*** TEST ***
Helmholtz Gemeinschaft

Search
Browse
Statistics
Feeds

Localization of SNARE proteins and secretory organelle proteins in astrocytes in vitro and in situ

Item Type:Article
Title:Localization of SNARE proteins and secretory organelle proteins in astrocytes in vitro and in situ
Creators Name:Wilhelm, A., Volknandt, W., Langer, D., Nolte, C., Kettenmann, H. and Zimmermann, H.
Abstract:Astrocytes are capable of regulated release of messenger molecules. Astrocytes cultured from new born rodent brain express a variety of classical presynaptic proteins. We investigated the question whether the capability to express synaptic proteins in culture was a feature only of immature astrocytes, and whether these proteins were also expressed by astrocytes in situ. Experiments were performed with transgenic mice expressing the enhanced green fluorescent protein under the control of the human glial fibrillary acidic protein promoter. Using double fluorescence and astrocytes cultured from 1 to 16 day-old animals we show that the astrocytic expression of synaptic proteins in culture is invariant of the age of donor animals. Culturing can induce the astrocytic expression of specific synaptic proteins such as SV2, synaptophysin and SNAP-25. Astrocytes in brain sections of 1-16 day-old animals revealed a punctuate immunofluorescence for secretory carrier membrane protein (SCAMP), SNAP-23, synaptobrevin II, and cellubrevin, to a minor extent for SNAP-25 and synaptophysin, and none for SV2. Our results demonstrate that cultured astrocytes express synaptic proteins not present in situ. Nevertheless, astrocytic organelles in situ are equipped with molecules that could be involved in regulated exocytosis of messenger substances.
Keywords:Glia, SNARE, Synaptic Vesicle, Vesicle Protein, Animals, Mice
Source:Neuroscience Research
ISSN:0168-0102
Publisher:Elsevier
Volume:48
Number:3
Page Range:249-257
Date:1 January 2004
Official Publication:https://doi.org/10.1016/j.neures.2003.11.002
PubMed:View item in PubMed

Repository Staff Only: item control page

Open Access
MDC Library