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ORIGINAL COMMUNICATION
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Abstract
Background Optic neuritis (ON) is a common manifestation of multiple sclerosis (MS) and myelin-oligodendrocyte-
glycoprotein IgG-associated disease (MOGAD). This study evaluated the applicability of optical coherence tomography 
(OCT) for differentiating between both diseases in two independent cohorts.
Methods One hundred sixty two patients from seven sites underwent standard OCT and high-contrast visual acuity (HCVA) 
testing at least 6 months after first ON. Of these, 100 patients (32 MOGAD, 68 MS) comprised the primary investigational 
cohort, while 62 patients (31 MOGAD, 31 MS) formed a validation cohort. A composite score distinguishing between 
MOGAD and MS was developed using multivariate logistic regression.
Results Bilateral simultaneous ON occurred more frequently in MOGAD compared to MS (46.9 vs. 11.8%, p < 0.001). OCT 
revealed more peripapillary retinal nerve fiber layer (pRNFL) atrophy in all segments in MOGAD compared to predominantly 
temporal pRNFL atrophy in MS (p < 0.001). HCVA was better preserved in MS (p = 0.007). pRNFL thickness in all except 
for temporal segments was suitable for differentiating MOGAD and MS. Simultaneous bilateral ON and critical atrophy in 
nasal (< 58.5 µm) and temporal superior (< 105.5 µm) segments were included into the composite score as three independent 
predictors for MOGAD. The composite score distinguished MOGAD from MS with 75% sensitivity and 90% specificity in 
the investigational cohort, and 68% sensitivity and 87% specificity in the validation cohort.
Conclusion Following a single ON-episode, MOGAD exhibits more pronounced global pRNFL atrophy and lower visual 
acuity after ON compared to MS. The introduced OCT-based composite score enabled differentiation between the two 
entities across both cohorts.

Keywords Optical coherence tomography · Optic neuritis · Visual evoked potential · Myelin-oligodendrocyte-glycoprotein 
IgG · Myelin oligodendrocyte glycoprotein IgG-associated disease · Multiple sclerosis

Introduction

Optic neuritis (ON) is one of the major manifestations 
of multiple sclerosis (MS) and myelin-oligodendrocyte 
glycoprotein (MOG) immunoglobulin G-associated disease 
(MOGAD) [1–3]. Approximately 70% of MS and 54–61% 
of MOGAD patients experience ON during the course of 
their disease [1, 2]. MOGAD can be monophasic, still in 
50% of patients relapses can be observed [4, 5]. Relapsing 
ON may substantially influence the clinical outcome, 
although MOGAD patients usually show a good visual 

recovery after ON [6]. Bilateral ON manifestation occurs 
more frequently in MOGAD patients in comparison to MS 
patients [2, 5]. Due to the overlapping clinical manifestations 
distinguishing between the two entities can be challenging. 
Banwell et al. proposed diagnostic criteria for MOGAD 
recommending that MS must be excluded to diagnose 
MOGAD [3]. A correct diagnosis is of high importance 
as the pathophysiological mechanisms differ and classical 
MS drugs may be ineffective or even worsen the course of 
MOGAD [7].

The presence of conformation-dependent autoantibodies 
against MOG is one of the main requirements for fulfillment 
of the MOGAD diagnostic criteria [3, 7, 8]. However, 
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borderline serum titers of MOG-immunoglobulin G (IgG) 
have a low-positive predictive value and can be found in 
other neurologic diseases, including MS. Seroreversion may 
occur in the first months after MOGAD onset [8, 9]. Several 
groups recently reported presence of isolated MOG-IgA in 
serum or isolated intrathecal production of MOG-IgG in 
12–13% patients, accordingly requiring specific tests or 
invasive diagnostic procedures [10–12]. Considering the 
limitations and the unavailability of appropriate live cell-
based assays (CBA) for MOG-IgG in many countries, an 
additional paraclinical diagnostic marker for MOGAD may 
be useful in daily clinical practice, especially in case of 
borderline serum titer of MOG-IgG.

Optical coherence tomography (OCT) allows precise 
assessment of retinal neuroaxonal atrophy. Although peri-
papillary retinal nerve fiber layer (pRNFL) thickening is 
sensitive in differentiating MOGAD and MS during the 
acute ON, there are only a few studies evaluating diagnostic 
accuracy of OCT in the chronic ON stage in adult patients 
after the first ON episode [13, 14]. Preliminary results from 
a small pediatric cohort, published by our group previously, 
suggested different atrophy patterns in MS and MOGAD 
[15].

Main objectives of this study were: (1) to examine the 
distinct pattern of retinal neuroaxonal atrophy in MOGAD 
and MS, (2) to analyze the sensitivity and specificity of 
OCT in distinguishing between MOGAD and MS, and (3) 

to compare visual outcomes in both diseases after the first 
ON episode.

Subjects and methods

We conducted a multicenter, retrospective cross-sectional 
study, comparing clinical and OCT data of MOGAD 
and MS patients after a single ON episode, fulfilling the 
following inclusion criteria: (1) MOG-IgG positive status 
(> 1:100 in fixed or > 1:320 in live CBA) or diagnosis 
of MS according to McDonald criteria 2017 [16]; (2) 
age at first ON episode > 18 years; (3) OCT and HCVA 
examinations were performed at least 6 months after the 
first ON episode. The exclusion criteria for this study 
were: (1) patients with concomitant ophthalmological 
diseases; (2) patients seropositive for aquaporin-4 IgG; (3) 
recurrent ON before enrollment. The investigational cohort 
was recruited between 2018 and 2022 at six university 
tertiary care centers specialized in neuroimmunology 
(Munich, Düsseldorf, Vienna, Basel, Berlin, Bochum, 
Fig. 1, study participants). After the MOGAD Banwell 
criteria were published we re-evaluated clinical data 
of included patients in the investigational cohort. The 
majority (85%) fulfilled the new diagnostic criteria, 
while data was insufficient or missing for 15% of the 
patients. The validation cohort was recruited in 2023 at 
five university tertiary care centers (Munich, Düsseldorf, 

Fig. 1  Flow chart of patients included in the investigational cohort. 
We included 100 MOGAD or MS patients after the first ON episode 
who were identified in the participating centers. Depending on the 

diagnosis the patients were divided into two groups: group (1) 32 
MOG-IgG-patients with initial manifestation > 18 years and group (2) 
68 MS patients with initial manifestation > 18 years
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Marseille, Berlin, Bochum). During the initial workup 
patients´ serum samples were tested for MOG-IgG and 
aquaporin4-IgG at least once by established CBA at the 
discretion of each center using the laboratories´ cut-offs 
(MOG IFT, EUROIMMUN, Laboratory Prof. Stöcker, 
Germany; Laboratory Prof. Reindl, Medical University of 
Innsbruck, Innsbruck, Austria; Laboratory Prof. Meinl, 
LMU Hospital, Munich, Germany) [7, 17].

We acquired demographic and clinical data for all 
MOGAD and MS patients. Diagnosis of unilateral or bilat-
eral ON manifestation were based on the clinical history. In 
addition, we obtained monocular high contrast visual acuity 
(HCVA) using standardized retro-illuminated Sloan letter 
charts (maximum: 70 letters). HCVA data is only available 
for the investigational cohort. Ethics approval was obtained 
in the participating centers respectively. All patients gave 
written informed consent for scientific analysis. The study 
was conducted according to the Declaration of Helsinki 
(1964) in its currently applicable version.

Optical coherence tomography (OCT)

Spectral-domain optical coherence tomography (SD-OCT, 
SPECTRALIS, Heidelberg Engineering, Heidelberg, Ger-
many) with automatic real-time (ART) averaging was 
uniformly utilized across all participating centers. A ring 
scan of the optic nerve head with an activated eye tracker 
(12°, 3,5 mm ring, 50 ≤ ART ≤ 100) and a macular volume 
scan (20° × 20°, 25 vertical B-scans, 20 ≤ ART ≤ 49) with 
a grid as a fovea-centered cylinder of 3 mm diameter were 
conducted based on local protocols. The pRNFL thickness 
and the volumes of the macular retinal nerve fiber layer 
(mRNFL), the combined ganglion cell and inner plexiform 
layer (GCIP), the inner nuclear layer (INL), the combined 
outer plexiform and outer nuclear layer (ONPL) and the total 
macular volume (TMV) were included in the analysis. The 
segmentation of all layers was conducted semi-automatically 
using the software of the SD-OCT manufacturer [Heidel-
berg Eye Explorer (HEYEX) 1.9.10.0 with viewing module 
6.3.4.0, Heidelberg Engineering, Heidelberg, Germany]. 
Experienced evaluators carefully checked all scans for suf-
ficient quality as well as segmentation errors, which were 
corrected manually if necessary. The SD-OCT data were 
analyzed and reported according to the recommendations 
of APOSTEL2.0 and OSCAR-IB [18, 19].

Statistical methods

Clinical, OCT, and HCVA data were compared between 
MOGAD and  MS. For continuous variables mean and 
standard deviation (SD) were calculated, for categorical 
variables frequency and proportion. The non-parametric 
Mann-Whitney-U-Test and Chi-Square-Test were used 

to compare two independent groups. Statistical signifi-
cance was defined as p < 0.05. We outlined frequencies 
of significant atrophy in different pRNFL quadrants to 
illustrate the pattern of retinal changes after a single ON. 
We also reported frequencies of severe atrophy in differ-
ent pRNFL segments and macular sectors in both groups, 
defined as a decrease of two SDs below the mean reported 
by Heidelberg Engineering based on data from healthy 
controls, compared to the standard values of Heidelberg 
Engineering. OCT and HCVA data in ON eyes were com-
pared between the MOGAD and MS cohorts using gen-
eralized estimating equation models (GEE) to account 
for within-patient inter-eye correlations. The correlation-
matrix parameter was set to “exchangeable”. Statistically 
significantly different (p < 0.05) parameters were further 
included into Receiver Operating Characteristic (ROC) 
analysis to determine their sensitivity and specificity in 
differentiating MOGAD from MS. Independent param-
eters with an area under the curve (AUC) > 0.7 were 
reported and considered as suitable parameters to dif-
ferentiate between the two entities. To determine optimal 
cut-off values, we used the Youden index. To formulate a 
clinically relevant composite score, a multivariate logistic 
regression model was fitted, incorporating age, sex, and 
the most appropriate clinical and OCT-parameters for 
distinguishing between MOGAD-ON and MS-ON. The 
model was reduced based on Akaike information criterion 
with a stepwise selection of variables. Data were analyzed 
with SPSS version 29 (IBM SPSS Statistics) and Statics 
in R. We used STROBE cross sectional reporting guide-
lines to report the study data [20].

Results

Investigational cohort

Thirty-two MOGAD [female:male 19:13, age at ON 
(mean ± SD: 35.3 ± 11.7  years), 47 ON eyes] and 
68 MS [female: male 52:16, age at ON (mean ± SD 
33.1 ± 10.9 years), 76 ON eyes] patients with a history of a 
single unilateral or bilateral ON episode were included in the 
investigational cohort. The main demographic and clinical 
data of both groups are summarized in Table 1. All MOGAD 
patients were  tested negative for cerebrospinal fluid-
specific oligoclonal bands (OCB), and serum aquaporin-4 
IgG. All patients in the MS cohort presented cerebrospinal 
fluid-specific OCBs. The age at ON and disease duration 
were comparable between both groups. ON was the initial 
disease manifestation in 71.8% of MOGAD and 57.4% of 
MS patients. Simultaneous bilateral ON was more prevalent 
in MOGAD compared to MS patients (46.9 vs. 11.8%, 
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p < 0.001). Nine MOGAD-ON (19.1%) and two MS-ON 
(2.6%) required plasma exchange due to steroid refractory 
ON (p = 0.004). HCVA was significantly lower in MOGAD 
compared to MS at least six months after ON manifestation 
(49.2 ± 14.4 vs. 54.2 ± 11.4 letters, p = 0.007). A long-term 
immunotherapy was administered in 20 of 32 (62.5%) of 
MOGAD and 50 of 68 (73.5%) of MS patients.

Peripapillary and macular retinal atrophy patterns 
in MOGAD and MS

The OCT measures and prevalence of pRNFL-atrophy are 
outlined in Table 2 and Fig. 2. We observed a substantial 
difference in the patterns of peripapillary retinal axonal 
degeneration between MOGAD-ON and MS-ON eyes in 

Table 1  Demographic and main clinical characteristics of MOGAD and MS patients

MOGAD myelin-oligodendrocyte glycoprotein IgG-associated disease, MS multiple sclerosis, ON optic neuritis, OCB oligoclonal bands, HCVA 
high contrast visual acuity, SD standard deviation, significant results p < 0.05 are indicated in bold letters

Investigational cohort Validation cohort

MOGAD (n = 32) MS (n = 68) p value MOGAD (n = 31) MS (n = 31) p value

Age at ON in years, mean ± SD 35.3 ± 11.7 33.1 ± 10.9 0.160 38.6 ± 15.9 36.6 ± 12.5 0.578
Females, n (%) 19 (59.4%) 52 (76.5%) 0.013 19 (61.3%) 19 (61.3%) 1
Time interval ON onset and OCT examination in 

months, mean ± SD
24.3 ± 28.9 30.2 ± 24.5 0.014 71.8 ± 236.9 41.9 ± 48.6 0.072

Disease duration (in years), mean ± SD 3.7 ± 4.4 4.9 ± 14.7 0.742 – – –
Patients with simultaneous bilateral ON, n (%) 15 (46.9%) 8 (11.8%) < 0.001 14 (45.2%) 1 (3.2%) 0.001
Total ON eyes, n (%) 47 (73.4%) 76 (55.9%) 0.017 45 (72.6%) 32 (51.6%) 0.28
Positive OCB, n (%) 0 (0%) 68 (100%) – – – –
HCVA, number of correctly stated letters, mean ± SD 49.2 ± 14.4 54.2 ± 11.4 0.007 – – –

Table 2  OCT measures after a single ON in MOGAD and MS (investigational cohort)

The table compares the mean pRNFL thickness as well as the prevalence of severe pRNFL-atrophy in MOGAD and MS after a single ON
MOGAD myelin-oligodendrocyte-glycoprotein IgG-associated disease, MS multiple sclerosis, ON optic neuritis, MOGAD-ON MOGAD 
patient’s eyes with a history of ON, MS-ON MS patient’s eyes with a history of ON, pRNFL peripapillary retinal nerve fiber layer (G global, T 
temporal, TS temporal superior, TI temporal inferior, N nasal, NS nasal superior, NI nasal inferior, PMB papillomacular bundle, N/T nasal/tem-
poral ratio), TMV total macular volume, mRNFL macular retinal nerve fiber layer, mGCIP macular ganglion cell and inner plexiform layer, mINL 
macular inner nuclear layer, mONPL macular outer plexiform and outer nuclear layer. pRNFL thickness in µm and macular volumes in  mm3. p 
value: significant results p < 0.05 are indicated in bold letters

Parameter MOGAD ON-eyes 
(N = 47, mean ± SD)

MS ON-
eyes (N = 76, 
mean ± SD)

MOGAD vs. 
MS, p value

Cut-off value (mean-2 SD) MOGADON-eyes 
(N = 47,
number of eyes 
with severe atro-
phy)

MS 
ON-eyes (N = 76,
number of eyes 
with severe atro-
phy)

G pRNFL 70.5 ± 18.9 86.1 ± 14.7 < 0.001 80.6 µm 34 (72.3%) 24 (31.6%)
T pRNFL 48.7 ± 15.2 55.6 ± 13.8 0.031 50.9 µm 28 (59.6%) 22 (28.9%)
TS pRNFL 102.1 ± 27.5 121.1 ± 21.8 < 0.001 88.8 µm 22 (46.8%) 7 (9.2%)
TI pRNFL 103.5 ± 28.3 126.0 ± 27.2 < 0.001 115 µm 32 (68.1%) 23 (30.3%)
N pRNFL 50.8 ± 16.1 65.1 ± 13.9 < 0.001 56.5 µm 29 (61.7%) 20 (26.3%)
NS pRNFL 77.3 ± 25.9 100.2 ± 20.0 < 0.001 67.2 µm 19 (40.4%) 3 (3.9%)
NI pRNFL 82.9 ± 32.8 103.0 ± 26.2 0.002 66.5 µm 21 (44.7%) 7 (9.2%)
PMB 39.4 ± 11.3 42.3 ± 11.4 0.232 44.6 µm 33 (70.2%) 40 (52.6%)
N/T Ratio 1.06 ± 0.32 1.2 ± 0.4 0.006 0.56 < x < 1.36 8 (17.0%) 24 (31.6%)
TMV 3 mm 2.15 ± 0.21 2.25 ± 0.12 0.015
mRNFL
3 mm

0.13 ± 0.02 0.14 ± 0.02 0.033

GCIP 3 mm 0.46 ± 0.11 0.51 ± 0.1 0.018
INL 3 mm 0.27 ± 0.03 0.27 ± 0.02 0.409
ONPL 3 mm 0.74 ± 0.05 0.75 ± 0.04 0.360
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the chronic stage. There was a notably more pronounced 
global and segmental atrophy in MOGAD-ON, 
while MS-ON demonstrated predominantly temporal 
moderate pRNFL thinning. The pRNFL thickness in the 
papillomacular bundle (PMB) was comparable between 
groups. The prevalence of severe pRNFL atrophy, when 
compared to normal range data reported by Heidelberg 
Engineering, were significantly different both globally 
(MOGAD: 72.3% vs. MS: 31.6%) as well as in all 
segments. In addition, there was a more pronounced 
reduction in the thickness of the macular RNFL and GCIP 
in MOGAD-ON compared to MS-ON eyes (mRNFL: 
p = 0.033, GCIP: p = 0.018, Table 2).

Composite score enables differentiation 
between MOGAD and MS

All independent OCT-parameters that showed significant 
differences between groups were included in the ROC anal-
ysis. In addition, we considered bilateral eye involvement 
as a highly relevant clinical parameter. Comparison of all 
ON-eyes revealed that all pRNFL segments except for the 
temporal segment enabled the distinction of MOGAD from 
MS (AUC > 0.7). Neither the macular layers nor visual acu-
ity allowed differentiation between the groups.

In a more in-depth analysis, we included only one 
ON-eye per patient, choosing the eye with the more severe 

Fig. 2  Exemplary OCT ringscans and prevalence of pathological 
results in MOGAD and MS patients. Exemplary OCT ringscans 
show the typical atrophy patterns in MOGAD and MS patients after 
ON with a predominantly temporal pRNFL thinning in MS patients 
compared to the global retinal atrophy in MOGAD patients. The 

prevalence of pathological results, two standard deviations below the 
mean based on the data from healthy cohorts reported by Heidelberg 
Engineering, is visually represented in the figure for MOGAD-ON (in 
red letters) and MS-ON (in green letters)

Table 3  Sensitivity and specificity of pRNFL parameters in distinguishing MOGAD-ON and MS-ON eyes (investigational cohort)

Only parameters with AUC > 0.700 were considered as suitable parameters which are listed in the table. Parameters with the highest sensitivity 
and specificity are indicated in bold letters. Only one ON-eye per patient was included in the subgroup analysis. In case of bilateral ON, the ON 
eye with the worse global pRNFL atrophy was chosen
MOGAD myelin-oligodendrocyte-glycoprotein -antibody-associated disease, MS multiple sclerosis, ON optic neuritis, MOGAD-ON MOGAD 
patient’s eyes with a history of ON, MS-ON MS patient’s eyes with a history of ON, pRNFL peripapillary retinal nerve fiber layer (G global, TS 
temporal superior, TI temporal inferior, N nasal, NS nasal superior, NI nasal inferior), AUC  area under the curve. pRNFL thickness in µm

Parameter/segment All ON eyes One eye per patient

AUC Cut-off Sensitivity for 
MOGAD vs. MS

Specificity for 
MOGAD vs. MS

AUC Cut-off Sensitivity for 
MOGAD vs. MS

Specificity for 
MOGAD vs. MS

pRNFL G 0.740 75.6 µm 66.0% 78.9% 0.781 75.6 µm 71.9% 80.9%
pRNFL N 0.746 58.5 µm 68.1% 73.7% 0.787 58.5 µm 75.0% 73.5%
pRNFL NS 0.759 78.0 µm 59.6% 86.8% 0.763 78.0 µm 56.3% 89.7%
pRNFL NI 0.706 73.0 µm 53.2% 88.2% 0.741 73.0 µm 59.4% 89.7%
pRNFL TS 0.706 105.5 µm 61.7% 82.9% 0.759 105.5 µm 68.8% 83.8%
pRNFL TI 0.718 114.5 µm 68.1% 71.1% 0.767 114.5 µm 75.0% 70.6%
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global pRNFL atrophy in case of bilateral involvement. 
This refinement resulted in increased AUC-values, 
sensitivity, and specificity accordingly (s. Table 3).

To achieve the highest diagnostic accuracy, we built a 
composite score, based on the logistic regression model 
including sex, age at ON, bilateral ON (yes/no) and 
critical pRNFL atrophy (yes/no, s. Table 3 for cut-offs) 
for the temporal superior, temporal inferior, nasal superior, 
nasal and nasal inferior segments in one eye per patient. 
Atrophy in nasal and temporal superior segments as well 
as bilateral involvement were three independent predictors 
(s. Figure 3c). The composite score enabled distinguishing 
MOGAD and MS patients with a higher accuracy in 
comparison to the individual segments (AUC = 0.866) 
reaching a sensitivity of 75% and a specificity of 89.7% 
(s. Figure 3f). To construct a simplified score for clinical 
use we rounded the linear estimates from the regression 
model without relevant effect on the performance and 
established a score ranging from 0 to 5 (s. Table 4). The 
positive predictive value of the simplified score was 80%.

Fig. 3  pRNFL thickness and precise composite score in 
MOGAD-ON and MS-ON. Figure 3 consists of diagrams, visualizing 
the distribution of A temporal superior pRNFL thickness B nasal 
pRNFL thickness in MOGAD-ON and MS-ON. Further the figure 

shows C the formula for the precise composite score, the ROC curves 
with the cut-offs for D pRNFL TS, E pRNFL N and F the precise 
composite score

Table 4  Sensitivity and specificity of the simplified composite score 
in distinguishing MOGAD-ON and MS-ON patients

Composite score, consisting of the three strongest parameters (bilat-
eral ON, pRNFL atrophy in temporal superior and nasal segments), 
enables differentiation between MOGAD and MS patients with a sin-
gle ON episode with high accuracy. Bilateral ON and temporal supe-
rior pRNFL thickness below 105.5 µm each equal two points. Nasal 
pRNFL thickness below 58.5 µm equals one point. Only one ON-eye 
per patient was included in the sub analysis. In case of bilateral ON, 
the ON eye with the higher global atrophy was included, most suit-
able cut-off indicated in bold letters

Investigational cohort Validation cohort

Cut-off Sensitivity Specificity Sensitivity Specificity

≥ 0 100% 0% 100% 0%
≥ 1 90.6% 58.8% 83.9% 54.8%
≥ 2 87.5% 75% 74.2% 71.0%
≥ 3 75% 89.7% 67.7% 87.1%
≥ 4 28.1% 97.1% 32.3% 100%
5 25.0% 97.1% 25.8% 100%
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Validation of the composite score in an independent 
cohort

In an independent validation cohort we included 31 
MOGAD patients (female:male 19:12) with 45 ON eyes 
and 31 MS patients (female:male 19:12) with 32 ON eyes 
(s. Table 1). The mean age at ON in MOGAD patients 
was 38.6 ± 15.9 years, whereas in MS patients the mean 
age at ON was 36.6 ± 12.5 years (p = 0.578). Bilateral ON 
occurred more frequently in MOGAD than MS (MOGAD: 
45.2% of and MS: 3.2%, p < 0.001). The time interval 
between ON and OCT was not significantly different with 
71.78 ± 236.9 months in MOGAD and 41.9 ± 48.6 months 
in MS patients (p = 0.072). The accuracy of the precise com-
posite score could be confirmed in the validation cohort at a 
cut-off of 0.2 with 67.7% sensitivity and 87.1% specificity. 
In a simplified composite score we could also demonstrate 
a sensitivity of 67.7% as well as specificity of 87.1% for a 
cut-off of 3 points (s. Table 4).

Discussion

In this study, we compared retinal atrophy patterns and vis-
ual outcomes at least 6 months after the first ON episode in 
MOGAD and MS patients and evaluated the accuracy of 
OCT in distinguishing between both diseases. Similar to pre-
vious studies bilateral ON occurred significantly more often 
in MOGAD compared to MS patients (MOGAD 44–51% 
vs. MS 3–11%) [7–10, 21, 22]. The visual outcome was sig-
nificantly better in MS than in MOGAD. In contrast, Akai-
shi et al. demonstrated that MOGAD- and MS-ON result in 
comparable visual acuity at nadir, 1 year as well as 5 years 
after ON [23]. The depicted difference can be probably 
explained by the different ethnic composition and substan-
tially smaller sample size in the Japanese study. MOGAD 
patients showed significantly more pronounced global 
pRNFL atrophy compared to a typical moderate predomi-
nantly temporal retinal thinning of MS patients [24–30]. 
The RNFL thickness of all peripapillary segments was also 
lower in the MOGAD cohort. The detected differences in 
atrophy patterns can be explained by the different underly-
ing mechanisms of both conditions. Primary CD8 + T-cell 
modulated inflammation, involving only short segments of 
the optic nerve, occurs in MS [5, 31]. Presumed secondary 
mitochondrial dysfunction and predominant demyelination 
of the most energy-dependent temporal fibers with a high 
firing rate may contribute to the foremost temporal retinal 
thinning. Especially smaller and thinly myelinated parvocel-
lular axons of the PMB are known to be more vulnerable to 
oxidative stress in MS [25, 32, 33]. In contrast, an acute pri-
mary MOG-IgG/CD4 + T-cells-related longitudinal inflam-
mation of the distal optic nerve causes a global perineural 

contrast enhancement with papilledema and equal affection 
of all ON fibers in MOGAD [14, 34, 35].

In contrast to pRNFL, the macular scan revealed only 
moderate differences in mRNFL and GCIP, not allowing 
differentiation between both conditions with sufficient accu-
racy, which corresponds well with observations made in an 
Australian cohort [31]. The active involvement of temporal 
pRNFL fibers in both diseases explains only moderate differ-
ences in macular atrophy in these conditions. Severe macular 
atrophy, demonstrated in some previous studies in MOGAD, 
is probably associated with a higher number of consecutive 
ON episodes [36].

The most striking and practically relevant result of our 
study is the composite score, consisting of the three follow-
ing most suitable parameters: bilaterality of ON, temporal 
superior and nasal pRNFL thickness. The score allows the 
differentiation between MOGAD-ON and MS-ON with a 
75% sensitivity and nearly 90% specificity. The score can 
be applied as a quick diagnostic tool, easy to perform in 
daily clinical practice. The accuracy of the score could be 
confirmed in an independent validation cohort. Compared 
to a previous study, demonstrating OCT-based differentia-
tion between MOGAD and MS in the short acute phase 
(< 2 weeks after onset), our score can be used to distinguish 
between both entities in a chronic disease phase. As an 
additional paraclinical diagnostic marker it can be useful in 
selection of patients with ON in the history for MOG-IgG 
testing. Further studies are needed to evaluate diagnostic 
relevance of this score in differentiation between MOGAD 
and MS patients with a borderline serum MOG-IgG titer.

Our study has several limitations. We performed a retro-
spective analysis, therefore selection and reporting biases 
regarding ON and disease history cannot be excluded. Dif-
ferences in disease duration between the investigational and 
validation cohorts is due to the rarity of MOGAD. Data on 
visual outcomes were available in the investigational cohort 
only and sample size were limited. Despite being able to dif-
ferentiate between MOGAD and MS, this score is not help-
ful in distinguishing MOGAD-ON from other types of ON, 
including AQP4-IgG positive ON. The study was conducted 
before the MOGAD criteria were published; however, we 
were able to re-evaluate 85% of the patients, all of whom 
tested positive.

Conclusion

In the current study, we report a markedly more pronounced 
global peripapillary retinal degeneration following an 
initial ON in MOGAD compared to MS. We developed 
an OCT-based composite score distinguishing between 
both diseases and confirmed its diagnostic accuracy in the 
independent validation cohort. Our study emphasizes the 
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potential relevance of OCT as an accurate additional method 
in the diagnostic of MOGAD. MOG-IgG testing should be 
performed in all patients with a score of ≥ 1 following a 
history of one episode of ON. Further studies are needed to 
investigate the diagnostic relevance of this score in patients 
with borderline MOG-IgG titer.
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