we provide comprehensive
annotations, including taxonomy, habitats, and CDs. Previously, most
of the widely studied microbial small proteins were accidentally dis-
covered in isolated and cultured bacterial species5. The large-scale
discovery of small proteins has made great progress in recent years.
Sberro et al.33 conducted the characterization of conserved small
proteins in the human microbiome, revealing their potential various
functions. In our work, we have expanded the discovery of small
proteins to 75 distinct habitats worldwide. In our catalog, only a small
fraction are homologous to reference small protein datasets, with the
vast majority of the novel small proteins being found in non-human-
associated habitats (Supplementary Fig. 5b). On the other hand, it
encompasses most of the known small proteins in either the RefSeq
database or in families discovered recently (NMPfamsDB61 and FesNov
families28). When comparing with small protein databases that focus
on eukaryotic organisms, such as smProt262, OpenProt2.063, and
sORF.org64, the overlap is minimal (Supplementary Fig. 5c).

Amajor difficulty in finding biologically functional smORFs is that
false positive predictions are common. One of the underlying princi-
ples in our efforts is thatfinding identical or highly similar sequences in

Fig. 3 | Archaea harbor more smORFs than bacteria. a Shown is the smORFs
density distribution for the top 3000 bacterial genera with the highest density
(brown bars, confidence interval of 95% shown as dark brown bars). Most of the
densest genera are from Pseudomonadota, Bacillota A, and Actinomycetota. For
reference, the black dashed line represents the median smORFs density for the
presented genera. bCalculating the smORFs density of each phylum, the density of

archaea is significantly higher than that of bacteria. Box plots indicate median
(middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as
well as outliers (single points) that lie within 1.5 IQRs of the lower and upper
quartile. P values shown are from the Mann–Whitney test (two-sided). c The top 10
phyla with the highest smORF density are shown.
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multiple samples increases the likelihood of a true prediction. There-
fore, wediscarded singletonpredictions inour data. This principle also
underlies the GMSC-mapper tool, which enables users to findmatches
from their datasets in GMSCv1.

As previously done33, wehave only conductedRNAcode37 on small
protein families with at least eight members to identify smORFs
families with transcription signatures. This approach may, however,
fail to identify some rapidly evolving functional smORFs. In addition,
given the limited size and number of existing datasets of metatran-
scriptomes, (meta)Ribo-Seq and metaproteomes, the high-quality
predictions are expected to underestimate the true diversity.

Computing approaches and concepts developedover decades for
longer proteins do not necessarily work well for small sequences. For
example, for the alignment of very short sequences, the minimum
achievable E value will be lower bounded60. Even an identical match
will obtain a relatively high E value as short identicalmatches canoccur
by chance. Furthermore, traditional databases lack small proteins, so
functional assignment by orthology or with HMMs only returns a
prediction for a minute fraction of all small proteins. We lack func-
tionalpredictions formost small proteins inour dataset, even for those
small protein families that are ubiquitous. Similarly, tools for predict-
ing whether proteins are transmembrane or secreted are not

optimized for small proteins and our results should be interpreted in
this context. Inparticular, whenwe compared results betweenbacteria
and archaea, we implicitly assumed that the methods have similar
error rates in these two domains, but this may not be the case. In
related work, we used machine learning36 to identify candidate anti-
microbial peptides (AMPs) from the GMSC46. However, functional
prediction for small proteins remains an open challenge, open to new
approaches.

Overall, our resource shows the immense and underexplored
diversity of small proteins across different habitats and taxonomy, and
highlights the gaps in our scientific knowledge, while constituting a
resource for the research community.

Methods
Collection of global metagenomic datasets and prediction
of smORFs
In total, 63,410publicly availableglobal assembledmetagenomes from
the SPIRE database21 collection were used. Briefly, the assembled
metagenomes have been generated through the following methods:
publicly available data (as of 1 January 2020) were downloaded from
the European Nucleotide Archive (ENA) and short reads that were at
least 60 bps after trimming positions with quality <2565 were

Fig. 4 | Differences in functional prediction for archaeal and bacterial small
proteins. a The COGdistribution of archaeal and bacterial small proteins is shown.
b Archaea contain a higher fraction of transmembrane or secreted small proteins
than bacteria (calculated per phylum). Box plots indicate median (middle line),
25th, 75th percentile (box) and 5th and 95th percentile (whiskers) aswell as outliers
(single points) that lie within 1.5 IQRs of the lower and upper quartile. P values
shown are from the Mann–Whitney Test (two-sided). c Shown is the difference in
the proportion of COG class in archaeal transmembrane or secreted small proteins

versus bacterial transmembrane or secreted small proteins. The fold change is the
ratio of proportions. The P values were calculated using Fisher’s exact test (two-
sided) and adjusted by Bonferroni correction. dDots represent 43 COGs, which are
enriched in archaeal transmembrane or secreted small proteins compared to the
archaeal small proteins that are not transmembrane or secreted, aswell as bacterial
transmembrane or secreted small proteins. The proportion comparison of these 43
COGs between archaeal transmembrane or secreted small proteins and bacterial
transmembrane or secreted small proteins is shown.
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assembled into contigs using MEGAHIT 1.2.966. Additionally, we
downloaded 87,920 high-quality isolate microbial genomes from the
ProGenomes2 database34.

We then used the modified version of Prodigal35 in Macrel 0.536 to
predict ORFs ≥ 30 base pairs (bps) on the assembled contigs as well as
those from Progenomes2 database. This version of Prodigal uses the
same algorithm as the standard version of Prodigal, but with a lower
limit on the size of genes. We used command line parameters to only
predict closed genes, to not predict genes with N as a base, to perform
a full motif scan, in metagenomics mode (-c -m -n -p meta). The ORFs
encoding small proteins (here defined as those up to 100 amino acids)
were considered smORFs.

We recorded the habitats of smORFs according to their source
samples using the habitat microontology introduced in SPIRE
database21. We further grouped the habitats into 8 broad categories:
mammal gut, anthropogenic, other-human, other-animal, aquatic,
human gut, soil/plant, and other. We used GeoPandas67 to present
geographic coordinates of samples.

Non-redundant smORFs catalog construction and method
validation
All the smORFs were first deduplicated at 100% amino-acid identity
and 100% coverage. Then we hierarchically clustered the non-
singletons at 90% amino-acid identity and 90% coverage using
Linclust55,68 with the following parameters: -c 0.9, –min-seq-id 0.9.
Linclust is a single-linkage approach, whereby sequences are clustered

together if they share a common representative with candidate
representatives being chosen heuristically.

Of these clusters, 47.5% contain a single sequence (singleton
clusters). To rule out the possibility that this was due to the fact that
Linclust55,68 is a heuristic method that is not specifically designed for
short sequences, we estimated the rate of false negatives (i.e.,
sequences that were marked as singleton even though they should
have been clustered with another one). We aligned a randomly selec-
ted 1000 singleton clusters against the representative sequences of
non-singleton clusters (i.e., those containing ≥2 sequences) using
SWIPE69 with the following parameters: -a 18 -m ‘8 std qcovs’ -p 1. The
alignment threshold was E value < 10�5, identity ≥90%, and coverage
≥90% (Supplementary Fig. 1a).

In addition, to estimate the rate of false positive clusterings
(sequences that were assigned to a cluster even though they do not
share the required identity with the cluster representative),
1000 sequences were randomly selected and aligned against the
representative sequences of their clusters using SWIPE69 with the fol-
lowing parameters: -a 18 -m ‘8 std qcovs’ -p 1. The alignment threshold
was E value < 10�5, identity ≥90%, and coverage ≥90% (Supplemen-
tary Fig. 1b).

When clustering, we initially discarded the singletons because sin-
gletons are enriched in artifactual smORFs36. However, we considered
that singletons that are homologous to larger clusters should
not be discarded as the homology itself provides further evidence
of biological relevance. Therefore, we aligned singletons to the

Fig. 5 | Workflow and benchmark of GMSC-mapper. a GMSC-mapper uses Pyr-
odigal to predict small proteins with <100 amino acids from contigs. Users can
alternatively provide smORF or protein sequences directly, skipping the initial step
of gene prediction. DIAMOND or MMseqs2 are used for finding homologs within
GMSC. In the end,GMSC-mapper combines all alignment hits andprovides detailed
annotations of small proteins. b Time cost tests were performed among different

numbers of input sequences from 1000 to 1,000,000 using DIAMOND and
MMseqs2 (Methods). We compared the number of recovered sequences with dif-
ferent lengths (20, 30, 40, 60, and 80 amino acids) at different amino acid identities
from 10% to 100% using DIAMOND, MMseqs2, and BLAST (Methods). The recov-
ered number is influenced by the E value cutoff used (10�3 in c and 10�5 in d).
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representative sequences of clusters with 90% sequence identity and
90%coverageusingDIAMOND54 usingparameters: -e 10�5 –id 90 -b 12 -c
1 –query-cover 90 –subject-cover 90. We combined the homolog sin-
gletons and the non-singleton sequences identified earlier and termed
them the smORFs catalog containing 964,970,496 smORFs.

Sample-based smORFs rarefaction curves
Samples were randomly permuted 24 times to calculate the total
number of non-redundant smORFs captured as the number of samples
increased. We took the average across the permutations as the final
estimate.

Quality control of the catalog
We conducted several in silico quality tests and matched genomic
predictions to other publicly available experimental data.

A smORF predicted at the start of a contig that is not preceded by
an in-frameSTOP codon risks being a false positive originating froman
interrupted fragment. Therefore, we checked for the presence of an
upstream in-frame STOP. For smORFs without an upstream in-frame
STOP, however, we could not determine whether there were other
genes present upstream of them (Supplementary Fig. 3a).

To avoid spurious smORFs, we used HMMSearch70 with the
--cut_ga option to search smORFs against the AntiFam 7.0 database71,
which contains a series of confirmed spurious protein families.

We used RNAcode37, a tool to predict the coding potential of
sequences based on evolutionary signatures, to identify the coding
potential of 25,744,932 smORF families containing ≥8 sequences. The
smORF families with P value < 0.05 were considered to have coding
potential, as in a previous study33 (Supplementary Fig. 4a).

Furthermore, we searched for evidence that these smORFs are
transcribed and/or translated. For this step, we downloaded 221 pub-
licly available metatranscriptomic datasets from the NCBI database
paired with the metagenomic samples we used in our catalog (Sup-
plementary Data 3). These samples are from the human gut, peat,
plant, and symbionts. To keep the procedure computationally feasible,
we mapped reads against the representative sequences of smORF
families by BWA72. Then we used NGLess65 with ‘unique_only’ for the
‘multiple’ argument of the count built-in function to only count
uniquely mapped inserts. A smORF family was considered to have
transcriptional evidence if its representative has reads mapped to it in
at least 2 samples (Supplementary Fig. 4b). Furthermore, we mapped
reads against the smORFs in paired metagenomic and metatran-
scriptome samples, separately. On average, 58.6% of the smORFs in
each paired sample are mapped.

We downloaded 142 publicly available Ribo-Seq datasets from the
NCBI database (Supplementary Data 3). We alsomapped reads against
representative sequences of smORF families by BWA72. Then we used
NGLess65 with ‘unique_only’ for the ‘multiple’ argument of the count
built-in function to only count uniquely mapped inserts. A smORF
family was considered to have translation evidence only if its repre-
sentative has reads mapped to it in at least 2 samples (Supplemen-
tary Fig. 4c).

Moreover, we downloaded peptide datasets from 108 metapro-
teomic projects from the PRIDE database73 (Supplementary Data 3).
Wematched GMSC smORFs to the identified peptides of each project.
If the total k-mer coverage of peptides on a smORF is greater than 50%,
then the smORF is considered translated and detected, as in a previous
study74 (Supplementary Fig. 4d).

Sequences that passed all in silico tests above as well as matching
transcriptional or translational data were regarded as high-quality
predictions.

Comparison with reference small protein datasets
Wedownloaded bacterial and archaeal protein sequences fromRefSeq
in March 202338, consensus sequences of NMPFamsDB61 and

sequences for each FESNov gene family28. The sequences with fewer
than 100 amino acids are considered small proteins, and redundancy
was subsequently removed with 100% amino-acid identity and 100%
coverage. A total of 16,333,323 bacterial small proteins, 368,769
archaeal small proteins from RefSeq, 56,786 small proteins from
NMPFamsDB, and 630,375 small proteins from FESNov families were
included in the comparison. We also included the 444,053 small pro-
tein clusters and 4539 conserved small protein families from Sberro’s
human microbiome study33. We compared our smORFs catalog to
these datasets using DIAMOND with the ‘–more-sensitive’ mode,
retaining significant hits (E value < 10�5). In addition, we compared our
smORFs catalog with small protein sequences provided in current
small protein database mainly about eukaryotic organisms. We
downloaded small proteins from human, mouse, yeast, rat, E. coli, C.
elegans, fruitfly, zebrafish, and small proteins from LiteratureMining,
KnownDatabase, and MSfragments from SmProt2 database62; small
proteins from human, mouse, rat, zebrafish, fruitfly, C. elegans of
sORF.org database64; and all predicted refprots, altprots, and isoforms
sequences with all annotations from human, chimp, rat, mouse, zeb-
rafish, fruitfly,C. elegans, and yeast fromOpenProt2.0 database63. After
filtering small proteins by length and removing redundancy as above,
788,586 small proteins from SmProt2 database, 4,377,422 small pro-
teins from sORF.org database, and 1,781,907 small proteins from
OpenProt2.0 database were included in the comparison. As above, we
compared our smORFs catalog to these datasets using DIAMONDwith
the ‘–more-sensitive’ mode, retaining significant hits (E value < 10�5).

Conserved domain annotation
We downloaded the CDD39 from ftp://ftp.ncbi.nih.gov/pub/mmdb/
cdd/little_endian/Cdd_LE.tar.gz in September 2022, which contains
models from CD curated at NCBI, Pfam45, SMART75, COGs48, PRK76, and
TIGRFAMs77. All the representative sequences of small protein families
were searched against the CDD by RPS-BLAST40,41. In order to establish
a comparison baseline, we additionally randomly selected 10,000
prokaryotic proteins from the globalmicrobial gene catalog v1.020 and
searched them against the CDD by RPS-BLAST40,41. Hits with an E-value
maximum of 0.01 and at least 80% of coverage of PSSM’s length were
retained and considered significant. Pfam accessions were grouped by
Pfam clan78 or the first phrase before the comma in their short
description.

Taxonomic annotation and taxonomic breadth analysis
The taxonomy of assembled contigs encoding the small proteins was
annotated using MMseqs2 taxonomy42 against the GTDB database43

release r95. However, in figures and text, we used updated taxon
names (e.g., Bacillota instead of Firmicutes). We characterized the
taxonomyof predicted smORFs based on the taxonomy of contigs and
microbial genomes34 from which the smORFs were predicted. We
subsequently assigned taxonomy forGMSC smORFs and families using
the lowest common ancestor, ignoring the un-assigned ranks to make
them more specific.

The small protein families with at least three members were
subsequently used to perform taxonomic breadth analysis. Each family
was classified according to (i) whether it is single or multi-habitat; (ii)
whether it is single ormulti-genus; and (iii) whether it is annotatedwith
a Pfam domain45. Multi-genus families are more common in multiple
habitats than the entire families (61.8% vs. 52.0%; P value < 10�308,
hypergeometric test). Multi-genus families are annotated with Pfam
domains at a higher rate (9.91% vs 7.52%; P value < 10�308, hypergeo-
metric test). As these results could have been confounded by differ-
ences in family size distributions, we randomly downsampled the data
to keep the same number of families at each size betweenmulti-genus
families and the whole families. In that case (as presented in the main
text), the difference was 61.8% vs. 57.5% (P value < 10�308, hypergeo-
metric test) for the proportion of families in multiple habitats and
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9.91% vs. 8.15% (P value < 10�308, hypergeometric test) for the pro-
portion of Pfam annotated families.

Density calculation
The density of smORFs was defined as ρ = nsmORFs / L, where nsmORFs is
the number of redundant smORFs and L is the assembled megabase
pairs (Mbps)32,46. The density was calculated by summing all assembled
base pairs for contigs assigned to each taxonomic rank. We assume a
scenariowhere the starting positions of smORFs in an assembled large
contig are independent and uniformly random. Therefore, the stan-
dard sample proportion error was calculated as STDerr =

ffiffiffiffiffiffiffiffiffiffiffiffi

ρ* 1�ρð Þ
L

q

and
was used to calculate the margin of error at a 95% confidence interval
(Z = 1.96). We did not further consider the calculated values with a
margin of error >10%.

Cellular localization prediction
To detect potential transmembrane proteins, we ran TMHMM-2.049 on
the representative sequences of small protein families. Then, to iden-
tify potentially secreted small proteins, we used SignalP-5.050 on the
representative sequences of small protein families. For families clas-
sified as archaea, we used ‘-org arch’, while for the otherswe combined
the outputs of ‘-org gram+ ’ and ‘-org gram-’ modes.

Construction and evaluation of GMSC-mapper
GMSC-mapper supports assembled contigs, smORF sequences, or
protein sequences as inputs. It uses Pyrodigal35,53, which is a faster
implementation of the Prodigal algorithm, to predict ORFs poten-
tially coding for small proteins (those with fewer than 100 amino
acids) from contigs. Gene prediction is skipped when inputs are
smORF or protein sequences. Then DIAMOND54 or MMseqs255 are
used for homologous alignment against GMSC. Finally, it combines
all the alignment hits information and provides detailed annotation
of small proteins.

To determine the optimal default sensitivity mode, we tested
different sensitivity parameters for DIAMOND and MMseqs2. We
aligned 10,000 randomly selected sequences back to the family
representatives and counted the number of recovered sequences
while monitoring the computational time. We use the “–sensitive”
mode as the default sensitivity parameter for DIAMOND, which pro-
vides the best balance between sensitivity and speed. The use ofmore-
sensitive modes resulted in little or almost no increase in the number
of recovered sequences, but a substantial increase in time usage. For
MMseqs2, we keep the original default sensitivity parameter (5.7)
considering that the number of recovered sequences and the time
both increase with the increase of sensitivity (Supplementary
Fig. 6a-d).

We then tested the time costs among different numbers of input
sequences using the “–sensitive” mode of DIAMOND and the default
sensitivity parameter (5.7) of MMseqs2. GMSC-mapper can annotate
100,000 input sequences in approximately 20minutes with 20
threads.

Furthermore, we compared the number of recovered sequences
with different identities using different alignment tools. We randomly
selected and mutated 10,000 sequences of different lengths (20, 30,
40, 60, and 80) from the family representatives, with different iden-
tities from 10% to 90%. We aligned them back to the family repre-
sentatives using DIAMOND, MMseqs2, and BLAST56, respectively.
When the query sequence and the target sequence are the same, we
consider them as the recovered sequences.

Timing measurements were performed using a server equipped
with an AMD EPYC 7763 64-Core processor and 2TB of RAMmemory.

Statistics and reproducibility
Statistical analyses were carried out in Python 3.8.5, using Pandas79

1.1.3, NumPy80 1.24.4, and SciPy81 1.10.1. No statistical method was used

to predetermine sample size. No data were excluded from the ana-
lyses. The experiments were not randomized. The investigators were
not blinded to allocation during experiments and outcome
assessment.

GMSC web resource
GMSC webserver is hosted at the address https://gmsc.big-data-
biology.org, where an implementation of GMSC-mapper can be
accessed. The website implementation is based on Elm-Lang. The API
implementation is based on Python.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Global metagenomic data are publicly available at the ENA. The
accession numbers for samples and studies are listed in Supplemen-
tary Data 1. Microbial genomes are publicly available in the Progen-
omes2 database. The global microbial smORFs catalog (GMSC)
resource has been deposited in Zenodo under https://doi.org/10.5281/
zenodo.7944370. The resource is freely available at https://gmsc.big-
data-biology.org. Users can query small protein sequences by using
GMSC-mapper through the web interface or select their interesting
small proteins by habitats and taxonomy.

Code availability
The codes used to generate and analyze the global microbial smORFs
catalog (GMSC) are available at https://github.com/BigDataBiology/
Duan2024__GMSCv1_Construction_And_Analysis, archived at Zenodo
under https://doi.org/10.5281/zenodo.13119583. GMSC-mapper is open
source and at https://github.com/BigDataBiology/GMSC-mapper.
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