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Abstract 

The maximum-entropy method is well established for 
the analysis of scattering data [Bricogne (1993). Acta 
Cryst. D49, 37-60]. For this method, prior structure 
knowledge can be included in the structure determina- 
tion. This prior estimate is an essential element for a 
successful application of the maximum-entropy method. 
The most likely prior estimate can be found by max- 
imization of the entropy. With the assumption a priori of 
a special type of structure model, the unknown para- 
meters can be calculated from real-space functions. For 
practical use, analytical expressions for the Fourier 
transform of model scattering curves, the distance-dis- 
tribution function of the models, are of interest. For- 
mulas are presented for rotational ellipsoids, Gaussian 
chains and two-phase spheres, and a parameter estima- 
tion by the program MAXENT is demonstrated for the 
ellipsoidal shape of cytochrome c using theoretical X- 
ray scattering curves calculated from atomic coordi- 
nates. The calculated dimensions of prolate and oblate 
ellipsoids agree within the error limits with the direct 
structure-related inertia-equivalent ellipsoid of the 
molecule. Furthermore, error limits have been deter- 
mined from the a posteriori probability or 'evidence' 
function for the model parameters. To avoid over- 
interpretation of the scattering data, the real number of 
degrees of freedom is calculated for noisy data. This 
measure of information content is almost independent of 
the collimation distortion but strongly influenced by the 
statistical noise in the scattering data. The numerical 
value is smaller than the ideal number of degrees of 
freedom provided by the information theory. 

I. Introduction 

Small-angle X-ray and neutron scattering contain 
information about shape and inner electron or scattering- 
length density inhomogeneities of a scatterer. Usually, 
shape-parameters of a scatterer are determined by a trial- 
and-error process that includes cycles of modelling and 
comparison of model and experimental data in either 
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reciprocal or real space (for details see the textbooks: 
Glatter & Kratky, 1982; Feigin & Svergun, 1987). In 
special cases, for a relatively crude straightforward 
estimation of shape parameters with a resolution of 
about 2.0 nm, automatic curve-fitting procedures of 
scattering curves of physical models to the innermost 
angular region of experimental uncorrected slit-smeared 
(Sjrberg, 1977) or corrected desmeared (MOiler, 
Damaschun & Hiibner, 1979) scattering curves have 
been used. Stuhrmann (1970) developed a method to 
represent a scatterer by a set of mathematical model 
functions - by a series of spherical harmonics. All these 
methods for a direct parameter estimation need some 
additional a priori information from other methods or 
assumptions, e.g. about the type or symmetry class of 
the particles under investigation. Equivalent results 
would be obtained by a curve fitting of the corre- 
sponding model distance-distribution function p(x) and 
its experimental counterpart, because of equal informa- 
tion content in the two types of curves. Preconditions of 
shape-parameter estimation from experimental data in 
real space are analytical or semianalytical expressions 
for the distance-distribution function of a physical or 
mathematical model. Analytical expressions for p(x) are 
known for spheres (Guinier & Fournet, 1955), for a 
random distribution of holes and solid (Debye, Anderson 
& Brumberger, 1957), for cubes (Goodisman, 1980), for 
aggregates of spheres (Glatter, 1980) and for cones 
(Gille & Handschug, 1995). Glatter (1981) gave an 
overview for direct parameter estimation in real space 
for some simple model bodies such as platelets, infi- 
nitely long cylinders and spherical shells. We present 
here the analytical formula for rotational ellipsoids and 
Gaussian chains, to add to the collection mentioned 
above. A formula for a two-phase sphere is also pro- 
vided here for use in maximum-entropy algorithms, 
although it is implicitly contained in the general formula 
for spherical symmetric multishell systems presented by 
Glatter (1981). 

If a special model type or symmetry is assumed to be 
adequate for describing the sample structure, the 
unknown parameters of such a prior estimate can be 
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found by the maximum-entropy method maximizing the 
'evidence', and error limits of the estimated model 
parameters can be given. Furthermore, by the maximum- 
entropy method the real maximum number of degrees of 
freedom (flee parameters) can be determined for an 
experimental scattering curve instead of the idealized 
number, formally estimated for noiseless data by using 
the rules of information theory (Goldman, 1954; 
Damaschun, Miiller & Piirschel, 1968). Consequently, 
the experimentalist is less likely to overinterpret the 
experimental data. This will be discussed for a theore- 
tical noisy scattering curve of cytochrome c. 

2. Theory 

2.1. Small-angle scattering 

In small-angle scattering, the scattered intensity I(s) is 
linked to the spherically averaged autocorrelation func- 
tion C(x) of the excess electrons (for X-rays) or scat- 
tering lengths (for neutrons) in a particle by the Fourier 
transformation 

L 
l(s) = 4re .[ xC(x)[sin(sx)/s] dx 

0 

and for the autocorrelation function the following then 
holds: 

oo 
C(x) - (1/2rr 2) J sI(s)[sin(sx)/x] ds. 

0 

s is the length of the scattering vector (4n/2)sin 0, 20 is 
the scattering angle, 2 is the wavelength of the radiation 
and L is the largest diameter of the particles or the 
correlation range. 

Frequently, the more obviously direct structure- 
related electron (for X-rays) or scattering-length (for 
neutrons) distance-distribution function 

p(x) = 4xxZC(x) 

is used for data correction and modelling. A normal- 
ization can be done by 

p * ( x ) =  4xx2C(x)/Vc, 

where 

L 
V c = 4rr .~ x2C(x) dx 

0 

is the so-called correlation volume, being identical with 
the geometrical volume of particles with constant elec- 
tron and scattering-length density, respectively. 

In the maximum-entropy method, the experimental 
distance distribution p(x) is approximated by 
P = (P l , - . .  ,Pu) and the intensity is expressed as 

N 
I(si) = ~ Aqpj + el, (6) 

j= l  

where e i is the statistical noise at point s i and the matrix 
elements are defined by 

Aij = Axsin(sexj)/sixj, Ax = xj -- ,9_ l . (7) 

2.2. The maximum-entropy method 

The maximum-entropy method estimates the experi- 
mental distance distribution by solving the equation 

V(=S + Z 2/2) = 0, (8) 

so that the gain of information corresponding to a prior 
estimate is minimized in real space and the least-squares 
sum from transformed and experimental scattering 
curves will be minimized also. In (8), the entropy of the 
distance distribution pj is defined by (see e.g. Skilling, 
1988): 

(1) N 
S ( p ,  m) -- Y~ - p j  l n ( p j / m j )  + pg - mj, (9)  

j= l  

where mg is a prior estimate of pj. Different types of 
prior estimates were introduced recently (Miiller & 
Hansen, 1994). A prior estimate was named intrinsic 

(2) prior if no model was used but the transform of the low- 
resolution part of the scattering curve itself. A two-step 
procedure renders possible the slit-distortion corrections 
or the transformation of the complete small- and wide- 
angle scattering curves of any resolution without struc- 
tural preknowledge. If prior information about the 
structure is used, a model prior, meaning the distance 
distribution of a model, can be chosen. 

The quality of the fit is determined by the usual Z2: 

M 
Z 2 = ~ [I(si) - -  I f i t (Si)]2/¢7 2, (10) 

(3) i=l 

where I(si) is the scattered intensity measured at point si, 
M is the number of data points, Ifit(Si) is the fit of the 
data point and a i is the standard deviation of the 
Gaussian noise at point s i. In (8), ~ is a Lagrange mul- 

(4) tiplier, the value of which determines the relative 
weighting of the prior estimate (given by the value for 
the entropy) and the constraint from the measured data 
(given by the value for the X2). To a given value of 0~ 

(5) corresponds a given value for the •2. In the absence of 
constraints from measured data, maximizing the entropy 
will give the prior estimate as the result. For the appli- 
cation of the maximum-entropy method (and similar 
methods for inverse problems) the major problems are 
the determination of the prior estimate (or model) and 
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the 0c (or the Z 2) as the noise level is usually not known 
exactly. By the use of the recent developments of 
Bayesian methods for data analysis (Gull, 1989), both of 
these can be determined by maximizing of the posterior 
probability for the data. This posterior probability is 
usually termed the evidence. It can be shown that 

evidence cx exp(~S - ZZ/2)det[1/(I + B/oOI/2], (1 1) 

where I is the unity matrix and B is equal to one-half 
times the Hessian calculated in the entropy metric (see 
e.g. Gull, 1989; MacKay, 1992, and references therein). 
For a given model, the evidence will ot~en be deter- 
mined by the entropy, especially if a prior close to the 
final estimate is used. 

It can be shown (Gull, 1989) that the evidence for the 
Lagrange multiplier ~ has a maximum when 

-2~S = Ug. (12) 

This position of the evidence maximum provides a value 
~1. N is the number of parameters that can be deter- 
rninec~ from a given set of experimental data and from 
(12) follows then Ng = Ng,1 for ~l. This number of good 
parameters Ng (synonyms used are real sampling points 
and degrees of freedom) can be derived also from B 
using the size of the eigenvalues 2j according to 

Ng = Y~ Aj/(~.j -{- Or). (13) 
J 

By combination of (12) and (13), ¢2 and Ng,2 can be 
calculated. For consistency, 0q _~ 0¢ 2 and Ng, i "~ Ng,2 
should hold. 

Ng can be taken as a measure of the information 
content of the experiment. In reality, this number will be 
smaller than the ideal number of degrees of freedom 
SmaxL/Tr provided by information theory. 

2.3. Analytical model priors 

Analytical expressions for some model priors will be 
discussed shortly. Primarily, the autocorrelation function 
C(x) of the model is calculated and for the distance 
distribution (3) then holds. 

We present the formula for rotational ellipsoids, 
Gaussian chains, and an explicit expression for two- 
phase spheres. 

2.3.1. Rotational ellipsoids. The correlation func- 
tion of rotational ellipsoids has been calculated by the 
Fourier transformation (2) using the intensity formula 
for ellipsoids (Guinier & Fournet, 1955), 

27t 
/ell(S) = (1/4~Z) J" dq~ f ~2(s, Reff ) sin ,9 dO, 

0 0 
(14) 

where • is the scattering amplitude of a sphere with the 
effective radius Reff. 

With the substitutions t -- cos 0, u = ~o/2rt, one 
obtains 

1 1 

/ell(S) - -  ~[ du  f ~2(S, Reff) dt (15)  
o o 

and with 

R2fr - -  ( a  2 c o s  2 2rru + b 2 sin 2 27ru)(1 - t 2) + c2t 2, (16) 

where a, b and c are half-axes of the ellipsoid, one 
obtains 

1 1 o o  

C(x) = (2abc/3rc) f du f dt ~[ s~2(s, Reff)[sin(sx)/x] ds. 
0 0 0 

(17) 

The inner integral corresponds to the definition of the 
correlation function in (2) and can be replaced by the 
analytical expression for a sphere: 

1 - (3x/4Reff) + (x3/16R3ir) x < 2Ref r 
C(x)-- 0 x > 2 R e f  f 

(18) 

Constraints can be derived from (16) and (18) for the 
angular regions permitted for q~ and 0, because the 
condition x _< 2Reff has to be fulfilled. 

The result is, for prolate ellipsoids with the axes A, A 
and Av(v > 1), 

C(x) = 

C l (X) 0 "< X _~ A 

C~(x) - C2(x) A <_ x <_ vA, 

0 x >  vA 
(19) 

with 

CI(X ) = ½ {1/4v 3 + 3/8v + 3v/8(lv 2 - 11) 1/2 

× ATA [(I v2 - ll)l/2]l(x3/A 3) 

23 {1/2V + V/2(I vz - 1[) 1/2 

x ATA [(Iv 2 - ll)l/2]}(x/A) + 1 

(20) 

and 

C2(x)  = 3 [ v / ( I v 2  - l l ) l 1 2 ] { ( I x 2 / A  2 - 11) 1/2 

x (2AIx + x/A) + (x31 A3 - 4 x / A )  

x ATA [(IxE/A 2 - 11)1/2]}. (21) 

For prolate rotational ellipsoids, ATA equals arctan. For 
oblate ellipsoids with the axes A, A and vA(v <_ 1), ATA 
is the hyperbolic area tangent function and 

C 1 (x) 0 _~ x _~ YA 

C(x)-- C2(x ) vA<_x<_A. (22) 
0 x>_A 
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The volume is 

Vc -- (rt/6)A3v. (23) 

2.3.2. Gaussian chains. The correlation function of 
a Gaussian chain can be calculated by insertion of the 
analytical expression for the scattered intensity (Debye, 
1947) 

I(s) = 2[exp(-s2/~ 2) + s2k~ - 1] / s4 /~G (24) 

in (2) to give 

C(x) = (1/4nx2)(x/kan2){(n/2 )(1 + xZ/2k~) 

x [1 - ?b(x/Zka) ] - (xnl/2/ZkG) 

x exp (-xZ)/(4R2)}. (25) 

gb(x/Ra) is the error integral 

x / (~ G 

Cb(x/Rc) = (2/rt 1/2) .[ exp ( - t  a) dt (26) 
0 

and the radius of gyration/}a is the mean value {R~)i/2 
for the whole population of chain molecules. 

2.3.3. Two-phase spheres. The correlation function 
of two spheres concentrically arranged with the inner 
radius Rin and the outer Rout, with excess electron or 
scattering length densities Pin and Pout, has been calcu- 
lated by the method described by Guinier & Fournet 
(1955). Because two-phase spheres are suitable models 
for micellar systems in pharmaceutics and molecular 
biology, we provide the special three-parametric for- 
mula for use in maximum-entropy algorithms. The result 
is implicitly described also by the overlap integrals for 
spherical symmetry given by Glatter (1981). The 
resulting terms are 

C(x)  = 

3. Results 

Here, we discuss the shape modelling with real-space 
data for an ellipsoidal model prior only, because of 
equivalent results when using structure-adequate model 
priors. As a test example, we have chosen the molecule 
cytochrome c. The small- and wide-angle X-ray scat- 
tering curve and the inertia-equivalent ellipsoid (lEE) of 
the molecule have been calculated from the atomic 
coordinate set l cyc (Tanaka, Yamane, Tsukihara, 
Ashida & Kakudo, 1975) stored in the Brookhaven 
Protein Data Bank (PDB; Bernstein et aL, 1977) by 
using the improved cube algorithm described recently 
(Miiller, Gernat, Schulz, Miiller, Vorwerg & Dama- 
schun, 1994). A statistical noise of 5% has been added to 
the solution scattering to simulate experimental condi- 
tions (Fig. 1). The determination of an inertial ellipsoid 
and of the related inertia-equivalent ellipsoid of a body 
is done by methods of classical mechanics (Sommerfeld, 
1962). The numeric expressions have been described 
recently (Miiller & Schrauber, 1992). The lEE of the 
solvent-excluded body of the molecule used for checks 
of the MAXENT results contains 90% of the molecular 
volume and represents the shape of a globular protein 
very well. The high-resolution distance-distribution 
function p(r) of the molecule (Fig. 2) has been calcu- 
lated by a modified direct Fourier transformation of the 
theoretical noiseless small- and wide-angle scattering 
curve avoiding termination errors (Miiller & Hansen, 
1994). This theoretical p(r) function is set to be the 
correct distance distribution for the molecule, because a 
direct calculation ofp(r) from the atomic coordinates is 
not possible for a macromolecule in solution at present. 
The only preknowledge of the molecular structure used 
during the modelling procedure was that cytochrome c is 
a globular compact molecule and, therefore, an ellipsoid 
could be an adequate homogeneous body for modelling 
its shape. 

0 

(1/y){[ 1 - (3x/4R) + (x 3/16R3)] 

+[(1 - p)2{k3 - (3k2x/4R) + (x 3/16R3)}] 

+[(1 - p ) ( -  1 - k 3 + {3x(k z - 1)/4R} + (3R/8x)(k 2 - 1)2 _ (x 3/8R3))] 

-[2k3(1 -p)]} 

with p = Pin~Pout, k = Rin/Rou t, R = Rou t and y = 
1 +k3(p 2 -  1). 

The terms in square brackets have to be taken into 
account for the corresponding x regions. A hollow 
sphere and a sphere are special cases with p - - 0  and 
(k - 0, p = 1), respectively. The correlation volume is 

V c = (4rtR3/3)[1.0 + (p - 1)Rk312/[1.O + Rk3(p 2 - 1)]. 

(28) 

x >  2R 

O < x < 2 R  

0 < x < 2Rk 

R - k R  < x < R + k R  

O < x < R - k R  

(27) 

3.1. Modelling by MAXENT 

The theoretical distance distribution of the cyto- 
chrome c molecule and the MAXENT result are drawn 
for comparison in Fig. 2. No significant systematic dif- 
ferences can be detected for distances larger than 
0.4 nm, the recent resolution limit of the modified 
Fourier transformation method used (Miiller & Hansen, 
1994). That is a proof of the used model prior type being 
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structure-adequate. The scattering curve obtained by 
MAXENT fits the input data within the statistical error 
level in the small-angle (s ~ 6 nm -I)  as well as in the 
wide-angle [6 _< s (nm - l )  _< 30] region. During the 
maximum-entropy procedure for determination of the 
high-resolution distance-distribution function from the 
scattering curve, the optimum geometrical parameters of 
the model prior are calculated by maximization of the 
'evidence' in (11). By this, the most likely parameters 
for the model prior are determined while the data are 
fitted simultaneously. 

For the calculation of the evidence for the dimensions 
of the ellipsoid, the Bayesian criteria (12) has been used 
for selection of 0t (Fig. 3). A value of 0.000095 is 
determined. Then, the axes of the ellipsoid can be cal- 
culated from their evidences (Fig. 4) without any sub- 
jective decision. For a prolate ellipsoid, the axes are 
A = B = 2.98 nm, C -  3.79 nm. The slight deviation of 
the dimensions from the positions of the maxima is due 

3000.0 " ! 

= 300.0 

-e 

3 . o ~  . . . . . . . . . . . . . . . . . .  I 
0 6 12 18 24 30 

s [1/nm] 

Fig. 1. Small- and wide-angle X-ray scattering curve of cytochrome c 
calculated from atomic coordinates (PDB entry l cyc). 5% Gaussian 
noise has been added. Solid thick line: theoretical scattering curve. 
Solid thin line: MAXENT result. 

1.5 . ~" 

.,=_ 

.o 

,~ 
"~ 

° i 
~ • 

° L _ V  , , ~ , 
0.0 1.0 2.0 3,0 4.0 5.0 

r [ nm ]  

Fig. 2. Distance-distribution function for cytochrome c ( lcyc).  Solid 
thick line: theoretical p(x), correct result for x > 0.4 rim. Solid thin 
line: MAXENT result for high-resolution data. Dashed lines: p(x) of 
the best prolate rotational ellipsoid (model prior) with error levels 
(dotted lines). Insert: space filling drawing of I cyc, model prior with 
A -----//= 2.98, C = 3.79 nm. 

to a symmetrical Gaussian fit to the evidence curves and 
choice of the maximum positions of the Gaussians. The 
variations of Ng as a function of ~ calculated according 
to (13) and -2ctS are shown in Fig. 5. From the cross 
point of both curves follows the most likely value for 
~=0.000095 and a number of good parameters 
Ng -- 32. This value of ct is too small in comparison with 
the value selected by the conventional 'classic' max- 
imum-entropy method requiring that Z2=  M. By this 
criterion, the maximum-entropy method leads to a value 
of 0.0009 for 0~ (Fig. 3). The reason for the discrepancy 
is that the derivation of 0~ has been done subject to the 
assumption of one particular model prior only. Also, 
when smoothness (instead of entropy) is used as the 
regularizer, the Bayesian estimation of the Lagrange 
multiplier of the regularizing term tends to overfit the 
data. This has been shown recently by Archer & Tit- 
terington (1995). For the calculation of the evidences for 
the diameters of the prior, it is clear from Fig. 4 that 
variances for the model prior should be taken into 
tccount as well. The use of error estimates for the prior, 
as suggested e.g. by Hansen & Wilkins (1994) and 
depicted in Fig. 4, will increase the value for 0~ and 
influence the estimate ofp(r) .  This is significant espec- 
ially at large r values, where the variances of the axes 
for the ellipsoidal model prior will lead to large error 
estimates for m as shown in Fig. 2. Similarly, the cal- 
culation of the evidence for the axes of the model prior 
has also been done subject to one particular value of ct, 
but a variation of 0c leads to only relatively small 
changes in the estimated p(r), which is why the esti- 
mation of the axes by the evidence is only affected to a 
minor degree by a variation of ~. To avoid overfitting of 
the data, for the further calculations the larger value 
0~=0.0009 has been chosen; as a consequence, the 
number of free parameters is reduced to Ng = 24 in the 
scattering region s < 30 nm -l This is a considerably 
lower number than 38, determined for the noiseless data 
by the sampling-point theorem of information theory. To 
a small extent, the number of free parameters is 

10 10 

0.00001 0.0001 0.001 0,01 0.1 

alpha 

Fig. 3. 'Evidence' for  Lagrange  pa r ame te r  ct and qual i ty  o f  the fit x2/M 
as funct ion o f  ct. Th ick  sol id  line: evidence. Thin sol id  line: x2/M. 
The dot  marks  the 0t value  usua l ly  chosen  ' b y  eye ' .  
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dependent upon the model used through the value of the 
Lagrange multiplier ct. However, this is consistent with 
the usual measure of information being taken relative to 
a prior estimate. 

Little or no effect of the overlaid statistical noise 
percentage (1-10%) and of slit-length smearing [Gaus- 
sian slit-length profile P(t) = exp(-c2t2), c = 0.25 nm; 
Miiller & Hansen, 1994] has been detected (Table 1). 
All estimated parameters agree within the error limits. 

The whole X-ray scattering curve for s < 30 nm -l  
has been included in the estimation of the model-prior 
parameters but, of course, no method for analysis can 
replace a contrast-variation experiment by which the 
shape scattering curve of the molecule can be separated 
from scattering contributions of inner electron or scat- 
tering-length fluctuations and scattering-interaction 
terms (e.g. Stuhrmann & Kirste, 1965). Similarly to the 
scattering curve, the distance-distribution function has 
contributions from the homogeneously filled solvent- 
excluded molecule body as well as from the fluctuation 
and interaction terms. These contributions have been 
calculated by the program ICM (Miiller, 1983) for 

5 _ _ r  

0 
1.6 2.0 2.4 2.8 3.2 

Diameter [nml 

3.6 4.0 4.4 

Fig. 4. 'Evidence' for axes of the model priors. Solid thick line: axes 
A = B and C for the prolate ellipsoid. Solid thin line: a = b and c for 
the oblate ellipsoid. Vertical lines mark the maxima of a fitted 
Gaussian. Horizontal dashed lines show the error limits of axes. 
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0.00001 0.0001 0.001 0.01 0.1 
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Fig. 5. Number of good parameters Ng and -2atS as function of the 
Lagrange parameter 0t. Solid thick line: Ng. Dashed line: -20~S. The 
vertical line marks the cross-point of both functions on the 0t scale. 

cytochrome c and are depicted in Fig. 6. When model- 
ling the shape by ellipsoids or other homogeneous 
models, the long-periodical interaction term (shaded 
region in Fig. 6) will be included in the prior estimate 
and will falsify the dimensions of the axes. For cyto- 
chrome c, the p(r) of the inertia-equivalent ellipsoid of 
its solvent-excluded volume body fits completely into 
the error band of the model prior (Fig. 7), but owing to 
the interaction term the model-prior electron distances 
are systematically shifted to somewhat larger values. 
The major axis of the lEE agrees with the axis of the 
prolate model prior and the minor axes A = 2.62 and 
B = 3.26 nm differ by about 10% from the corre- 
sponding model-prior axes. The major axis is a lower- 
limit estimate of the largest diameter of the molecule, 
which has been calculated to 4.04 nm from the atomic 
coordinates. An oblate ellipsoid cannot be excluded as 
model prior by the entropy criterion or from the evi- 
dence curves; on the contrary, the distance-distribution 
(Fig. 7) and the scattering curve (Fig. 8) agree better 
with the lEE data than those of the prolate ellipsoid. The 
minor axis ,4---2.65 nm agrees with the minor axis of 
the lEE and the other differs by about 10% (Table 1). In 
this case, the major axis of  the model prior is 12% 
smaller than the largest diameter of the molecule. Pos- 
sibly, the similarity between the structure-related inertia- 
equivalent ellipsoid and model prior could be improved 
when an analytical expression for the p(r) of triaxial 
ellipsoids is used that is unknown at present. On 
the other hand, the information content of the zero- 
angle maximum in the scattering curve that contains 
the shape information is very low. MAXENT predicts 
for cytochrome c Ng = 2 real sampling points for 
Smax < 2.4 nm -1 and 5% noise (instead of three ideal 
sampling points). That is the reason for the failure of 
Marquardt's (1963) curve-fitting procedure when used 
for fitting the scattering curves of triaxial ellipsoids to 
the data in reciprocal space. 

The number of real sampling points has been esti- 
mated for different experimental conditions also (Table 
1). Whereas slit-smearing effects hardly influence the 
number, the noise reduces the information content 
drastically. Seemingly, the number of good parameters 
is increased by 8 when overfitting the curve by using 
ct = 0.000095. But, then the noise is partially included in 
the structure information. 

3.2. Comparison with curve-fitting results 

The parameter estimation from real-space data can be 
done also by any curve-fitting procedure separately from 
slit-correction or transformation procedures and without 
any additional regularization. As a precondition, the 
experimental p(r) function, reliable error limits and an 
analytical or semianalytical model p(r) have to be 
known. Here, a modification of Marquardt's nonlinear 
least-squares algorithm (1963) is used to check the 
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Table 1. Axes of  ellipsoidal shape models and number of  good parameters determined for cytochrome c (Lagrange 
parameter ~ = O. 0009) 

Type of ellipsoid Collimation Noise (%) A (nm) B (nm) C (nm) Ng 

Prolate model prior Pinhole 1 3.00 (10) 3.00 (10) 3.74 (11) 30.2 
Prolate model prior Pinhole 5 2.98 (10) 2.98 (10) 3.79 (16) 24.4 
Prolate, p(r) fit* Pinhole 3.02 (6) 3.02 (6) 3.82 (12) 
Prolate model prior Pinhole 10 2.99 (13) 2.99 (13) 3.82 (21) 20.9 
Prolate model prior Slit-length smeared 5 2.98 (13) 2.98 (13) 3.81 (18) 23.6 
Prolate model prior Slit-length smeared 10 2.97 (16) 2.97 (16) 3.87 (28) 20.0 
Oblate modelprior Pinhole 5 2.65 (24) 3.55 (9) 3.55 (9) 
Oblate, p(r) fit* Pinhole 2.84 (12) 3.50 (6) 3.50 (6) 
lEE]" 2.62 3.26 3.82 

* Calculated using Marquardt's (1963) curve-fitting program in real space. ]. Inertia-equivalent 
body (Miiiler & Schrauber, 1992). 

ellipsoid of the solvent-excluded molecular 

MAXENT results. The best-fitting prolate and oblate 
rotational ellipsoids have been calculated from the 
noise-free highly resolved p(r). With exclusion of the 
innermost erroneous region for r < 0.4 nm (Miller, 
Damaschun & Schrauber, 1990) and the outer region 
r > 3.3 nm, and the choice of an arbitrary value of 1% 
relative error over the whole distance distribution, the 
axes of the ellipsoids have been calculated (Table 1). 
Oblate and prolate ellipsoids cannot be discriminated 
(insert in Fig. 7). This is also understandable from the 
small differences between both scattering curves in the 
region s < 5 nm -1 (not shown here). The dimensions 
received by MAXENT from noisy scattering data agree 
very well with the values determined by curve fitting of 
the noiseless p(r) function. The deviations are due to the 
noise and the regularization by the maximum-entropy 
condition, especially for the oblate ellipsoid. 

4. Concluding remarks 

The resolution of a shape model determined from small- 
angle X-ray scattering is in general restricted to about 

2 I 

= 1 .5  
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o, . . . .  
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F;g. 6. T h e o r e t i c a l  d i s t a n c e  d i s t r i b u t i o n  o£ c y t o e h r o m e  c. S o l i d  t h i c k  

line: complete molecule. Dashed line: homogeneous body (solvent- 

excluded volume). Solid thin line: electron inhomogeneities. Shaded 
a r e a :  i n t e r a c t i o n  v e c t o r s  b e t w e e n  h o m o g e n e o u s  b o d y  a n d  i r d a o m o -  

g c n c i t i e s .  T h e  d a t a  a r c  c a l c u l a t e d  b y  t h e  i m p r o v e d  c u b e  m e t h o d  

(MOiler, 1983). 

2 nm when homogeneous model bodies and no contrast 
variation are used. The results of the shape modelling 
discussed above have to be appreciated with this fact 
taken into account. The maximum-entropy method 
renders possible the determination of a real number of 
parameters to be estimated from experimental data and 
can determine the parameters and their error limits if an 
analytical or semianalytical expression for the model 
prior are given. For rotational ellipsoids, Gaussian 
chains and two-phase spheres, the analytical model 
priors are presented to enlarge the family of available 
models. The relevance of the structure information 
extracted from the estimated parameters of the model 
prior depends on the chosen type of model, which 
means that some knowledge of the structure should be 
available from other methods. For the globular molecule 
cytochrome c, the automatically determined ellipsoids of 
revolution, both oblate and prolate, agree with the direct 

2[ . . . . .  / ~ A  2:: - -  
I p(r )  / - ~  I 
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Fig. 7. Distance-distribution function of cytochrome c and of ellip- 
soidal shape models. Solid thick line: cytochrome c. Solid smooth 
thick line: inertia-equivalent ellipsoid with the axes A =2.62, 
B=3.26,  C=3.82 nm. Dashed line: prolate model prior 
A = B = 2.98, C = 3.79 nm with error levels (dotted lines). Dashed- 
dotted line: oblate model prior A =B=3 .55 ,  C=2.65 rim. Dots 
mark the fitting region used for Marquard's (1963) routine. The inset 
shows the result of the curve fitting in real space: Solid line: inertia- 
equivalent ellipsoid. Dashed line: prolate ellipsoid A = B =  
3.02, C = 3.82 nm. Dashed-dotted line: oblate ellipsoid A = B---- 
3.50, C = 2.84 nm. 
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Fig. 8. X-ray scattering curves of cytochrome c and of eilipsoidal shape 
models. Solid thick line: cytochrome c. Solid thin line: inertia- 
equivalent ellipsoid with the axes A = 2.62, B = 3.26, 
C = 3.82 nm. Dashed line: prolate model prior A = B = 2.98, 
C = 3.79 nm. Dashed-dotted line: oblate modelpriorA = B = 3.55, 
C ---- 2.65 nm. 

structure-related inertia-equivalent ellipsoid within the 
expected goodness reachable by models with two 
degrees o f  freedom. The estimation o f  a lower limit o f  
the largest molecular  diameter could be o f  interest for 
other indirect data-handling methods that need this value 
as a starting parameter.  Further studies will be necessary 
concerning the discrepancy between the Lagrange mul- 
tiplier ~ when estimated from ad hoc methods using the 
classical g 2 or from the Bayesian criteria, but this is a 
problem that is independent of  the regularization method 
used. 

A Fortran77 version of  the program MAXENT is 
available from SH. 

The authors thank Udo Heinemann for helpful dis- 
cussions and kind support. 
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