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Background. Increased activity of single ventricular L-type Ca2+-channels (L-VDCC) is a hallmark in human heart failure. Recent
findings suggest differential modulation by several auxiliary b-subunits as a possible explanation. Methods and Results. By
molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by
altered expression pattern of auxiliary L-VDCC b-subunit gene products. In HEK293-cells we show differential modulation of
single L-VDCC activity by coexpression of several human cardiac b-subunits: Unlike b1 or b3 isoforms, b2a and b2b induce a high-
activity channel behavior typical of failing myocytes. In accordance, b2-subunit mRNA and protein are up-regulated in failing
human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac CaV1.2 also reveal
increased single-channel activity and sarcolemmal b2 expression when entering into the maladaptive stage of heart failure.
Interestingly, these animals, when still young and non-failing (‘‘Adaptive Phase’’), reveal the opposite phenotype, viz: reduced
single-channel activity accompanied by lowered b2 expression. Additional evidence for the cause-effect relationship between
b2-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both
constitutive CaV1.2 and inducible b2 cardiac overexpression. Here in non-failing hearts induction of b2-subunit overexpression
mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. Conclusions. Our study
presents evidence of the pathobiochemical relevance of b2-subunits for the electrophysiological phenotype of cardiac L-VDCC
and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure.
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INTRODUCTION
Homeostasis of intracellular Ca2+ concentration [Ca2+]i is essential

for cardiac function and integrity; its dysregulation is a hallmark of

advanced heart failure [1,2]. Voltage-dependent L-type Ca2+-

channels (L-VDCCs) are the source of trigger Ca2+ entering

cardiomyocytes [3]. Data derived from numerous studies support

an involvement of L-VDCC in pathological changes of [Ca2+]i in

heart failure. Although still controversial, L-VDCC current density

appears unchanged in failing cardiomyocytes [1,4,5]. Whole-cell

currents are determined by a number of parameters, including

number of channels, single-channel current amplitude and time

spent in the open state. Therefore, altered number of active

channels or activity of individual L-VDCC is not necessarily

reflected by calcium current density. In fact, despite no change in

whole-cell L-VDCC density (ICa), single-channel activity was

significantly increased in ventricular myocytes from human end-

stage failing hearts [6]. Chen et al. [7] showed attenuated ICa

increase by (S)-BayK8644 in human failing myocardium whereas

basal whole-cell currents were unchanged, indicating that single-

channel activity is enhanced while channel density is lowered.

These findings confirm the idea of an ‘‘electrophysiological heart-

failure phenotype’’ of single L-VDCCs. The biochemical nature of

this change in phenotype has not been delineated, although

phosphorylation [8,9] and dephosphorylation [10,11] have been

implicated. Activities of kinases and phosphatases not only change

channel function but interfere with neurohumoral modulation of

the L-VDCC; e.g. b-adrenergic regulation is blunted in heart

failure possibly due to hyperphosphorylation of L-VDCCs [6,7].

Using heterologous recombination we have shown that distinct

subunit compositions of L-VDCC induce single-channel char-

acteristics similar to the biophysical phenotype of ‘‘hyperpho-

sphorylated’’ L-VDCC [12]. The latter suggests that changes in

gene expression of L-VDCC subunits may form the basis of

a heart-failure phenotype of L-VDCC. In mammalian hearts L-

VDCCs are composed of an ion conducting pore (CaV1.2 or a1C),

and two auxiliary subunits, an a2d and a b-subunit. Most
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investigators agree that b-subunit diversity is of physiological and

pathophysiological importance [13–18]. In fact, some studies have

revealed altered b-subunit patterns in human heart failure [19,20],

suggesting that an altered b-subunit expression pattern is of

functional relevance. Delineation of pathophysiological mechan-

isms in human heart is difficult because of wide inter-individual

variance, including age, medication, state of disease etc. Human

tissue also offers a limited choice of truly independent variables,

such as time, disease stage and treatment options. Animal models

offer control of any relevant factor to test pathophysiological

concepts. We analyzed b-subunit gene expression in both human

non-failing and failing hearts as well as in transgenic mice

overexpressing the human CaV1.2 (a1C) subunit (tg CaV1.2). The

latter was chosen because of phenotypical characteristics common

with human heart failure, e.g. early blunting of b-adrenergic

signaling, slow progression towards hypertrophy and calcium

overload in failing myocytes [21,22]. Most importantly, in young

(non-failing; ‘‘Adaptive State’’) tg CaV1.2 mice we previously found

concordance of lowered b2-subunit expression and decreased

activity of single L-VDCC [16]. In the present study we find an

increase of single L-VDCC activity accompanied by enhanced

expression of b2-subunits when these mice have entered the failing

state (‘‘Maladaptive State’’ $9 months of age). By examination of

a new, double-transgenic mouse bearing both constitutive CaV1.2

and inducible b2-subunit overexpression in the heart we show

a relationship between subunit expression and channel function.

RESULTS

Gating parameters of single L-VDCC in failing

human and transgenic myocardium
Single-channel activity of old ($9 months, and in heart failure) tg

CaV1.2 was significantly increased compared to young (4 months,

no hypertrophy or heart failure) tg CaV1.2 [16] (Table 1).

Henceforth, these animals are referred to as ‘‘young’’ and ‘‘old’’ tg

CaV1.2, respectively. Peak ensemble average current (Ipeak) in old

tg CaV1.2 mice was enhanced (256614 fA vs. 22367 fA,

p,0.05) due to an increased fraction of active sweeps, mean open

time, and mean open probability, and a decrease of mean closed

time (tclosed). Of further interest, the changes of peak current,

fraction of active sweeps and open probability mirror findings

obtained from single L-VDCC measurements in human cardio-

myocytes from non-failing or failing idiopathic dilated cardiomy-

opathy (DCM) hearts, respectively [6] (Table 1).

L-VDCC subunit expression in non-failing and failing

human hearts
Protein expression of CaV1.2, a2d, low molecular weight b1, and

b3 was similar in non-failing and failing human myocardium, but

we found a significant up-regulation of b2 (Figure 1a,b). There was

no difference in gene expression of the CaV1.2, and the a2d at the

protein level (mRNA data not shown). At least two b1-subunit

isoforms (b1a,c), four b2-subunit isoforms (b2a–d), and two b3-

subunit isoforms (b3a,trunc) are expressed at relevant levels in

human myocardium [12]. b1a (GenBank No NM_199247) and b1c

(GenBank_199248) are sequence-identical except for replacement

of exon 7a by exon 7b in b1c, consistent with previous work [23].

b2a–d isoforms differ only with respect to the N-terminal region

(D1 domain). Quantitation by real-time PCR revealed an

increased expression of b1c and all b2 isoforms in heart failure,

in line with the protein data (Figure 1c).

L-VDCC subunit protein expression in old wild type

and old tg CaV1.2 hearts
b1, b2 and b3 isoforms are expressed at the protein level in old

CaV1.2 mouse heart, although expression of b1-subunit isoforms

was faint. Compared to old wild type mice ($9 months), the old tg

CaV1.2 showed a significant up-regulation of b3-, and b2-subunits

(Figure 2), in striking contrast to the down-regulation of b2-

subunits we previously observed in young tg CaV1.2 [16]. In the

old tg CaV1.2 mouse myocytes, up-regulated b2-subunits and

overexpressed CaV1.2 both localize to the surface sarcolemma and

the T-tubules (Figure 3), suggesting the functional relevance of

altered expression levels.

b-subunit-dependent modulation of CaV1.2

expressed in HEK293
The diversity of b-subunit expression patterns found in cardio-

myocytes necessitated the functional characterization of each b-

subunit isoform. Using HEK293 cells constitutively expressing the

human CaV1.2 as a homologous recombination system we show

that the gene as well as alternative splicing determines calcium

channel gating, extending and elaborating on previous work [12].

This is highlighted by significant differences in peak current and

Table 1. Single L-VDCC gating of young and old tg CaV1.2 resembles data obtained from human non-failing and failing ventricle
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gating parameter tg CaV1.2 tg CaV1.2 human LV human LV

4 months $9 months non-failing failing (DCM)

peak current Ipeak [fA] 22367 256614* 21365 22865*

fraction of active sweeps factive [%] 53.765.3 71.768.2(*) 26.465.3 56.768.0*

open probability Popen [%] 4.461.2 6.460.9{ 3.261.3 6.161.6{

mean open time topen [ms] 0.3460.03 0.4560.04* 0.5460.05 0.6560.04

mean closed time tclosed [ms] 6.661.0 3.160.7* 9.361.6 7.561.7

number of experiments 13 (13) 11 (5) 16 (12) 9 (6)

In a previous study [6] we found single-channel activity to be significantly increased in ventricular myocytes from human hearts failing due to idiopathic dilated
cardiomyopathy compared to non-failing ventricles. In excellent agreement the present study reveals activity of single L-VDCC from $9 months old, i.e. failing murine
hearts overexpressing the human CaV1.2 to be significantly increased compared to single-channel activity in 4 months old, i.e. non-failing young transgenics obtained
in a previous study [16]. Charge carrier: 70 mM Ba2+; holding potential: 2100 mV; test potential: +20 mV. Note that Schroder et al. [6] did not use a depolarizing bath
solution, thus potentials are approximate values.
*p,0.05 and (*)p = 0.07 in a Student’s t-test; {p,0.05 in a Mann-Whitney test (performed when data failed normality test). Numbers of experiments given in parentheses
indicate number of experiments with only one channel in the patch.

doi:10.1371/journal.pone.0000292.t001..
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open probability between b-subunits (Table 2), with b2a and b2b

exerting the strongest effects. b2c or b2d as well as b1a, b1c, and b3a

induced a minor to moderate increase in single-channel activity

with no significant effects detected for closed times. Taken

together, the data support the view that the single-channel

phenotype of failing cardiomyocytes is caused by channel

complexes containing b2a or b2b.

Generation of an inducible, heart-specific

b2a-subunit overexpression mouse (tgind b2a)
Our functional analyses support the idea of pathophysiological

relevance of b2-subunit up-regulation, but the parallel biophysical

and biochemical changes in cardiomyocytes may still be co-

incidental. Rather than following the natural course of gene

expression changes, transgene-controlled b2-subunit overexpres-

sion should prove its causative role in native tissue. A hybrid

drosophila-bombyx ecdysone receptor (VgBmEcR) when coupled

to an aMHC promoter should combine strictly drug-controlled,

transgene-specific, and cardiac tissue-specific gene induction. We

generated this double transgenic model of aMHC VgBmEcR and

the (rat) b2a gene, hence referred to as tgind b2a, under control of

the ecdysone response element (Figure 4a). Mice carrying both

transgenic constructs developed normally and did not show any

signs of developmental or cardiac dysfunction. In vivo induction

with tebufenozide clearly increased cardiac b2-subunit expression

in tgind b2a mice at the protein level (Figure 4b) proofing

functionality of drug-controlled gene expression. However, the

single L-VDCC phenotype after induction was not altered in this

mouse when compared with either tebufenozide treated wild-type

mice or sham-induced tgind b2a (Figure 4c, Figure 5a–e).

Characterization of L-VDCC activity in double

transgenic (tg CaV1.26tgind b2a) mice
Adaptive down-regulation of b2-subunit expression in the young tg

CaV1.2 [16] sets the stage for analysis of a b2-subunit increase in

native tissue. For this we crossbred tg CaV1.2 mice and tgind b2a

mice. Consistent with the hypothesis of a functional predominance

of b1-subunits in the young tg CaV1.2 mice, (N.B.: These animals

are ‘‘Adaptive’’, and in fact demonstrate hypercontractility,

without failure) activity of single-channels was dramatically

increased by b2-subunit induction in tg CaV1.26tgind b2a 48 hours

after induction (Figure 5) (e.g. peak current: 272610 fA vs.

21362 fA in tg CaV1.2 likewise treated with tebufenozide,

p,0.05). This is evidence for our proposed relationship of

structure and function of L-VDCC, at the single channel level,

in ventricular myocytes ex vivo.

DISCUSSION
The major, novel result of our study is the concomitant increase in

b2-subunit expression and L-VDCC activity in three independent

models: human dilated cardiomyopathy, old tg CaV1.2 mice

spontaneously progressing into heart failure and young (‘‘Adaptive

State’’) tg CaV1.2 mice with additional tissue-specific inducible

overexpression of b2-subunits. We explain our results by the

differential effects of the b-subunits, namely b2a and b2b as the

most important modulators in recombinant assays.

The three b-subunits (b1–3) thus far known to be expressed in

mammalian hearts have vastly different effects on current density

[17,24], kinetics [12,24], and single-channel properties [12,14,17].

Beyond that, some b2-subunit isoforms have been implicated in

mediating membrane targeting [3,25], cardiomyocyte apoptosis

[26], cell death [17], adrenergic regulation [27,28] and modula-

Figure 1. Subunit expression of cardiac L-VDCC subunits in human
myocardial specimens
(a) Human specimens from non-failing (NF) and failing (F) myocardium
(n = 4–5) were analyzed in immunoblots using specific polyclonal
antibodies directed against the particular L-VDCC subunits. (b) L-VDCC
subunit expression was normalized to cardiac calsequestrin protein
expression in the same sample (number of NF/F specimens was always
identical for each subunit; n = 5–8). Quantitative analysis of subunit
protein expression is depicted as ratio of F vs. NF. * p,0.001; **
p,0.0001. (c) mRNA expression of b-subunit isoforms (NF: n = 5; F:
n = 9–13) was measured by real time PCR, and always normalized to
cardiac calsequestrin mRNA expression. * p,0.05.
doi:10.1371/journal.pone.0000292.g001
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Figure 2. Protein expression of cardiac L-VDCC subunits in old wild-type
and tg CaV1.2 mice
(a) Specimens from old wild-type mice and tg CaV1.2 in heart failure
were analyzed in immunoblots using specific polyclonal antibodies
directed against the particular L-VDCC subunits.
(b) Protein expression of L-VDCC subunits was always normalized to
cardiac calsequestrin protein expression in the same sample. Quanti-
tative analysis of subunit protein expression is depicted as ratio of 10
months old tg CaV1.2 vs. age-matched wild-type. b1 protein bands were
faint, and thus not analyzed quantitatively (number of WT/old tg CaV1.2
specimens was always identical for each subunit; n = 4). * p,0.05.
doi:10.1371/journal.pone.0000292.g002

Figure 3. Immunocytochemistry shows increased sarcolemmal expres-
sion of CaV1.2 and b2-subunits in ventricular myocytes from old tg
CaV1.2 mice
(a) Immunocytochemistry of cardiomyocytes isolated from 10 months
old wild-type or tg CaV1.2 mice. Controls show no specific interaction
for TRITC labeled secondary antibody and labeling of sarcolemma, T-
tubules and intercalated discs by Oregon Green 488-conjugated wheat
germ agglutinin (WGA).
(b,c) Primary antibodies directed against CaV1.2 and b2-subunits,
respectively, demonstrate predominant t-tubular localization of the
respective antigens in old wild-type and tg CaV1.2.
doi:10.1371/journal.pone.0000292.g003
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tion of CaM Kinase II [29,30]. It is of interest that the pattern of

auxiliary subunits [3], including the prevalence of b-subunit

isoforms varies among species, with b2-subunits predominating in

small rodents like rats [17], and mice [31], and additional relevant

expression of b1- and b3-subunits in humans [13,19,23].

In our study the homologous recombination of human L-

VDCC subunits indicates the biophysical relevance of b2a and b2b

isoforms for up-regulation of single L-VDCC activity. The

increase of b2-subunit gene expression in human heart failure

suggests that these L-VDCC subunits form the basis of the ’’heart-

failure phenotype’’ of single L-VDCC found in human hearts [6].

Young tg CaV1.2 animals were chosen as a known example of

dynamic adaptation of b2-subunit expression in heart. The

functional relevance of this adaptation is illustrated by whole-cell

current density, that is increased by only 50% [22,32], while

CaV1.2 protein expression and density of single channels show a 3-

fold increment in these transgenic hearts [16,32]. This apparent

discrepancy is explained by an up-regulation of b1- but substantial

down-regulation of the b2-subunit expression [16]. This gene

expression is characteristic for the ‘‘Adaptive phase’’ of the model

[3,22] putatively limiting calcium overload at the younger ages.

We now demonstrate that when this tg Cav1.2 mouse enters into

the ‘‘Maladaptive state’’ with overt heart failure at $9 months of

age, both single L-VDCC activity and b2-subunit expression

increase, mimicking alterations of channel structure and bio-

physics in terminal human heart failure. Thus, the old tg CaV1.2

mouse may be regarded as a heart-failure model in which

a primary calcium (current) overload can no longer be effectively

counterbalanced by adaptive mechanisms, i.e. b-subunit expres-

sion. The transcriptional mechanisms underlying this bidirectional

control of b2-subunit expression, however, remain to be elucidated

in the context of changes in b1 and b3 subunit expression in

human and old tg CaV1.2 mouse heart failure.

As a novel and first approach to induce an increased b2-subunit

overexpression in intact animals, rather than in isolated cells

[17,24,26] we generated a mouse model of cardiospecific inducible

b2a-subunit expression (tgind b2a). Induction of b2-overexpression

in this mouse model did not affect overall single L-VDCC gating

significantly. As a more recent study indicates that an 1:1-

stoichiometry of pore-forming a1- and auxiliary b-subunit may be

sufficient for modulation of channel gating [33], we assume that

most calcium channel pores are saturated with native b-subunits in

the induced tgind b2a. However, mean closed time was lower in

induced tgind b2a suggesting that a portion of overexpressed b2a

exerts functional action similar to the recombinant channel data

presented. To prove our concept that b2-subunit expression

underlies the activity of single L-VDCC of the heart-failure

phenotype we crossbred tgind b2a with tg CaV1.2 mice [21,22].

Induction of b2a-subunit gene expression in the young double tg

mice (tg CaV1.26tgind b2a) led to a premature increase of single

L-VDCC activity. This confirms our theory, derived from

recombinant channel data, in the relevant tissue ex vivo.

Such deliberate overexpression of b2-subunit in vivo, when

carried forward in a chronic manner, hopefully will pave the way

for understanding the progression of heart failure if these

alterations in single L-VDCC gating lead to decompensation at

an earlier age of the animal. This knowledge will have direct

implications because pharmacological agents which modulate

L-VDCC function are in everyday clinical practice and have been

shown to be beneficial in various clinical trials targeting different

populations [34,35]. We wish to emphasize that, at this point in

our studies, we show a relationship between electrophysiological

parameters that is consistent with heart failure. In order to prove

this, it is necessary to chronically imbue the young animals with

a heart-specific increase in the b2 subunit and follow their

transition to heart failure at specific age points as they mature.

These experiments are ongoing but will require considerable time.

MATERIALS AND METHODS

Materials
Non-failing and failing human left ventricular specimens were

obtained from explanted hearts not transplanted for technical

reasons (n = 5), or from orthotopic heart transplantation recipients

(n = 8). Heart failure patients were in NYHA class III–IV (17–

63 y, 3 females) mean duration of symptomatic heart failure

ranged from 9–60 months, peak oxygen exercise capacity was

13.3–15.5 ml kg21 min21 at time of listing. Heart transplant

recipients were ambulatory at time of operation and received

treatment with inhibitors of the angiotensin-system (100%), b-

blockers (75%), aldosterone antagonist (50%), diuretics (62.5%).

Animals
Mice with cardiac-specific heterozygous overexpression of the

human Cav1.2 [21] were bred with non transgenic littermates.

These animals were bred with the tgind b2a as described below.

Non transgenic littermates served as WT controls in this study.

The study was approved by the local institutional committees.

Table 2. Gating of single recombinant human CaV1.2 in HEK293 cells is differentially modulated by several coexpressed human
cardiac auxiliary b-subunits

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gating parameter b1a b1c b2a b2b b2c b2d b3a control

peak current Ipeak [fA] 236612 22265 2109625* 2123628* 22467 237616 246614* 21262

fraction of active sweeps factive [%] 53.3610.5 32.565.2 57.666.6 58.769.1 45.5614.6 64.168.2 48.966.4 46.966.3

open probability Popen [%] 2.160.6 2.460.5* 6.961.4* 8.361.9* 1.860.6 3.261.3 2.860.8(*) 1.160.2

mean open time topen [ms] 0.3460.09 0.2860.02* 0.3160.02* 0.3460.03* 0.2360.03 0.2660.01* 0.3060.03* 0.2260.01

mean closed time tclosed [ms] 11.561.7 15.865.3 7.060.5* 4.761.0* 10.862.6 11.461.7 12.162.9 12.461.3

number of experiments 10 (6) 11 (4) 14 (6) 16 (8) 5 (4) 9 (6) 10 (8) 8 (5)

Single-channel gating parameters of human cardiac CaV1.2 stably expressed in HEK293 cells transiently cotransfected with several auxiliary b-subunits and a human
cardiac a2d-2-subunit. Coexpression with b2a and b2b reveals strongest stimulation of single channels compared to control cells without transfection of any b-subunit
(ctr). Data were obtained by patch-clamp recordings using cell-attached configuration (charge carrier: 110mM Ba2+; holding potential: 2100 mV; test potential: +10 mV
for 150 ms). *p,0.05 and (*)p = 0.07 in Bonferroni-corrected post-hoc tests versus control, following one-way ANOVA. Numbers of experiments given in parentheses
indicate number of experiments with only one channel in the patch.
doi:10.1371/journal.pone.0000292.t002..
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Figure 4. tg mouse model with an inducible cardiac overexpression of the b2a under control of a hybrid bombyx-ecdysone receptor
(a) For cardiac-specific expression the hybrid bombyx-ecdysone receptor (VgBmEcR) was placed under the control of aMHC promoter (for details see
Materials and Methods). Transgenic mice (tgind b2a) positive for the hybrid bombyx-ecdysone receptor and the construct of the ecdysone response
element (EcRE) and the b2a, respectively, are identified in Southern blots. The radiolabeled probe specific for the coding sequence of VgBmEcR was
generated by SacI digestion. It hybridized to a 3.7 kb band in transgene mouse genomic DNA digested by EcoRI digest; the radiolabeled DNA probe
specific for the coding sequence of b2a was generated by HindIII/KpnI digest. It hybridized to a 2.4 kb band of genomic DNA digested with HindIII/
BamHI in tgind b2a but not in WT.
(b) 48 h after treatment with the inducing drug tebufenozide (+T) Western-blot analysis with ventricular tissue from 4–5 month old mice reveals
increased expression of b2-protein in tgind b2a compared to treated wild-type or sham-induced transgenics.
(c) Exemplary traces of single-channel recordings from murine ventricular myocytes. Induction of cardiac overexpression of the b2a (+T) does not alter
single-channel behavior compared to either wild-type mice after treatment with the inducing drug or i.p-application of only the vehicle (water/oil-
emulsion) to b2a-transgenic mice (‘‘sham’’). Data were obtained by patch-clamp recordings using cell-attached configuration (charge carrier: 70 mM
Ba2+; holding potential: 2100 mV; test potential: +20 mV for 150 ms). Bottom traces show ensemble average currents from the respective
experiment.
doi:10.1371/journal.pone.0000292.g004

b2-subunits & Ca2+-Channels

PLoS ONE | www.plosone.org 6 March 2007 | Issue 3 | e292



Figure 5. Gating of single L-VDCC in ventricular myocytes from mice showing cardiac overexpression of Ca2+-channel subunits
(a–e) Single-channel gating parameters of ventricular L-VDCC from murine hearts. Compared to 4–5 months old mice showing a cardiac
overexpression of the human CaV1.2 (tg CaV1.2), the inducing compound tebufenozide (T) significantly increased single L-VDCC activity in ventricular
myocytes from age-matched double-transgenics (tg Cav1.26tgind b2a, showing an additional inducible b2a-overexpression) 48 h after drug
administration. Overexpression of the b2a-subunit without overexpression of the human Cav1.2 does not alter single-channel gating (cp. Figure 4c).
Tebufenozide treatment does not affect single-channel gating in ventricular myocytes from wild-type mice. Data were obtained by patch-clamp
recordings using cell-attached configuration (charge carrier: 70 mM Ba2+; holding potential: 2100 mV; test potential: +20 mV for 150 ms). *p,0.05
and (*)p,0.09 compared to tg Cav1.2 in Student’s t-test. Number of underlying experiments is given in parentheses.
(f) Exemplary traces of single-channel recordings from murine ventricular myocytes. Activity of single L-VDCC is clearly higher in old ($9 months,
failing) tg CaV1.2 compared to channels from young (4–5 months, non-failing) tg CaV1.2. Induction of b2-overexpression in hearts of young tgind

b2a6tg CaV1.2 by tebufenozide mimicks the heart-failure phenotype of L-VDCC gating otherwise not observed until tg CaV1.2 enter the ‘‘Maladaptive
State’’ at an age $9 months. T = tebufenozide. Data were obtained by patch-clamp recordings using the cell-attached configuration (charge carrier:
70 mM Ba2+; holding potential: 2100 mV; test potential: +20 mV for 150 ms). Bottom traces show average currents from the respective experiment.
doi:10.1371/journal.pone.0000292.g005
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Quantitative analysis of L-VDCC subunit mRNA

expression in human myocardium
Real-time PCR: Quantitation was performed with the iCycler

iQ real-time PCR detection system using primer/fluorescent

probe concentrations of 200 nmol/L either in 16 iQ Supermix

(b2a–d) or 16 iQ SyBr Green when no fluorescent probes was used

(b1a,b, b3, cardiac calsequestrin) (all Bio-RadH). Both iQ Supermix

and SyBr Green based real-time PCR were followed by gel

electrophoresis confirming amplification of singular products of

expected size. In addition, SyBr Green based real RT-PCR was

followed always by melt-curve analysis (70uC–94uC at 0.5uC steps)

verifying the similarity of standard and specimen amplification

product melting point. Quantitation was performed using intra-

assay standard curves of the specific templates. Templates were

cloned from human non-failing left ventricle mRNA reversely

transcribed by iScript (BioradH), identity to published sequences

was confirmed at both strands.
Human b1 template: PCR-cloning by sense primer 59-

CTCAAGGGCTACGAGGTTAC-39 and antisense primer 59-

GTGTTTGGACTGAGACTTTCC-39 (GenBank NM_000723;

resp. positions: 864-883, and 1247-1227), with 94uC (3 min), and

40 cycles of 51uC (30 sec), 72uC (20 sec), and 94uC (20 sec). Real-

time PCR was set up with the cloning primers and run at 94uC
(3 min), and 40 cycles of 50uC (30 sec), 72uC (20 sec), and 94uC
(20 sec). Correlation: $0.992, efficiency: $93.4%.

Human b1 isoform templates: PCR cloning of the b1a by

sense primer 59-GCCTCGGCTCCAGCAAA-39 and antisense

primer 59-CTCACCAAGCTCAGCCTCTTC-39 (GenBank NM_

199247; resp. positions 692-708; 855-835), of the b1c by the same

sense but different antisense primer 59-CTCTGTCGACTTC-

TGCTTCTGTTT-39 (GenBank NM_000723; position 807-784),

with 94uC 3 min, 40 cycles 56uC (30 sec), 72uC (20 sec), 94uC
(20 sec). Real-time PCR was set up with the respective cloning sense

primer and antisense primers, and the fluorescent probe 59-6FAM-

CTCCAGTTCCAGTCTGGGAGATGTGGT XT p (GenBank

NM_000723; 720-746) and run at 94uC (3 min), and 40 cycles of

53uC, and 94uC (each 30 sec). Correlation: $0.990, efficiency:

$90.6%.
Human b2a–d isoform templates: PCR cloning of b2a–d

isoforms was by isoform specific sense primers:

b2a: 59-GCATCGCCGGCGAGTA-39, (GenBank423189, posi-

tion: 21-36);

b2b: 59-GACAGACGCCTTATAGCTCCTCAA-39 (GenBank

AF285239; position: 7-30);

b2c: 59-AGTGGACTGGACCTGCTGAA-39 (GenBank

AF423190; position: 13-32);

b2d: 59-GCCGCCGCACAGTCATAT-39 (GenBank AF423191;

position: 109-126);

always with the same antisense primer 59-CGGTCCTCCT-

CCAGAGATACAT-39 (GenBank AF423189; position: 109-89).

Real-time PCR was set up with the respective cloning primers, and

the fluorescent probe 59-6FAM-ATGGACGGCTAGTGTAG-

GAGTCTGCCGA XT p (GenBank NM_000723; position: 79-

52) and run at 94uC (3 min), and 40 cycles of 56.5uC, and 94uC
(each 30 sec). Correlation was $0.995, efficiency $90.4%.

Template of human b3 and human cardiac

calsequestrin: see [12].

Cloning of human b1-, b2-, b3-splice variants and

insertion into bicistronic eukaryotic expression

vectors
b1-subunits: Full length b1-subunit isoform sequences were

cloned using two pairs of sequence specific primers: 1st sense

primer 59-CCTCTCCATGGTCCAGAAGACCAGCA-39 and

1st antisense primer 59-CAAATAAAGCTTTCTGCATCATG-

TCTGTAA-39, and 2nd sense primer 5-TTACAGACATGA-

TGCAGAAAGCTTTATTTG-39 and 2nd anti-sense primer 59-

GCGCCCACTACATGGCATGTTCCT-39 (GenBank NM_

199247; resp. positions: 147-173; 1048-1019; 1019-1048; 1732-

1709). PCR with the 1st primer pair yielded two amplification

products due to alternative splicing of exon 7a and exon 7b. Full

length message of b1A with either exon 7a or 7b was reassembled

in pIRES2-EGFP opened with BglII/SmaI site using the internal

HindIII restriction site.

b2-subunits: Full length b2-subunit isoform sequences were

cloned using two pairs of sequence specific primers derived from

GenBank sequences. N-terminal coding sequences for b2-subunit

splice variants were generated using isoform specific primer pairs.

b2a: sense primer 59-CTCTTCATGCAGTGCTGCGGGCTG-

GT-39 and antisense primer 59- ACTTCCGCTAAGCTTGACC-

TTGTG-39 (GenBank U95019; resp. positions: 496-521, 1397-

1374); b2b: sense primer 59-ATGCTTGACAGACGCCTTAT-

AGCT-39 and same antisense primer (GenBank AF285239; resp.

positions: 1-24, 899-876); b2c: sense primer 59-ATGAATCAGG-

GGAGTGGACTGGAC-39 and same antisense primer (GenBank

AF423190; resp. positions: 1-24, 977-894); b2d: sense primer 5-

ATGGTCCAAAGGGACATGTCCAAG-39 and same antisense

primer (GenBank AF423191; resp. positions: 1-24, 1061-1038).

The C-terminal fragment was amplified by sense primer 59-

CACAAGGTCAAGCTTAGCGGAAGT-39 and antisense pri-

mer 59-GGCAAAACTCATTGGGGGAT-39 (GenBank U95019;

resp. positions: 1374-1397, 2327-2308). Amplification was per-

formed in cDNA reverse transcribed (Revert Aid Kit, MBI

FermentasH) from mRNA isolated from non-failing human left-

ventricular myocardium using Trizol (InvitrogenH) and the

poly(A)tract kit (PromegaH). PCR conditions always were 40

cycles of 94uC, 58uC, 72uC, (each 1 min); and 5 min 72uC.

Amplification products were visualized by UV protected 0.8%

agarose gel-electrophoresis, extracted (Perfect Gel Clean-up,

Eppendorf-VaudauxH), and subcloned into pCR2.1-TOPO

(InvitrogenH). Sequences of cloned fragments were determined

on both strands (MWG-BiotechH). For eukaryotic expression full

length b2-subunit isoforms were reassembled in the pcDNA3

polylinker region (InvitrogenH) opened by BamHI/NotI using the

internal HindIII restriction site. Full length coding sequences were

inserted by T4 DNA ligation of N-terminal b2-subunit isoform

fragments cut by BamHI (pCR2.1 restriction site) and HindIII

(internal restriction site contained in all b2-subunit isoforms) and of

the C-terminal fragment cut by HindIII and NotI (pCR2.1

restriction site). Full-length coding sequences of b2 isoforms were

inserted by T4 DNA ligation into pIRES2-EGFP opened by EcoRI

restriction.

b3-subunits: Full length coding sequence was excised by

EcoRI/XhoI and inserted into pIRES2-dsRed2 opened with

EcoRI/SmaI.

human a2d-2: Full length coding sequence was obtained from

Klugbauer et al. [36] excised by restriction with HindIII/XhoI and

inserted into pIRES2-dsRed2 opened with NheI blunt/XhoI.

Western-blot analysis of Ca2+-channel subunits
Protein expression levels of the L-VDCC subunits were assayed by

Western-blot analysis of human and mouse cardiac ventricular

protein samples. Briefly, protein extracts were obtained by

homogenizing frozen heart tissue in buffer (5% SDS, 50 mM

TRIS-HCl, pH 7.4, 250 mM sucrose, 75 mM urea, and 10 mM

DTT containing complete protease inhibitor cocktail tablet from

Roche) using a Teflon homogenizer. The homogenate was
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denatured by incubation at 95uC (2 min) followed by centrifuga-

tion at 16,000g (5 min); supernatants (containing membrane

fractions and cytosolic proteins) were collected for analysis. Protein

was quantified using Bicinchoninic acid (BCA) Protein Assay

(PierceH). For CaV1.2 and a2d-1 Western blots, 60 mg, and for b2

and b3 Western blots, 150 mg of total protein were separated on

a 8% and 12% SDS-PAGE gel (BioRadH). Gels were transferred

to nitrocellulose membranes (AmershamH) according to standard

wet transfer procedure. L-VDCC subunits were detected using the

following antibodies: anti-human CaV1.2 against the II-III loop

(generous gift from Dr. Hannelore Haase, Max-Delbrück Center,

Berlin, Germany; [37,38]); anti-b2 (generous gift from Dr. Adolfo

Cuadra (Dr. M. Hosey), Northwestern University, Chicago, USA;

[39]); anti-b3 and anti-a2d21 (Alomone;[40,41]), and anti-

calsequestrin (Santa Cruz;[42]). The anti-b1 (Swant; cp. [16])

stains a band at ,57 kDa in the membrane of human skeletal

muscle (data not shown) where b1a is pre-dominant [43] suggesting

that the antibody detects a b1a in human and mouse myocardium.

In the present study this antibody detected an additional band of

,65 kDa in murine myocardium and ,70 kDa in human heart.

Though our present mRNA data indicate that there are two b1-

isoforms in cardiac tissue we cannot exclude a cross-reaction of the

antibody with b3-subunits since the second band is quite close to

the band detected by the b3-specific antibody from Alomone (see

above). Thus we decided to avoid any quantitation of this ‘‘high

molecular band’’ detected in murine and human cardiac tissue,

respectively.

Immunofluorescence analysis of Ca2+-channel

subunits
Ventricular myocytes were freshly isolated from 10 month old tg

CaV1.2 and controls as previously described, stored in Kraft-

Bruehe solution and plated on laminin-coated with poly-L-lysine

and 50 mg/ml mouse laminin (InvitrogenH) coverslips for 1 h at

37u C, 5% CO2. After incubation myocytes were washed with

relaxation buffer (mM: 100 KCl, 5 EGTA, 5 MgCl2, 0.25

dithiothreitol (DTT) in PBS, pH 6.8). Myocytes were then fixed in

pre-cooled (220uC) methanol/acetone (1:1) for 5–10 min at 4uC.

To prevent non-specific binding, myocytes were blocked with 10%

normal donkey serum (SigmaH) in PBS overnight (labeling buffer)

[44]. Primary antibodies were diluted in labeling buffer and

incubated with myocytes overnight at 4uC. Primary antibody

dilutions for different subunits of the L-VDCC studied were: 1:200

for a1C (AlomoneH) and 1:500 for b2. In the case of Wheat Germ

Agglutinin (WGA) labeling, myocytes were incubated overnight at

4uC with Oregon Green 488-conjugated WGA (Molecular

ProbesH) at a concentration of 1 mg/ml. WGA selectively binding

to N-acetyl-d-glucosamine in glycoproteins was used to label the

peripheral sarcolemma, the T-tubules and the intercalated disks.

After overnight incubation, myocytes were washed with PBS and

incubated with secondary antibody in PBS-0.1% BSA for 1 h at

room temperature. Secondary antibody for the study of the L-

VDCC subunits was tetramethylrhodamine-isothiocyanate

(TRITC)-conjugated donkey anti rabbit antibody at 1:400 dilution

(Jackson ImmunoResearchH, USA). For negative control experi-

ments, myocytes were kept in labeling buffer overnight without

primary antibody and only incubated with secondary antibody at

the same concentration. After washing the cells with PBS,

coverslips were mounted on slides using Gel/Mount aqueous

mounting media (BiomedaH) and images were acquired on a Nikon

PCM 2000 laser confocal scanning microscope as 0.5 mm ‘‘optical

sections’’ of the stained cells, keeping gain and background values

constant through the different samples.

Generation of transgenic mice with inducible

cardiac overexpression of b2a

Recent modifications in the Drosophila ecdysone receptor

revealed better regulation of gene expression in mammalian cells,

however, the dependence on steroidal ligand activation (i.e.

ponasteron) with its potential additional effects on gene expression

remains. The ecdysone receptor from Bombyx mori is activated by

the non-steroidal ligand tebufenozide (effective drug in MIMIC,

Dow AgroSciencesH, Munich, Germany) without known specific

interaction in mammalian cells. This construct regulated b-

galactosidase expression in HEK293 cells at concentrations of

1 mM tebufenozide as effectively as the Drosophila ecdysone

receptor (data not shown). For our experiments we intraperitone-

ally injected 9 mg tebufenozide (i.e. twice the dose leading to

maximum serum concentration of the drug) 48h before isolation of

cardiac myocytes. The hybrid drosophila-bombyx ecdysone

receptor (VgBmEcR) was constructed by fusion of the binding

and transactivation domain of the modified drosophila system

(pVgRXR, InvitrogenH) to the ligand binding domain of the

bombyx ecdysone receptor (BmEcR in pBSII KS+BmB1 = ecdy-

sone receptor type B1 of Bombyx mori, obtained from Fujiwara

H., Tokyo, Japan) using the restriction enzyme BsrGI and NotI.

The coding sequence of VgBmEcR was set under control of the

promoter of aMHC for cardio-specific expression. The aMHC

promoter was excised from pBlue-MHCb1ARSV40polyA (ob-

tained from Stefan Engelhardt, Wuerzburg, Germany) using DraI

and PvuII and inserted into pVgBmEcR opened with the same

enzymes. The ecdysone-regulated plasmid pInd-b2a was con-

structed by excision of the b-galactosidase coding sequence from

pInd-LacZ (InvitrogenH) using HindIII and XbaI and insertion of

the coding sequence for rat b2a excised from pCR3-b2a-6myc

(obtained from A.J. Chien, Chicago, USA) with the same

restriction enzymes. The linearized coding sequence of constructs

were injected simultaneously into embryonic stem cells, and mice

transgenic for the VgBmEcR and the b2a-subunit were identified

by PCR using construct-specific primers (not depicted), and by

Southern blot using aMHC-VgBmEcR and b2a specific probes

labeled radioactively. Mouse DNA was obtained from mice 3

weeks post delivery and digested with EcoRI for proof of aMHC-

VgBmEcR-, and HindIII/BamHI for Ind-b2a -genomic integration.

Probes specific for aMHC-VgBmEcR and Ind-b2a were obtained

by SacI and KpnI/HindIII restriction of the respective coding

sequences. Probes were radio-labeled with a-32P-CTP using the

Klenow fragment. Animals positive for integrated coding

sequences were identified by 3.7 kb hybridization signal for

aMHC-VgBmEcR and a 2.4 kb signal for Ind-b2a (Figure 4a).

Cell culture and co-transfection
Cell culture and transient co-transfection were done as described

[12,45]. In brief, HEK293 cells were stably transfected with the

full-length CaV1.2-subunit (GenBank NM_000719) cloned from

human heart [46]. Cells were seeded in polystyrene Petri dishes

(9.6 cm2, FalconH, Heidelberg, Germany) at a density of 1–

2?104 cells cm22 and transiently co-transfected with the cDNA

plasmids encoding the different human cardiac b2 splice variants

together with human cardiac a2d-2-subunit [36]. Lipofection was

carried out 24–36 h after plating by incubating (3–6 h) with

SuperFect (QiagenH) and the respective plasmids at a DNA mass

ratio of 3:3:1 [12,45]. Transfected cells were grown on Petri dishes

in Dulbecco9s modified Eagle’s medium (DMEM, Biochrom

KGH, Berlin, Germany) supplemented with 10% fetal bovine

serum (SigmaH, Deisenhofen, Germany), penicillin (10 units ml21)

and streptomycin (10 mg ml21, both from BiochromH). Electro-
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physiological recordings in GFP-positive cells were obtained 48–

72 h after transfection.

Isolation of ventricular myocytes
Single ventricular myocytes were isolated from murine hearts by

enzymatic dissociation using the method described earlier [47]. In

brief, hearts were perfused with a collagenase solution (Worthing-

ton type I and II, 75 U l21) in a Langendorff setup and

subsequently cut into small chunks. Myocytes were harvested by

pouring the suspension through cheesecloth.

Single-channel recording
Single-channel recordings were performed by using the cell-

attached configuration of the patch-clamp method as described

earlier [47]. Cells were placed in disposable Petri dishes containing

3 ml of a high-potassium depolarizing solution (mM: 25 KCl, 120

K-glutamate, 2 MgCl2, 10 Hepes, 2 EGTA, 10 dextrose, 1 CaCl2,

1 Na2-ATP; pH 7.3 with KOH). Patch pipettes (borosilicate glass,

6–8M) were filled with pipette solution for myocytes (mM): 70

BaCl2, 110 sucrose and 10 Hepes; for HEK cells (mM): 110 BaCl2,

10 Hepes; pH 7.4 with TEA-OH. Ba2+ currents were elicited by

voltage steps (150 ms at 1.66 Hz) from 2100 mV to +20 mV

(native channels) or +10 mV (recombinant channels) ($180

sweeps per experiment). Data were sampled at 10 kHz and

filtered at 2 kHz (3 dB, four-pole Bessel) by using an Axopatch

200A amplifier (Axon InstrumentsH, Foster City, USA). PCLAMP

software (CLAMPEX 5.5.1, FETCHAN, and PSTAT 6) was used

for data acquisition and analysis (Axon InstrumentsH, Foster City,

USA). Signal-noise ratio and adequate resolution of openings were

similar to previous work [12,16,47], as confirmed by comparison

of, e.g. data from wild-type mice.

Data analysis and statistics of single-channel

recordings
Linear leak and capacity currents (averaged non-active sweeps)

were digitally subtracted. Openings and closures were identified by

the half-height criterion. The fraction of active sweeps within

a patch (factive), the open probability within active sweeps (Popen),

and the peak value of single-channel ensemble average currents

(Ipeak) were determined as described [16]. Where necessary, these

parameters were corrected for the number of channels in a patch,

as described [6]. For comparisons unpaired Student’s two-tailed t-

test or Mann-Whitney test was used where appropriate. Through-

out, a level of p,0.05 was considered significant. Values are given

as mean6SEM.
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