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THE BIGGERPICTURE Serotonin (5-HT) receptors are neurotransmitter receptor proteins with relevant roles
in mood regulation, cognition, and sleep. Understanding their distribution and transcription complexity is
crucial for studying overall brain function. This study leverages state-of-the-art single-cell RNA sequencing
and spatial transcriptomics data to map 5-HT receptor subtypes across millions of cells in the mouse brain.
The findings in this study highlight the extensive presence of these receptors, often co-transcribed within the
same cell, pointing to the single-cell-level complexity of the serotonergic system, the neural system in charge
of the release of neurotransmitters essential for physiological and behavioral processes such as appetite and
mood regulation, cognition, and sleep. Here, we provide an interactive visualization tool to explore these
data. This work sets the stage for more targeted investigations into the functional implications of 5-HT recep-
tor distribution, with potential impacts on understanding and treating psychiatric and neurological disorders.
SUMMARY
Serotonin (5-HT) is crucial for regulating brain functions such as mood, sleep, and cognition. This study pre-
sents a comprehensive transcriptomic analysis of 5-HT receptors (Htrs) across z4 million cells in the adult
mouse brain using single-cell RNA sequencing (scRNA-seq) data from the Allen Institute. We observed dif-
ferential transcription patterns of all 14 Htr subtypes, revealing diverse prevalence and distribution across
cell classes. Remarkably, we found that 65.84% of cells transcribe RNA of at least one Htr, with frequent
co-transcription of multiple Htrs, underscoring the complexity of the 5-HT system even at the single-cell
dimension. Leveraging a multiplexed error-robust fluorescence in situ hybridization (MERFISH) dataset pro-
vided by Harvard University ofz10 million cells, we analyzed the spatial distribution of each Htr, confirming
previous findings and uncovering novel transcription patterns. To aid in exploring Htr transcription, we
provide an online interactive visualizer.
INTRODUCTION

Serotonin (5-HT) stands as a pivotal neuromodulator within the

brain, orchestrating a diverse array of behaviors and physiolog-

ical processes that include mood regulation,1 memory,2 sleep,3

feeding,4 and decision making.5 This broad spectrum of

influence is remarkably orchestrated by a limited number of

5-HT-releasing neurons located in the raphe nuclei, which

extend their projections across the entire brain.6 The intricacy
Patterns 5, 101048, Octo
This is an open access article under the
of the 5-HT system is amplified by the extensive repertoire of

5-HT receptors (Htrs), most of them metabotropic receptors

linked to different intracellular pathways, resulting in varied and

sometimes opposing effects on neuronal excitability.7 These

receptors are categorized into 14 types spread across seven

families, presenting a complex landscape of 5-HT signaling.

To better grasp the impact of 5-HT release, it is crucial to accu-

rately map the expression of each receptor throughout the

brain. Historically, techniques such as immunohistochemistry,
ber 11, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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autoradiography, in situ hybridization, and microarray analysis

have been instrumental in shedding light on this question.8,9

These methodologies have provided foundational insights into

the brain-wide effects of 5-HT, contributing significantly to our

current understanding.10 However, the introduction of single-

cell RNA sequencing (scRNA-seq) and multiplexed error-robust

fluorescence in situ hybridization (MERFISH) has revolutionized

our ability to dissect gene transcription. Unlike their predeces-

sors, these techniques offer an unparalleled resolution, scalabil-

ity, and depth of profiling, enabling detailed mapping of each

Htr’s transcription patterns. Such precision enhances our under-

standing of 5-HT’s functions, setting the stage for more accurate

and nuanced insights into its impact on neural circuits. To eluci-

date the complexities of the distribution of each Htr subtype, we

utilized an scRNA-seq dataset provided by the Allen Institute,11

incorporating the associated hierarchical clustering of cells at

four nested levels. Spatial distribution data were obtained from

a MERFISH dataset by Harvard University.12 This approach

revealed new patterns of Htr transcription and set a new

benchmark for examining their distribution against the backdrop

of existing literature, contributing to our understanding of the

complex roles of 5-HT in brain function. To facilitate broader

custom exploration of the Htr landscape throughout the

brain, we have developed an interactive visualization tool

that enables the seamless exploration of both the scRNA-seq

and MERFISH datasets at different levels of granularity,

providing a comprehensive view of the 5-HT receptor distribu-

tion. An online version is available at https://rdef6548756

78597657-5-ht-transcriptomics.hf.space.

RESULTS

Htr transcription overview
We analyzed the scRNA-seq dataset provided by the Allen Insti-

tute,11 focusing on the transcription of Htr genes across approx-

imately 4 million brain cells passing quality control. The scRNA-

seq dataset comprehensively encompassed all known fourteen

Htr subtypes. 65.84% of cells transcribed RNA of at least one

Htr. To evaluate transcription, we used the same stringent

threshold (log(CPM) > 3.5) (CPM = counts per million) used by

the original authors to determine neurotransmitter release.11

Prevalence of Htrs, the percentage of cells transcribing a recep-

tor, across the entire dataset was considerably different, ranging

from 0.09% of Htr3b to 34.26% of Htr1f (Figure 1A). RNA of six

Htrs was found in less than 2.5% of the cells (Htr1d, Htr2b,

Htr3a, Htr3b, Htr5b, and Htr6). On the other hand, RNA of

Htr1f, Htr2a, and Htr2c was present in at least one of every five

cells. The average amount of RNA transcription also varied

across receptors (Figure S1A). Interestingly, the variation in

amount of RNA shared around half (R2 = 0.55) of the variability

with the prevalence, i.e., genes that were more widespread

across cells also exhibited higher transcription rates within indi-

vidual cells. In addition to differences in prevalence and tran-

scription levels, the distribution of genes across the brain also

showed notable variation. This variation is highlighted by

comparing the distribution patterns of the Htr1 and Htr2 families,

as showcased through uniformmanifold approximation and pro-

jection (UMAP) analysis (Figure 1B). The UMAP visualization was

color coded according to neighborhood classification. Neigh-
2 Patterns 5, 101048, October 11, 2024
borhoods, characterized by cursory anatomical proximity and

molecular signatures such as neurotransmitter release,11 offer

a condensed categorization of cell types (Figure S1B and

Table S1). When looking at the UMAP distributions of individual

Htrs, considerable differences were also present within each

family of receptors (Figure S2). We analyzed these differences

grouping cells by neurotransmitter, neighborhood, or class (Fig-

ure S1B). The cells were subdivided into four nested levels of

classification (as defined previously11) with 34 classes, 338 sub-

classes, 1,201 supertypes, and 5,322 clusters. These categori-

zations divided cells in a highly skewed fashion (Figure S1C).

For example, when looking at neurotransmitter release, three

groups (Glut, Gaba, and unassigned) made up almost the totality

of cells (98.47%). Expectedly, the vast majority of cells was clas-

sified as excitatory (Glut, 50.79%), and around one in every five

cells was found to release GABA (20.62%). All the other neuro-

transmitters were found in less than 1% of the cells; in particular,

5-HT-releasing neurons (Sero) were found in only 0.04% of the

cells. The pattern of Htr transcription across different neuro-

transmitter groups exhibited a relatively high mean Pearson cor-

relation coefficient (r = 0.6 ± 0.03). Sero and cholinergic neurons

(Chol) showed the most distinct patterns of transcription with,

respectively, mean r = 0.32 ± 0.04 and 0.37 ± 0.05 (Figure 1C).

To better evaluate the uniqueness of Htr RNA transcription per

group and account for differences in amplitude, not captured

by simple correlation, we employed a random forest classifier

aimed at decoding the grouping variable solely from the Htrs’

transcription. Overall accuracy of the model in decoding neuro-

transmitter was 38.55% (chance level = 10.0%). Reflecting the

correlation analysis, the confusion matrix showed that Sero

and Chol were among the groups with higher true-positive (TP)

rate (Sero = 74.4%, Chol = 46.99%). Cells not transcribing any

neurotransmitter, not exhibiting a low r beforehand, were, none-

theless, identified even more successfully (79.44%). Moreover,

noradrenaline (Nora)- and glycine (GABA-Glyc)-releasing neu-

rons were identified at considerable levels (Nora = 42.11% and

GABA-Glyc = 42.6%). To understand the contribution of each

Htr in each prediction, we calculated the mean absolute SHAP

(Shapley additive explanations) values for each receptor and

neurotransmitter.13,14 The SHAP values in association with the

mean prevalence enabled us to easily understand the defining

features of each group. We can appreciate, for example, that

the identification of Sero neurons is determined mainly by tran-

scription of Htr1a and Chol neurons by Htr4 and Htr5b. Crucially,

absence of transcription can also contribute to the classification,

e.g., cells not transcribing any neurotransmitter were identified

mainly by the absence of any Htr, and Nora neuron detection

was guided by the unique absence of Htr4. When looking at

different neighborhoods, the accuracy of the model was

40.81% (chance level = 12.5%). The model could differentiate

best the NN-IMN-GC, TH-EPI-Glut, and Pallium-Glut groups

(NN-IMN-GC = 72.82%, TH-EPI-Glut = 69.15%, and Pallium-

Glut = 57.65%, Figure S3A). NN-IMN-GC includes all the cells

not releasing any neurotransmitter; their classification was there-

fore expectedly influenced by absence of any Htr. On the other

hand, TH-EPI-Glut cells were characterized by the unique com-

bination of high transcription of Htr7 and low transcription of

Htr2a and Htr4. Pallium-Glut cells instead exhibited relatively

low levels of Htr2c and Htr7. Notably, Htr7 and Htr1f seemed

https://rdef654875678597657-5-ht-transcriptomics.hf.space
https://rdef654875678597657-5-ht-transcriptomics.hf.space


Figure 1. Overview of Htr translation

(A) Barplot showing absolute number of cells transcribing each Htr. Amount of expression is represented in grayscale; no threshold is applied. Inset shows the

prevalence of each Htr using a threshold set at log(CPM) > 3.5 and same color coding.

(B) UMAP representation color coded by neighborhood metadata (left), Htr1 (middle), and Htr2 (right) transcription.

(C) Htr expression prevalence in cells grouped by neurotransmitter release (top). Confusionmatrix of themulti-label random forest classifier showing True label on

y axis and predicted label on x axis (middle). Matrix of absolute SHAP values for each group and receptor (bottom). Glut, glutamate; GABA, g-aminobutyric acid;

Glut-GABA, glutamate and g-aminobutyric acid; Dopa, dopamine; None, no specific neurotransmitter; GABA-Glyc, g-aminobutyric acid and glycine; Chol,

acetylcholine (cholinergic); Hist, histamine; Sero, serotonin; Nora, norepinephrine.

(D) Htr expression prevalence in cells grouped by class.

(E) Htr expression correlation matrix.

(F) Htr co-localization matrix. Each dot represents the percentage of co-localization of gene on x axis in cells transcribing gene on y axis.

(G) Percentage of cells transcribing the number of Htrs on the x axis (top). Percentage of cells transcribing the gene on x axis transcribing at least another Htr gene

(middle) or at least four other Htrs (bottom).

(H) Pie charts representing themain pathway activated by 5-HT in each neighborhood. Principal effector was identified by summing the amount of RNA belonging

to receptor of the same family in each cell. Each number represents the number of cells in thousands.
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to follow opposite gradients across neighborhoods. Across

classes, differences in Htr transcription were even more striking

(Figure 1D). Five groups could be identified with a TP rate >40%:

04 DG-IMN Glut, 09 CNU-LGE GABA, 17 MH-LH Glut, 22

MB-HB Sero, and 34 Immune (Figure S3B). 04 DG-IMN Glut

were characterized by high transcription of Htr4, as shown

previously,15 and absence of the usually prevalent Htr2c. 09

CNU-LGE GABA cells showed high Htr1b and low Htr7/Htr1a;

17 MH-LH Glut exhibited high levels of Htr5b and Htr4; 22 MB-

HB Sero, mirroring the results showed by Sero neurons, were
characterized by high levels of Htr1a; and 34 Immune

cells were identified by absence of any Htr transcription.

The exclusive use of Htr transcription pattern reached an impres-

sive 17.85% accuracy in decoding classes (chance level =

2.941176470588235%). Correlation between Htr transcription

across the totality of cells ranged from �0.03 (Htr1f-Htr3a) to

0.311 (Htr4-Htr2c). Considerable correlation was also found

for the Htr7-Htr2c (r = 0.264) and Htr1f-Htr2a (r = 0.212) pairs

(Figure 1E). Interestingly, correlation patterns were not stable

across neighborhoods (Figure S4A). For example, Pallium-Glut
Patterns 5, 101048, October 11, 2024 3



Figure 2. Htr1a transcription

(A) On the left, dotplot representing Htr1a prevalence across neighborhoods with squared Pearson correlation coefficient (R2) between scRNA-seq andMERFISH

datasets. On the right, violin plots representing the amount of Htr1a RNA detected using scRNA-seq (top) and MERFISH (bottom).

(B) Amount of co-localization with each Htr by cells expressing Htr1a RNA in the scRNA-seq dataset (left). Number of Htr RNA detected in cells expressing Htr1a

RNA in the scRNA-seq dataset (right).

(legend continued on next page)
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exhibited a unique negative correlation between Htr4-Htr2a not

visible from the analysis of the entire dataset. Of note, TH-EPI-

Glut showed the highest absolute correlation across all neigh-

borhoods, with r = 0.609 between Htr5b and Htr4 and a unique

negative correlation between Htr4 and Htr7. To explore the un-

derlying causes of the correlations, we analyzed co-localization

(co-transcription of RNA in the same cell) between Htrs. Across

the entire dataset we observed that the most transcribed genes,

Htr1f and Htr2c, were regularly transcribed whenever the RNA of

any other Htr was detected (Figure 1F). This was a driving factor

for correlation. Looking more in detail across neighborhoods,

also here we noticed important differences, mainly explainable

by differential prevalence of Htrs in each neighborhood.

60.84% of Htr-transcribing cells exhibited RNA of at least two

Htrs; therefore, only in a minority of cases a cell was found to

transcribe uniquely one Htr (25.78% of the totality of cells,

Figure 1G). Surprisingly, 7.4% of Htr-transcribing cells were

found to exhibit RNA of at least five other Htrs. The extensive

transcription of different Htr families within the same cell indi-

cates the complexity of the 5-HT system even at the single-cell

dimension. To facilitate an understanding of the downstream

cellular effects of 5-HT, we aggregated receptors according to

their main intracellular effector. We aggregated Htr1 and Htr5

due to their inhibitory effect (cAMP decrease) and Htr4, Htr6,

and Htr7 because of the shared downstream effect of increasing

cAMP. Htr2 is the only one that causes a Ca2+ increase, while

Htr3 is the only ionotropic receptor. For each cell we determined

the principal pathway activated by 5-HT by analyzing the de-

tected RNA levels for each Htr, grouping them by intracellular

effector and selecting the top ranked. We grouped the results

by neighborhood, informed by the differential Htr transcription

(Figure 1H). Ht3 was present only in a small minority of subpal-

lium inhibitory neurons. In the telencephalon, the absolutemajor-

ity of both Pallium-Glut and Subpallium-Gaba cells were linked

to Htr1/5, and around one-quarter of cells featured Htr2 as

primary effector. Subcortical cells exhibited a more balanced

partition without any absolute majority and a considerable pres-

ence of Htr4/6/7. In the following sections we will take a deeper

look at Htrs grouped by intracellular effector. Wewill take advan-

tage of the information provided by the MERFISH dataset of

Zhang et al.12 to analyze in detail their spatial distribution. The

MERFISH dataset contains information about only 9 of the 14

Htr genes present in the scRNA-seq dataset. To overcome this

limitation and try to pinpoint the spatial location of all genes,

we first identified in the scRNA-seq dataset clusters highly en-

riched in the selected gene, i.e., to be classified as enriched at

least 70% of cells in a given cluster must express the selected

Htr gene. Taking advantage of the clustering label integration

between the scRNA-seq and MERFISH datasets,12 we could

identify the spatial distribution in the MERFISH dataset of cells

belonging to enriched clusters defined using the scRNA-seq da-
(C) Prevalence of Htr1a RNA across all classes of cells in scRNA-seq andMERFIS

the right, absolute number of cells expressing Htr1a RNA in the scRNA-seq data

(D) Ranked prevalence of Htr1a RNA across divisions (left) and structures of enri

Inset represents the proportion of cells expressing Htr1a RNA that belongs to en

(E) (Top) Prevalence of cells from enriched clusters across the anteroposterior ax

dataset. (Bottom) Average amount of RNA expression found in enriched clusters

(F) Expression of Htr1a RNA detected by MERFISH in four representative slices.
taset. This approach worked in all cases where enriched clusters

could be identified. In some cases only a minority of cells tran-

scribing the selected Htr gene belonged to enriched clusters.

For this reason we offer the option to bypass the scRNA-seq

enriched cluster calculations and directly view the prevalence

of all cells transcribing the selected gene in the MERFISH data-

set using the interactive visualizer (see ‘‘Spatial MERFISH’’ and

‘‘Overview genes by brain structure’’ dashboards, the latter

with ‘‘Data source selector’’ = ‘‘MERFISH only’’).

Htr1 and Htr5
Receptors belonging to these two families have an inhibitory

effect on the host cell: they are coupled to Gᵢ and cause a down-

stream decrease of cAMP and activation of GIRK channels.16,17

Some Htr1a agonists are currently used as anxiolytics18 and an-

tidepressants.19–21 The link between 5-HT imbalances, 5-HT1A

activation, and depression is, however, controversial and has

been called into question.22 Htr1b and Htr1d agonists, like trip-

tans, are effective in treating migraine.23 Htr1a RNA has a stable

prevalence of z10% across neighborhoods in the scRNA-seq

dataset, with virtual absence in the TH-EPI-Glut group (Fig-

ure 2A). This receptor seems to play a role in learning and cogni-

tive flexibility.24 Htr1a co-localized most frequently with Htr1f,

Htr2c, and Htr2a (Figure 2B) and only in a minority of cases

was transcribed alone (<10%). Transcription across classes

was highly correlated between the scRNA-seq and MERFISH

datasets (Figure 2A) and showed a good correspondence in ab-

solute values; this was the case for the majority of other Htrs.

Highest transcription per class was found in Sero neurons of

the mid- and hindbrain (class 22 MB-HB Sero, Figure 2C); none-

theless, cortical excitatory neurons (01 IT-ET Glut), like in most

Htrs, contained the highest absolute number of cells transcribing

the receptor. Subclasses located in the hippocampus (HPF, see

Table S2 for a list of acronyms) contained most of the cortical

cells transcribing Htr1a (see interactive visualizer, ‘‘Overview

genes by class/subclass,’’ ‘‘Class selector’’ = ‘‘01 IT-ET Glut,’’

‘‘Group by’’ = ‘‘subclass’’). Only 6.52%of Htr1a transcribing cells

were contained in enriched clusters, indicating a relatively low

importance of this receptor in the clustering algorithm used by

Yao et al.11 Looking at the spatial distribution across divisions,

e.g., high-level regional areas, the highest prevalence was found

in the pallidum (PAL) and HPF (Figure 2D). At a more granular

level, five of the top ten structures by prevalence belonged

to the raphe nuclei: dorsal nucleus raphe (DR), nucleus raphe ob-

scurus (RO), nucleus raphe pallidus (RPA), nucleus raphe mag-

nus, and superior central nucleus raphe (CS). The high levels of

Htr1a transcription in the raphe nuclei is reflection of the high

prevalence in Sero neurons outlined beforehand; the raphe

nuclei, indeed, contains the vast majority of Sero neurons of

the brain. The hippocampal structures exhibiting higher preva-

lence were the medial entorhinal cortex (ENTm) and the area
Hdatasets. Inset represents the linear regression between the two datasets. On

set by class, ranked in descending order (top ten).

ched clusters found in the scRNA-seq dataset in the MERFISH dataset (right).

riched clusters.

is, identified in the scRNA-seq dataset and cross-referenced in the MERFISH

cross-referenced in the MERFISH dataset.

Border color represents the position on the anteroposterior axis.
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Figure 3. Htr1b transcription

(A) On the left, dotplot representing Htr1b prevalence across neighborhoods with squared Pearson correlation coefficient (R2) between scRNA-seq andMERFISH

datasets. On the right, violin plots representing the amount of Htr1b RNA detected using scRNA-seq (top) and MERFISH (bottom).

(B) Amount of co-localization with each Htr by cells expressing Htr1b RNA in the scRNA-seq dataset (left). Number of Htr RNA detected in cells expressing Htr1b

RNA in the scRNA-seq dataset (right).

(legend continued on next page)
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prostriata (APr), while the medial septum nucleus (MS) and the

diagonal band nucleus (NDB), two structures linked to genera-

tion of theta waves25 and containing Chol neurons, contributed

substantially to the transcription in PAL. Notably, all these results

confirm previous reports of Htr1a expression in the raphe,26,27

ENTm,28,29 and MS.30 Levels of transcription were stable across

the anterior-posterior axis, as in most other Htrs (Figures 2E

and 2F). Htr1b is involved in social memory in mouse.31 Htr1b

exhibited a more diverse pattern of transcription across

neighborhoods (Figure 3A) ranging from 10% to 30%. Highest

prevalence was observed in the MB-HB-Glut-Sero-Dopa group

(glutamatergic, serotonergic, and dopaminergic neurons located

in midbrain and hindbrain). Co-localization showed a similar

pattern compared to Htr1a (Figure 3B), with only a minority of

cells transcribing Htr1b alone (<10%). Looking at transcription

across classes, the 09 CNU-LGE GABA class showed the high-

est prevalence (58.06%) closely followed by 22 MB-HB Sero

(53.73%) (Figure 3C). High transcription in 09 CNU-LGE GABA

was in sharp contrast to Htr1a that showed only minimal tran-

scription in this class (1.61%). Also in this case, 01 IT-ET Glut ex-

hibited the highest absolute number of Htr1b transcribing cells,

specifically in a subclass of the nucleus of the lateral olfactory tu-

bercle (NLOT; see interactive visualizer, ‘‘Overview genes by

class,’’ ‘‘Class selector’’ = ‘‘01 IT-ET Glut,’’ ‘‘Group by’’ = ‘‘sub-

class’’). 17.48% of Htr1b transcribing cells belonged to enriched

clusters, and the striatum (STR) showed an impressive high prev-

alence with >30% (Figure 3D), in line with previous reports.32,33

Caudoputamen (CP), nucleus accumbens (ACB), olfactory tu-

bercle (OT), lateral septal nucleus (LSc), and the parabigeminal

nucleus (PBG) all exhibited a prevalence of >20%. DR and RO

of the raphe nuclei also exhibited considerable prevalence.

Similarly to Htr1a, Htr1b seems to be specifically linked to Sero

neurons; in line with this, they have been reported to mediate

self-inhibition in these neurons.34 Distribution across the antero-

posterior axes reflected the high prevalence in STR (Figures 3E

and 3F). Htr1d was transcribed at a much lower level, never

exceeding 7% prevalence in any neighborhood (Figure S5A). It

co-localized at highest levels with Htr2c and Htr1f (Figure S5B)

and only rarely was transcribed alone (<5%). Similarly to Htr1b,

transcription was highest in 09 CNU-LGE GABA and 22 MB-

HB Sero (Figure S5C). Notably, 09 CNU-LGE GABA exhibited

the highest absolute number of cells surpassing 01 IT-ET

Glut. Only a small minority of Htr1d transcribing cells belonged

to enriched clusters (2.08%). The paraventricular nucleus of

the thalamus (parataenial nucleus [PT] and paraventricular nu-

cleus [PVT]) showed the highest prevalence at only >4%

(Figures S5D–S5F). Htr1f, surprisingly, showed the highest levels

of transcription of all Htrs in the scRNA-seq dataset. Highest

prevalence was found in the pallium and subpallium groups (Fig-

ure 4A), reaching z50%. Other groups showed a prevalence of

30%–40% with TH-EPI-Glut at z20% (Figure 4A). Htr1f was
(C) Prevalence of Htr1b RNA across all classes of cells in scRNA-seq andMERFIS

the right, absolute number of cells expressing Htr1b RNA in the scRNA-seq by c

(D) Ranked prevalence of Htr1b RNA across divisions (left) and structures of enri

Inset represents the proportion of cells expressing Htr1b RNA that belongs to en

(E) (Top) Prevalence of cells from enriched clusters across the anteroposterior ax

dataset. (Bottom) Average amount of RNA expression found in enriched clusters

(F) Expression of Htr1b RNA detected by MERFISH in four representative slices.
found to co-localize the most with Htr2a and Htr2c (Figure 4B).

In 30% of cases Htr1f was the only Htr transcribed in a cell,

and co-localization decreased linearly with the number of co-

transcribed Htrs (Figure 4B). Notably, the slope of the linear

regression between values provided by scRNA-seq and

MERFISH was significantly lower, pointing to a difference in

absolute prevalence per class (Figure 4C). This difference can

be imputed to the different technique employed (see https://

community.brain-map.org/t/consistent-difference-in-expression-

between-zhuang-and-zeng-merfish-datasets/2604/2). The two

datasets are, however, still highly correlated, with 66% shared

variability. This was the case also for Htr2a, Htr2c, and Htr4.

Htr1f was broadly transcribed across almost all classes,

including some non-neuronal cells. Pineal gland cells were a

notable exception. In absolute numbers, cortical glutamatergic

cells showed the highest transcription. Various subclasses

located in layer 5, claustrum (CLA), and HPF exhibited preva-

lence >50% (see interactive visualizer, ‘‘Overview genes by

class,’’ ‘‘Class selector’’ = ‘‘01 IT-ET Glut,’’ ‘‘Group by’’ = ‘‘sub-

class’’). Spatial distribution showed a peculiarly asymmetric

pattern with transcription concentrated in the most anterior re-

gions. Highest transcription was observed in STR, olfactory

areas (OLF), and the cortical subplate (CTXsp), reaching >20%

(Figure 4D). Specifically, the highest transcription was observed

in nucleus accumbens (ACB) and olfactory tubercle (OT), simi-

larly to Htr1b. The accessory olfactory bulb (AOB) was the OLF

structure with the highest prevalence. CLA and the endopiriform

nucleus (EPd), on the other hand, were the CTXsp structures ex-

hibiting the highest prevalence. Interestingly, in the CTXsp, tran-

scription in Glut and Gaba neurons was anticorrelated. High

prevalence in Glut neurons corresponded to lower prevalence

in Gaba and vice versa. In CLA and EPd, Htr1f was transcribed

mainly in Glut neurons while in the amygdala (LA, basolateral

amygdalar nucleus [BLA], basomedial amygdalar nucleus

[BMA]) predominantly in Gaba neurons (see interactive visual-

izer, ‘‘Overview genes by brain structure,’’ ‘‘Division selector’’ =

‘‘CTXsp,’’ ‘‘Neurotransmitter selector’’ = ‘‘Glut’’ vs. ‘‘GABA’’).

Isocortex and HPF also exhibited considerable transcription

both in excitatory and inhibitory neurons. The amount of RNA

transcription per cell was not linear, with a clear peak in the fron-

tal olfactory areas (Figures 4E and 4F). High transcription of Htr1f

in this region was previously observed using immunohistochem-

istry.35 The broad transcription of Htr1f observed in the scRNA-

seq dataset across the entire telencephalon is in line with earlier

reports.36 Neither Htr5a nor Htr5b were included in theMERFISH

dataset; therefore, we do not have any direct spatial visualization

of their transcription. Htr5a was transcribed at 8%–16% preva-

lence across all neighborhoods (Figure S6A) and co-localized

the most with Htr1f, Htr2c, and Htr2a (Figure S6B). Transcription

was broadly distributed across many classes, although only

at lower levels compared to other Htrs (Figure S6C). Only one
H datasets. Inset represents the linear regression between the two datasets. On

lass, ranked in descending order (top ten).

ched clusters found in the scRNA-seq dataset in the MERFISH dataset (right).

riched clusters.

is, identified in the scRNA-seq dataset and cross-referenced in the MERFISH

cross-referenced in the MERFISH dataset.

Border color represents the position on the anteroposterior axis.
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Figure 4. Htr1f transcription

(A) On the left, dotplot representing Htr1f prevalence across neighborhoods with squared Pearson correlation coefficient (R2) between scRNA-seq andMERFISH

dataset. On the right, violin plots representing the amount of Htr1f RNA detected using scRNA-seq (top) and MERFISH (bottom).

(B) Amount of co-localization with each Htr by cells expressing Htr1f RNA in the scRNA-seq dataset (left). Number of Htr RNA detected in cells expressing Htr1f

RNA in the scRNA-seq dataset (right).

(legend continued on next page)
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cluster was considered enriched with Htr5a in the entire scRNA-

seq dataset: 3453 PAG-PPN Pax5 Sox21 Gaba. This cluster was

locatedmainly in themidbrain reticular nucleus (RR, Figures S6D

and S6E). Htr5b was transcribed at a lower level across

neighborhoods (Figure S7A), with a maximum of z5% in TH-

EPI-Glut. Surprisingly, even if their overall prevalence was

much lower than that of Htr5a, ten clusters were found to be

enriched in Htr5b. This receptor was transcribed at considerable

levels only in the 17 MH-LH Glut class (z50% prevalence). This

was reflected by high levels of transcription in the medial

habenula (MH, Figures S7D and S7E), a structure involved in

the response to stress and fear.25,37–39 Some transcription

was also evident in the posterior part of the brain, specifically

in the inferior olivary complex (IO), driven by a single subclass,

253 IO Fgl2 Glut (see interactive visualizer, ‘‘Overview genes

by class/subclass,’’ ‘‘Class selector’’ = ‘‘24 MY Glut,’’ ‘‘Group

by’’ = ‘‘subclass’’), and some structures populated by Sero

neurons.

Htr2
The Htr2 family is mainly linked to Gq/11 and causes depolariza-

tion by increasing intracellular Ca2+. Htr2a antagonists, such as

atypical antipsychotics (e.g., clozapine and risperidone), are

currently used in treating schizophrenia and other psychiatric

disorders. Htr2c antagonists are being explored for their poten-

tial in treating obesity andmetabolic disorders.40,41 Htr2a, instru-

mental in mediating the effects of psychedelics42 and involved in

learning and memory,43,44 is found across the brain, with highest

prevalence in telencephalic neighborhoods, Pallium-Glut, and

Subpallium-Gaba (Figure 5A). Co-localization was highest with

Htr1f and Htr2c (Figure 5B). Highest transcription (z40%) was

found in 01 IT-ET Glut, 07 CTX-MGE GABA, and 16 HY-MM

Glut classes (Figure 5C). Interestingly, somatostatin (Sst)

neurons belonging to 07 CTX-MGE GABA, while exhibiting a

relatively low prevalence at the subclass level, contained

various clusters with >70% prevalence45 (see interactive visual-

izer, ‘‘Overview genes by class/subclass,’’ ‘‘Class selector’’ =

‘‘07 CTX-MGE GABA,’’ ‘‘Subclass selector’’ = ‘‘053 Sst Gaba,’’

‘‘Group by’’ = ‘‘cluster’’). Htr2a was also prevalent across

many other classes across the whole brain. 01 IT-ET Glut

exhibited by far the highest absolute number of neurons tran-

scribing Htr2a, specifically in subclasses of layer 5 and CLA,

resembling Htr1f (see interactive visualizer, ‘‘Overview genes

by class/subclass,’’ ‘‘Class selector’’ = ‘‘01 IT-ET Glut,’’ ‘‘Group

by’’ = ‘‘subclass’’). CTXsp showed the highest prevalence,

reaching >12% (Figure 5D). Isocortex and STR exhibited

both z5% prevalence. At a structure level, two structures

belonging to the mammillary complex (dorsal premammillary

nucleus [PMd] and tuberomammillary nucleus [TMd]) were in

the top ten by prevalence. The mammillary complex has been

linked to Alzheimer’s disease46 and memory.47 CLA and the
(C) Prevalence of Htr1f RNA across all classes of cells in scRNA-seq andMERFISH

the right, absolute number of cells expressing Htr1f RNA in the scRNA-seq by c

(D) Ranked prevalence of Htr1f RNA across divisions (left) and structures of enric

Inset represents the proportion of cells expressing Htr1f RNA that belongs to en

(E) (Top) Prevalence of cells from enriched clusters across the anteroposterior ax

dataset. (Bottom) Average amount of RNA expression found in enriched clusters

(F) Expression of Htr1f RNA detected by MERFISH in four representative slices.
EPd showed the highest absolute prevalence. Interestingly,

CLA has been proposed to play an important role in mediating

the effects of psychedelic compounds.48 Prevalence in the

STRwas driven by the small bed nucleus (BA), a structure impor-

tant for the integration of limbic and environmental information.49

Htr2a transcription in CLA andmammillary complex is in line with

a previous report in monkey.50 Prevalence of Htr2a was highest

in frontal regions of the brain, decaying linearly to virtual absence

in the cerebellum (Figures 5E and 5F). Htr2b was found only in a

minority of neurons and was not included in the MERFISH data-

set. No cluster was found to be enriched with Htr2b. Interest-

ingly, neurons belonging to the Pineal Glut class showed the

highest prevalence at 7.34% (Figure S8C). Htr2c plays a role in

feeding and impulsive behavior.51 Htr2c was found at highest

prevalence in the MB-HB-Glut-Sero-Dopa and Hy-EA-Glut-

Gaba neighborhoods (Figure 6A). Apart from Pallium-Glut, its

prevalence was always >40%. Co-localization was highest

with Htr1f, Htr4, and Htr7 (Figure 6B). Transcription was broadly

distributed across many different classes, especially subcorti-

cally (Figure 6C). Many classes exhibited a >60% prevalence.

As usual, cortical excitatory neurons exhibited the highest abso-

lute number of cells transcribing Htr2c. Some subclasses in

OLF, amygdala, and retrosplenial cortex (RSP) exhibited >80%

prevalence (see interactive visualizer, ‘‘Overview genes by

class/subclass,’’ ‘‘Class selector’’ = ‘‘01 IT-ET Glut,’’ ‘‘Group

by’’ = ‘‘subclass’’). The majority of cells expressing Htr2c RNA

belonged to enriched clusters. Highest prevalence was found

in STR. Similarly to Htr1b, ACB, CP, andOT exhibited the highest

prevalence (Figures 6D–6F). Isocortex prevalence derived from

the unique transcription in excitatory neurons of the ventral

part of the RSP, curiously the area with lowest transcription of

Htr1f, which was otherwise highly prevalent in all other cortical

regions (see interactive visualizer, ‘‘Overview genes by brain

structure,’’ ‘‘Division selector’’ = ‘‘Isocortex,’’ ‘‘Neurotransmitter

selector’’ = ‘‘Tot’’). Htr2a RNA was also minimally expressed in

this specific area. High prevalence was observed also in excit-

atory neurons of the anterior olfactory nucleus (AON), piriform

area and piriform amygdalar area), and amygdala (LA and

BLA). Htr2c RNA was found across a variety of structures also

in the MB (not in Sero neurons), pons (P), medulla (MY), and

cerebellum (CB).

Htr4, Htr6, and Htr7
These receptors are all connected to Gs,17 leading to increasing

cellular levels of cAMP. Htr4 modulation in HPF has been found

to bidirectionally influence memory formation in mice.2 Htr4,

similarly to Htr2c, showed highest prevalence (>40%) in the

MB-HB-Glut-Sero-Dopa and Hy-EA-Glut-Gaba groups (Fig-

ure 7A). Htr4 has been linked to mood control and anxiety.52 It

co-localized the most with Htr2c and Htr1f (Figure 7B). Tran-

scription across classes was broadly distributed, with many
datasets. Inset represents the linear regression between the two datasets. On

lass, ranked in descending order (top ten).

hed clusters found in the scRNA-seq dataset in the MERFISH dataset (right).

riched clusters.

is, identified in the scRNA-seq dataset and cross-referenced in the MERFISH

cross-referenced in the MERFISH dataset.

Border color represents the position on the anteroposterior axis.
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Figure 5. Htr2a transcription

(A) On the left, dotplot representing Htr2a prevalence across neighborhoods with squared Pearson correlation coefficient (R2) between scRNA-seq andMERFISH

datasets. On the right, violin plots representing the amount of Htr2a RNA detected using scRNA-seq (top) and MERFISH (bottom).

(B) Amount of co-localization with each Htr by cells expressing Htr2a RNA in the scRNA-seq dataset (left). Number of Htr RNA detected in cells expressing Htr2a

RNA in the scRNA-seq dataset (right).

(legend continued on next page)
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subcortical classes showing a prevalence >40% (Figure 7C).

Highest prevalence was found in the 17 MH-LH Glut class, spe-

cifically in Chol-releasing neurons belonging to this class located

in TH. In absolute numbers, transcription in excitatory cortical

neurons was the highest, but not overwhelmingly so like in other

cases, driven specifically by subclasses of CA1, CA2, CA3, and

subiculum (see interactive visualizer, ‘‘Overview genes by class/

subclass,’’ ‘‘Class selector’’ = ‘‘01 IT-ET Glut,’’ ‘‘Group by’’ =

‘‘subclass’’). Spatial distribution exhibited a peculiar pattern

with high prevalence in one specific structure of the STR, namely

OT (Figures 7D–7F). A subclass of interneurons present in OT

(060 OT D3 Folh1 Gaba) showed a >98% prevalence (see

interactive visualizer, ‘‘Overview genes by class/subclass,’’

‘‘Class selector’’ = ‘‘09 CNU-LGE GABA,’’ ‘‘Group by’’ = ‘‘sub-

class’’). PAL and HPF also exhibited relatively high prevalence

(z10%). Dentate gyrus (DG) granule cells (037 DG Glut) were

one of the reasons for the high prevalence in HPF. Excitatory

cells of CA2, CA3, and indusium griseum (IG) also transcribed

Htr4 RNA (see interactive visualizer, ‘‘Overview genes by

brain structure,’’ ‘‘Division selector’’ = ‘‘HPF,’’ ‘‘Neurotransmitter

selector’’ = ‘‘Glut’’ vs. ‘‘GABA’’). We do not have MERFISH

information about the rarely transcribed Htr6, and no enriched

cluster was present in the scRNA-seq dataset. The 09 NU-LGE

GABA class exhibited the highest prevalence with 7.73%; still,

the absolute majority of neurons expressing the RNA of this

gene were excitatory cortical neurons (Figure S9C). Conversely,

Htr7 was transcribed in >10% of the totality of cells. It

reached z60% in the TH-EPI Glut group and considerable

amounts (z40%) in MB, HB, and HY groups (Figure 8A). Co-

localization was the highest with Htr2c and Htr1f (Figure 8B).

Transcription was broadly distributed across classes present in

HY, MB, and TH (Figure 8C). It co-localized the most with

Htr2c, Htr1f, and Htr4. Htr7 was broadly transcribed across

classes, especially in subcortical structures. Peak prevalence

was found in 10 LSX GABA, 16 MY MM Glut, and 18 TH Glut

with >60% (Figure 8C). Cortical transcription in excitatory neu-

rons is driven primarily by subclasses in CA2 and L2 ENT (see

interactive visualizer, ‘‘Overview genes by class/subclass,’’

‘‘Class selector’’ = ‘‘01 IT-ET Glut,’’ ‘‘Group by’’ = ‘‘subclass’’).

Htr7 enriched clusters were located mainly in HY and TH (Fig-

ure 8D). At a structure level, the parafascicular nucleus (PF)

and PVT of TH showed the highest prevalence (>30%).

Htr3
The Htr3 family is the only ionotropic Htr, and it causes direct

excitation by allowing the influx of cations. The Htr3a subunit is

required for the formation of a functional channel53 and can

form functional homopentameric receptors.54 Heteromeric re-

ceptors containing Htr3b have an increased channel conduc-

tance and different selectivity.55 Htr3a is transcribed almost

uniquely in the Subpallium-Gaba neighborhood, with a preva-
(C) Prevalence of Htr2a RNA across all classes of cells in scRNA-seq andMERFIS

the right, absolute number of cells expressing Htr2a RNA in the scRNA-seq by c

(D) Ranked prevalence of Htr2a RNA across divisions (left) and structures of enri

Inset represents the proportion of cells expressing Htr2a RNA that belongs to en

(E) (Top) Prevalence of cells from enriched clusters across the anteroposterior ax

dataset. (Bottom) Average amount of RNA expression found in enriched clusters

(F) Expression of Htr2a RNA detected by MERFISH in four representative slices.
lence of z8% (Figure 9A), specifically in the 06 CTX-CGE

GABA class (Figure 9C). It is one of the few Htrs, together with

Htr3b and Htr1d, that is not transcribed the most in absolute

numbers in 01 IT-ET Glut. It co-localizes mainly with Htr2c and

Htr7 (Figure 9B). This Htr was mainly transcribed in OLF, CTXsp,

HPF, and isocortex (Figure 9D) and is most prevalent in the ante-

rior part of the brain, although, puzzlingly, with slightly lower

amount of RNA per cell (Figures 9E and 9F). Htr3b was not

included in the MERFISH dataset, and no cluster was found to

be enriched with this receptor. Htr3b was the least transcribed

Htr gene in the entire scRNA-seq dataset. Similarly to Htr3a, its

transcription was delimited to the 06 CTX-CGE GABA class

(Figure S10C).

DISCUSSION

In this work we have described the main transcriptional features

of each Htr across the entire brain, leveraging two datasets pro-

vided by Yao et al.11 and Zhang et al.12 In the scRNA-seq data-

set, we found that Htrs’ RNA is transcribed in around two out of

every three cells and that six Htrs were transcribed in >10% of

cells, with Htr1f reaching a peak of 34.26%. Htr patterns of tran-

scription can be used to decode the identity of cells grouped by

neurotransmitter, neighborhoods, and classes at a level above

chance. Surprisingly, it was common to detect multiple Htrs

within a single cell. This indicates the great complexity of the

5-HT system even at a cellular level. We can recapitulate our re-

sults regarding each Htr by summarizing the defining feature of

each receptor (Table S3): Htr1a is transcribed in an important

fraction of Sero neurons of the raphe and some HPF excitatory

neurons; Htr1b is transcribed in many inhibitory striatal neurons

and Sero neurons; Htr1d, similarly to Htr1b, is transcribed in the

striatum, although at much lower levels; Htr1f is widely tran-

scribed in telencephalic structures, especially the isocortex,

with a peak in frontal olfactory structures; Htr2a is prevalent in

glutamatergic cells of the cortical subplate (CLA and EPd)

and themammillary bodies (TMd and PMd), and hippocampal in-

terneurons; Htr2b is rarely transcribed and is present in some

neurons of the pineal gland; Htr2c is broadly transcribed, espe-

cially in the STR, excitatory neurons of the amygdala (LA, BLA,

and BMA) and RSPv, OLF neurons, and structures in MB, P,

MY, and CB; Htr3a and Htr3b are uniquely observed in cortical

GABAergic neurons of the 06CTX-CGEGABA class; Htr4 is tran-

scribed at high levels in the OT, excitatory cells of the hippocam-

pus proper andDG, andChol neurons of the TH (17MH-LHGlut);

Htr5a is transcribed at low levels with only one enriched cluster in

the MB; Htr5b is also transcribed only in few cells, specifically in

Chol neurons of the TH; Htr6 does not feature any enriched clus-

ter, and some cells in CA3 transcribed this Htr; Htr7 is widely

transcribed in subcortical structures, especially in some TH

nuclei (PF, PVT, IAD, and PT), the mammillary complex (MM
Hdatasets. Inset represents the linear regression between the two datasets. On

lass, ranked in descending order (top ten).

ched clusters found in the scRNA-seq dataset in the MERFISH dataset (right).

riched clusters.

is, identified in the scRNA-seq dataset and cross-referenced in the MERFISH

cross-referenced in the MERFISH dataset.

Border color represents the position on the anteroposterior axis.
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Figure 6. Htr2c transcription

(A) On the left, dotplot representing Htr2c prevalence across neighborhoods with squared Pearson correlation coefficient (R2) between scRNA-seq andMERFISH

datasets. On the right, violin plots representing the amount of Htr2c RNA detected using scRNA-seq (top) and MERFISH (bottom).

(B) Amount of co-localization with each Htr by cells expressing Htr2c RNA in the scRNA-seq dataset (left). Number of Htr RNA detected in cells expressing Htr2c

RNA in the scRNA-seq dataset (right).

(legend continued on next page)
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and PMd), the lateral septal nucleus (LSv), and the fasciola cin-

erea of the HPF. Our analysis is in no way exhaustive, and it is

limited in scope by the constraints of a traditional scientific

article. To bypass this limitation and, at the same time, provide

the ability to explore the 5-HT transcription landscape at different

depths, we provide a custom interactive visualizer. The visualizer

enables the exploration of: Htr transcription in the MERFISH da-

taset; the prevalence of each Htr across neighborhoods, class,

subclass, supertype, and clusters; an overview of Htr prevalence

across classes and subclasses; and an overview of Htr preva-

lence across all brain divisions and structures optionally filtered

by neurotransmitter release. Our entire analysis pipeline can be

easily modified to enable the exploration of different families of

genes. Instructions are available in the ‘‘data visualizer’’ section

in the experimental procedures. One constraint of our study is

the indirect characterization of Htrs through the detection of

RNA molecules rather than direct assessment of their presence.

However, this potential limitation is mitigated by the fact

that mRNA levels are frequently a reliable indicator of receptor

expression.8 Conversely, while mapping receptors directly

allows for precise localization, it fails to differentiate between

pre- and postsynaptic expression, an important aspect of under-

standing receptor function and distribution. This lack of speci-

ficity becomes particularly problematic, for example in the

context of Sero neurons, which have extensive projections

throughout the brain and exhibit diverse autoreceptors. This

complexity is underscored both in our findings and in previous

research, highlighting the intricate regulatory mechanisms of

5-HT neurotransmission.26,34 Our exploration of the Htr land-

scape represents a substantial advancement, contributing to

our understanding of the 5-HT system’s role in brain function

and behavior.

EXPERIMENTAL PROCEDURES

Data preparation

We loaded the metadata and the precomputed transcription matrices (‘‘exp’’

pandas dataframe) for the scRNA-seq dataset relative to all Htr genes (see

‘‘Load_data/Download_RNAseq_data.ipynb’’). We also loaded the metadata

relative to the ‘‘cluster_group_name’’ (or ‘‘neighborhood’’ in the text) residing

originally in a different .csv file (‘‘Find membership df’’ in ‘‘Figure_1.ipynb’’).

This information is referred to as ‘‘membership.’’ Additionally, we loaded cell

metadata information (‘‘cell’’ dataframe). Each of these data structures are

pandas dataframes that can be easily joined together according to the unique

cell label index (‘‘joined’’ dataframe). A different dataframe containing mem-

bership information is created (‘‘joined_with_membership’’); this is necessary

because some cells are assigned tomultiple ‘‘cluster_group_name’’ and there-

fore cause the duplication of some dataframes’ rows. We used the dataframe

containing ‘‘membership information’’ only to visualize information relative to

‘‘cluster_group_name.’’

The MERFISH dataset was loaded in a similar fashion (see ‘‘Load

dataMERFISH’’ in ‘‘Figure_2.ipynb’’). This dataset is split into four different da-

taframes (‘‘Zhuang-ABCA-1,’’ ‘‘Zhuang-ABCA-2,’’ ‘‘Zhuang-ABCA-3,’’ and

‘‘Zhuang-ABCA-4’’) stored in a dictionary (‘‘cell_expression’’). We concate-
(C) Prevalence of Htr2c RNA across all classes of cells in scRNA-seq andMERFIS

the right, absolute number of cells expressing Htr2c RNA in the scRNA-seq by c

(D) Ranked prevalence of Htr2c RNA across divisions (left) and structures of enri

Inset represents the proportion of cells expressing Htr2c RNA that belongs to en

(E) (Top) Prevalence of cells from enriched clusters across the anteroposterior ax

dataset. (Bottom) Average amount of RNA expression found in enriched clusters

(F) Expression of Htr2c RNA detected by MERFISH in four representative slices.
nated the four dataframes in one data structure called ‘‘data_merfish’’ using

the ‘‘concat()’’ pandas method. Additionally, we used the spatial information

of each cell belonging to the MERFISH dataset for the registration to the Allen

Mouse Brain Common Coordinate Framework (CCF) and, subsequently, we

assigned parcellations labels (‘‘CCF registration and parcellation annotation’’

in ‘‘Figure_2.ipynb’’). The dataframes loaded by both datasets already

included all the clustering labels (class, subclass, supertype, and cluster).

For details about the clustering, see the ‘‘clustering scRNA-seq data’’ section

in Yao et al.11

Overview figure

This figure relies uniquely on the scRNA-seq dataset. In panel A we used a

heatmap to visualize both the amount of transcription per cell and the number

of cells transcribing each Htr contained in the dataset using the ‘‘exp’’ data-

frame. In panel B we used the precomputed UMAP coordinates available in

the ‘‘joined’’ dataframe to create a scatterplot and plotted on the color axis in-

formation about the most transcribed gene per selected family (either Ht1 or

Ht2). In panel C we plotted the percentage of cells transcribing each Htr group-

ed by neurotransmitter release. We take advantage of pandas ‘‘Group by’’

function to concisely perform this computation: after grouping by the selected

variable (in this case ‘‘neurotransmitter’’); we apply a function called ‘‘percen-

tage_above_threshold’’ to compute the percentage of cells within a group

transcribing a gene above a threshold. The ‘‘percentage_above_threshold’’

function is defined within the ‘‘Utils.Utils.py’’ file. The threshold is stored in

the ‘‘Utils.Settings.py’’ file (‘‘threshold_expression’’). The confusion matrix is

computed within the ‘‘decoddddddd’’ function defined in Utils.Utils.py. This

function uses a boolean version of the ‘‘joined’’ dataframe created using the

same threshold (‘‘threshold_expression’’). The dataset containing boolean

values for gene transcription (‘‘joined_boolean’’) was filtered to include col-

umns of interest, specifically a selector column (‘‘sel’’) and a list of selected

genes (‘‘selected_genes’’). The resulting dataframe was indexed by the

selector column, which represented the target variable, while the remaining

columns contained features corresponding to the transcription levels of

various serotonin receptor genes (Htr). In this particular case, the features

for classification were defined as the boolean transcription of the various

5-HT receptor genes, and the target variable was the neurotransmitter type.

A random forest classifier (‘‘RandomForestClassifier’’ from scokit-learn) was

initialized with 200 estimators, a maximum depth of 10, balanced class

weights, and parallel processing across 20 jobs. Linear models such as ‘‘Lo-

gisticRegression’’ and ‘‘LinearDiscriminantAnalysis’’ were found to underper-

fom the random forest classifier (respectively, 0.3768 and 0.249 accuracy vs.

0.385 for the random forest classifier, see ‘‘Test linear models’’ in Figure_1.i-

pynb). Using stratified K-fold cross-validation with 5 (‘‘n_splits’’ set in Utils.

Settings.py) folds, balanced accuracy scores were computed, and the mean

accuracy was reported. Predictions were generated with cross-validation

(‘‘cross_val_predict’’ function in scikit-learn). The performance of the model

was evaluated by comparing the predicted labels with the actual labels. Addi-

tionally, a comprehensive classification report was generated, providing met-

rics such as precision, recall, and F1 score for each class. A confusion matrix,

normalized by the True labels, was also produced to visualize themodel’s clas-

sification performance across different neurotransmitter types. The evaluation

of the model’s performance was performed using scikit-learn’s ‘‘balanced_ac-

curacy_score,’’ ‘‘classification_report,’’ and ‘‘confusion_matrix’’ functions.

SHAP valueswere calculated to interpret the feature importance of the random

forest classifier. An explainer object was created using SHAP’s ‘‘Tree

Explainer,’’ which was specifically designed for tree-based models. The

explainer was initialized with the trained random forest classifier, and the num-

ber of parallel jobs was set to 40 to leverage computational resources effec-

tively. The SHAP values were computed for a sample of the feature set of
Hdatasets. Inset represents the linear regression between the two datasets. On

lass, ranked in descending order (top ten).

ched clusters found in the scRNA-seq dataset in the MERFISH dataset (right).

riched clusters.

is, identified in the scRNA-seq dataset and cross-referenced in the MERFISH

cross-referenced in the MERFISH dataset.

Border color represents the position on the anteroposterior axis.
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Figure 7. Htr4 transcription

(A) On the left, dotplot representing Htr4 prevalence across neighborhoods with squared Pearson correlation coefficient (R2) between scRNA-seq andMERFISH

datasets. On the right, violin plots representing the amount of Htr4 RNA detected using scRNA-seq (top) and MERFISH (bottom).

(B) Amount of co-localization with each Htr by cells expressing Htr4 RNA in the scRNA-seq dataset (left). Number of Htr RNA detected in cells expressing Htr4

RNA in the scRNA-seq dataset (right).

(legend continued on next page)
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10,000 observations based on class weights (‘‘X_sample’’). These values indi-

cate the contribution of each feature to the model’s predictions.

In panel D we plotted the percentage of cells transcribing each Htr grouped

by class label; additional plots related to classification accuracy were

computed following the instructions of the previous panel and are available

as a supplemental figure. In panel E we plotted the correlation between tran-

scription of different Htr genes by using the pandas ‘‘corr()’’ method. To plot

the co-localization data of panel F, a dictionary named ‘‘coexp’’ was initialized

to store the co-localization results. This dictionary would eventually hold the

percentage of co-localization for each pair of genes. A nested loop was em-

ployed to iterate through each pair of selected genes, excluding a placeholder

category labeled ‘‘Any Htr.’’ For each target gene and gene to check, the

following computations were performed. Co-localization calculation: for

each gene pair, the boolean dataframe ‘‘joined_boolean’’ was used to check

whether both genes were transcribed (True) in each sample. This was done us-

ing the ‘‘all(axis=1)’’ method, which returned True for rows where both genes

were transcribed. The sum of these True values indicated the total number

of samples where both genes were co-transcribed. Normalization: This sum

was then normalized by dividing it by the total number of samples where the

target gene was transcribed. This provided the percentage of samples where

the gene pair was co-transcribed relative to the transcription of the target

gene. Storing results: the computed co-localization percentage for each

gene pair was stored in the coexp dictionarywith the gene pair as the key. After

computing the co-localization percentages for all gene pairs, the results were

converted into a pandas dataframe for further analysis and visualization. The

same co-localization was used in the barplots of panel G. For panel H we

aggregated Htr transcription by family. These genes were grouped into four

primary families: Htr1/5, summing the transcription levels of genes Htr1a,

Htr1b, Htr1d, Htr1f, Htr5a, and Htr5b; Htr2, summing the transcription levels

of genes Htr2a, Htr2b, and Htr2c; Htr4/6/7, summing the transcription levels

of genes Htr4, Htr6, and Htr7; and Htr3, summing the transcription levels of

genes Htr3a and Htr3b. These aggregated values were combined with addi-

tional columns representing neuronal classifications (class, subclass, super-

type, and cluster_group_name). The columns of the resulting dataframe

were labeled accordingly, and a new column (‘‘Primary Htr family’’) was added.

This column identified the primary serotonin receptor family for each entry by

determining the family with the highest aggregated transcription.

Receptor figure

This figure relies on both the scRNA-seq andMERFISH datasets. In panel A we

plot both the prevalence and the average amount of transcription of the

selected gene in the two datasets. We excluded from the analysis the ‘‘NN-

IMN-GC’’ neighborhood because of consistently low transcription across all

Htr genes. For the visualization of gene transcription patterns across different

‘‘neighborhoods,’’ we used the Seaborn ‘‘pointplot’’ function to illustrate the

transcription levels of a given gene across various groups. The ‘‘violinplot’’

function was used to create violin plots of amount of transcription per group.

In panel B we used the same co-localization data used in Figure 1F (scRNA-

seq dataset), This barplot is a ‘‘sliced’’ version of that panel focusing on one

receptor at the time. To visualize the number of co-localized genes (barplot

on the right), we utilized a boolean dataframe (‘‘joined_boolean’’) to filter for

selected genes and focus on the transcription status of a particular gene.

We then calculated the sum of True values (indicating gene transcription)

across each row where the specific gene was transcribed. The distribution

of these sums was normalized to obtain the percentage of samples exhibiting

co-transcription of the genes. In panel C, on the left we repeated the same

computation of panel A but using ‘‘class’’ as grouping variable. On the right,

we plotted the raw number of cells transcribing the selected gene across

different classes. We first filtered the ‘‘joined’’ dataframe to include only
(C) Prevalence of Htr4 RNA across all classes of cells in scRNA-seq and MERFISH

the right, absolute number of cells expressing Htr4 RNA in the scRNA-seq by cla

(D) Ranked prevalence of Htr4 RNA across divisions (left) and structures of enriche

represents the proportion of cells expressing Htr4 RNA that belongs to enriched

(E) (Top) Prevalence of cells from enriched clusters across the anteroposterior ax

dataset. (Bottom) Average amount of RNA expression found in enriched clusters

(F) Expression of Htr4 RNA detected by MERFISH in four representative slices. B
rows where the transcription level of a specific gene exceeded a defined

threshold (‘‘threshold_expression’’). We then counted the occurrences of

each class in this filtered dataset. The top ten classes with the highest counts

were selected for visualization. Using Seaborn’s barplot function, we created a

barplot to display the distribution of these classes. The y axis represented the

count of occurrences, while the x axis denoted the different classes. In panel D

we plotted the prevalence of the selected gene in brain regions at two different

hierarchical levels, ‘‘division’’ and ‘‘structure.’’ Here we take advantage of the

high-confidence label integration between the scRNA-seq and MERFISH da-

taset.12 Each cell of the MERFISH dataset is assigned a cell-type label

(‘‘class,’’ ‘‘subclass,’’ ‘‘supertype,’’ and ‘‘cluster’’) from the clustering of the

scRNA-seq.11 To analyze the transcription of specific genes across different

brain regions and neuronal clusters, we utilized a multi-step data-processing

approach. First, we calculated in the scRNA-seq the percentage of cells within

each cluster transcribing the target gene above a defined threshold (‘‘thresh-

old_expression’’), grouping the data by cluster. This allowed us to identify clus-

ters with high gene transcription levels (>70%, ‘‘threshold_enriched_clusters’’

in Utils.Settings.py) in the scRNA-seq. Next, we focused on clusters with sig-

nificant gene transcription, filtering the MERFISH dataset to include only cells

belonging to these enriched clusters. We then computed the prevalence of

cells transcribing the selected gene across different parcellation divisions

and structures. This was done by normalizing the number of cells transcribing

the gene in each division or structure by the total number of cells in that division

or structure, expressed as a percentage. The results were visualized using bar-

plots to illustrate the top ten parcellation divisions and structures with the high-

est gene transcription prevalence. Additionally, we included an inset pie chart

to show the proportion of gene transcription attributable to the enriched clus-

ters relative to the total gene transcription. This pie chart highlighted the contri-

bution of these enriched clusters to the overall transcription of the target gene.

The pie chart showed that in some cases only a minority of cells transcribing a

selected gene belongs to enriched clusters and, in this case, consequentially

the majority of cells will be ignored. To address this problem we include in the

interactive visualizer (‘‘Overview genes by brain structure’’ dashboard), a data

source selector that can switch the algorithm used by the dashboard from

‘‘scRNA-seq+MERFISH’’ (the one described above) to ‘‘MERFISH only.’’

This latter option computes the prevalence using solely the MERFISH dataset

by simply calculating the proportion of cells transcribing the selected genes

across spatial groups. In panel E, we calculated the percentage of cells within

each cluster that expressed the target gene above a defined threshold

(‘‘threshold_expression’’), allowing us to identify clusters with enriched gene

transcription. Next, we focused on cells within these enriched clusters and

calculated the prevalence of the target gene’s transcription across different

brain sections. This was done by normalizing the number of cells transcribing

the gene in each section by the total number of cells in that section, expressed

as a percentage. The results were plotted using a line plot to illustrate the

gene’s prevalence across brain sections. In panel F, to visualize the transcrip-

tion of a specific gene in the top four brain sections, we implemented a function

called ‘‘plot_4_best_sections’’ (in ‘‘Figures/Figure_2.ipynb’’). This function

aimed to identify and plot the sections with the highest gene transcription

levels. For data preparation, we first prepared the dataset by selecting the rele-

vant brain sections and ensuring that unassigned parcellation divisions were

excluded. We merged this dataset with cluster membership information to

provide context for the gene transcription data. For gene transcription calcu-

lation, the percentage of cells within each cluster transcribing the target

gene above a defined threshold was calculated. This allowed us to identify

clusters with enriched gene transcription. For section identification, we calcu-

lated the prevalence of the target gene’s transcription in each brain section.

Using these prevalence values, we identified the top four sections with the

highest gene transcription. Peaks in the transcription data, spaced adequately
datasets. Inset represents the linear regression between the two datasets. On

ss, ranked in descending order (top ten).

d clusters found in the scRNA-seq dataset in theMERFISH dataset (right). Inset

clusters.

is, identified in the scRNA-seq dataset and cross-referenced in the MERFISH

cross-referenced in the MERFISH dataset.

order color represents the position on the anteroposterior axis.
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Figure 8. Htr7 transcription

(A) On the left, dotplot representing Htr7 prevalence across neighborhoods with squared Pearson correlation coefficient (R2) between scRNA-seq andMERFISH

datasets. On the right, violin plots representing the amount of Htr7 RNA detected using scRNA-seq (top) and MERFISH (bottom).

(B) Amount of co-localization with each Htr by cells expressing Htr7 RNA in the scRNA-seq dataset (left). Number of Htr RNA detected in cells expressing Htr7

RNA in the scRNA-seq dataset (right).

(legend continued on next page)
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apart, were determined using the ‘‘find_peaks’’ function from scipy. The top

four peaks were selected for visualization. For plotting, the gene transcription

data were plotted for each of the top four sections. The ‘‘plot_slice’’ function

was used to generate the plots for each section, and the border color of

each subplot was set to match the assigned color for the respective section.

The final figure comprised four subplots, each representing one of the top

four brain sections with the highest gene transcription levels, providing a clear

and comparative visualization of the gene transcription patterns across these

key sections.

Data visualizer

The visualizer was built in Python using Matplotlib, Holoviews, and Panel li-

braries. It is available as a jupyter notebook (‘‘Figures/Interactive_vizs.ipynb’’)

and online (https://rdef654875678597657-5-ht-transcriptomics.hf.space).

The jupyter notebook can be used locally by following the installation instruc-

tions available in https://github.com/RobertoDF/Transcriptomics-5-HT. The

visualizer is deployed and accessible online on the Hugging Face portal. It is

organized into four different dashboards: ‘‘Spatial MERFISH,’’ ‘‘Gene by

class/subclass/supertype/cluster,’’ ‘‘Overview genes by class,’’ and ‘‘Over-

view genes by brain structure.’’ ‘‘Spatial MERFISH’’ and ‘‘Overview genes by

brain structure’’ are associated with the MERFISH dataset, and remaining

tabs are associated with the scRNA-seq dataset. Each dashboard’s data

source is annotated in the title. ‘‘Spatial MERFISH’’: five interactive controls

enable the selections of different datasets from Zhang et al.,12 namely brain

section, gene, class, and subclass. The datasets available are two coronal

(Zhuang-ABCA-1/2) and two sagittal (Zhuang-ABCA-3/4). The controls allow

visualization of different slices, specific genes, and selected groups. The dash-

board includes six panels: (1) line plot representing the proportion of cells

selected across the spatial axis associated to each dataset, (2) line plot repre-

senting the amount of transcription across space of the selected gene, (3) line

plot representing the percentage of cells across space in which RNA of the

selected gene was detected (threshold set at 0.3), (4) barplot representing

the percentage of Htr-positive cells in the selected slice grouped by brain

structure (number in each bar is the absolute number of cells), and (5 and 6)

slice selected with gene transcription (left) and atlas metadata (right). ‘‘Gene

by class/subclass/supertype/cluster’’: this dashboard has two interactive con-

trols for selecting neighborhood group and gene. For each class of neurons,

three levels of visualization are provided: (1) violin plots, gene prevalence by

subclass; (2) violin plots, prevalence by supertype; and (3) barplots, prevalence

by cluster. ‘‘Overview genes by class’’: this dashboard includes four interactive

controls for selecting class, subclass, type of grouping, and sorting. The plot

can be grouped at different clustering depths: classes, subclasses, super-

types, and even individual clusters (the number of groups that can visualized

at the same time is limited by the maximum recursion depth of Holoviews).

The plot can be sorted by the group’s alphabetical name or gene transcription.

Gene prevalence is represented with a heatmap in which the color bar is up-

dated according to the limits of the current selection. The y axis is populated

by the name of the groups selected by the ‘‘Group by’’ selector. The x axis

shows each Htr. ‘‘Overview genes by brain structure’’: this dashboard includes

four interactive controls for selecting data source, division, neurotransmitter,

and sorting. Gene prevalence is represented with a heatmap in which the color

bar is updated according to the limits of the current selection. Gene prevalence

is limited to cluster enriched in the according gene (prevalencewithin cluster of

the gene >70%). The y axis is populated by the brain structures belonging to

the currently selected brain division. For each division, we can refine our selec-

tion by isolating neurons releasing a specific neurotransmitter. The x axis

shows each Htr. First, enriched clusters in the scRNA-seq dataset are identi-

fied, and the proportion of cells belonging to enriched clusters over the total

number of cells per region is then analyzed. To handle cases where most cells
(C) Prevalence of Htr7 RNA across all classes of cells in scRNA-seq and MERFISH

the right, absolute number of cells expressing Htr7 RNA in the scRNA-seq by cla

(D) Ranked prevalence of Htr7 RNA across divisions (left) and structures of enriche

represents the proportion of cells expressing Htr7 RNA that belongs to enriched

(E) (Top) Prevalence of cells from enriched clusters across the anteroposterior ax

dataset. (Bottom) Average amount of RNA expression found in enriched clusters

(F) Expression of Htr7 RNA detected by MERFISH in four representative slices. B
do not belong to enriched clusters and are ignored, a ‘‘Data source selector’’ is

used to bypass scRNA-seq data and MERFISH data used directly. In this case

we look directly at the ratio of cells transcribing each gene over the total num-

ber of cells per region.
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Data and code availability

The entire analysis is hosted on Github at https://github.com/RobertoDF/

Transcriptomics-5-HT and https://doi.org/10.6084/m9.figshare.26325505.56

For data analysis and visualization we employed mainly pandas, numpy, Mat-

plotlib, scikit-learn, Panel, Holoviews, and Seaborn Python libraries. Within the

‘‘Figures’’ folder, ‘‘Figure_1.ipynb’’ and ‘‘Figure_2.ipynb’’ notebooks reproduce

all figures contained in the paper. All parameters relative to the analysis are con-

tained in Utils.Settings.py. Data are downloaded following the instructions pro-

vided by the Allen Institute (# point to your aws installation, see https://github.

com/AllenInstitute/abc_atlas_access/blob/ecd803247b2c2dfa3ce2297880c9

cfbf8c79cfab/notebooks/getting_started.ipynb); notebooks to download the

scRNA-seq and MERFISH datasets are contained in the ‘‘Load_Data’’ folder.

To explore the transcription of different genes, it is necessary to download the

associated transcriptionmatrices by changing the selected genes in the ‘‘Down-

load_RNAseq_data.ipynb’’ notebook; this can be achieved by modifying the

cells underneath the headings ‘‘Select genes scRNA-seq’’ and ‘‘Select genes

MERFISH.’’ It is also necessary to change the ‘‘family_name’’ and ‘‘genes_fami-

lies’’ variables in Utils.Settings.py file.
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Figure 9. Htr3a transcription

(A) On the left, dotplot representing Htr3a prevalence across neighborhoods with squared Pearson correlation coefficient (R2) between scRNA-seq andMERFISH

datasets. On the right, violin plots representing the amount of Htr3a RNA detected using scRNA-seq (top) and MERFISH (bottom).

(B) Amount of co-localization with each Htr by cells expressing Htr3a RNA in the scRNA-seq dataset (left). Number of Htr RNA detected in cells expressing Htr3a

RNA in the scRNA-seq dataset (right).

(legend continued on next page)
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7. Marin, P., Bécamel, C., Chaumont-Dubel, S., Vandermoere, F., Bockaert,

J., and Claeysen, S. (2020). Chapter 5 - Classification and signaling char-

acteristics of 5-HT receptors: toward the concept of 5-HT receptosomes.

In Handbook of Behavioral Neuroscience, C.P. M€uller and K.A.

Cunningham, eds. (Elsevier), pp. 91–120. https://doi.org/10.1016/B978-

0-444-64125-0.00005-0.
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